
Internship Report:

First-Order questions on the dynamics of automata

networks with distinguished configurations

Aliénor Goubault–Larrecq

Supervised by:
Kévin Perrot
Enrico Porreca

LIS

from 21/02/2022 to 20/07/2022

Abstract

We prove general complexity lower bounds on automata networks, in the style
of Rice’s theorem, as an expansion of a result by Gamard, Guillon, Perrot and
Theyssier. Their result was about first-order formula on the dynamics of automata
networks, but it was up-to isomorph. A question left open was how to di↵erentiate
isomorphic graphs.

Our main result is that testing any fixed graph first-order formula on the dy-
namics of a deterministic automata network is either trivial or P-complete, if we
distinguish a finite number of configurations, especially if we can recognize the min-
imal configuration. We also give some properties on first-order formula with respect
to the comparison of configurations, such that it can give some avenues of reflexion
about the extension of our problem to formulas with an order relation.

Contents

1 Introduction 1

2 Definitions 2
2.1 Automata networks . 2
2.2 Graph First-Order Logic . 3
2.3 Complexity classes . 4
2.4 Nomenclature used for logic circuits . 5

3 State of the art 6

4 FO questions on signature {=,!,E} 7
4.1 Some FO questions on signature {=,!,E} are P-complete 7
4.2 FO questions on signature {=,E} are !-trivial 8

4.2.1 FO questions on signature {=,b} are !-trivial 8
4.2.2 FO questions on signature {=,t} are !-trivial 9

4.3 Properties . 9
4.3.1 Find a model and a counter-model with exactly one di↵erence . . . 9
4.3.2 Permutations and Hamming weight 10

5 FO questions on signature {=,!,Z} are P-hard 11
5.1 General proof . 11
5.2 Extention . 19

6 Conclusion 20

A Last cases of the proof about FO questions on signature {=,!,Z} 22

B Circuit for the reduction of signature {=,!,Z} 24

C FO questions on signature {=,!} are P-hard 24

1 Introduction

An automata network is a directed graph G = (V,E), together with a finite set of so-
called states Sv for each vertex v 2 V that is representing the states of an automaton,
and a function that expresses how the state at each automaton v evolves as a function
of the states of its predecessors. The tuple of states of the automaton of an automata
network at a time t is called a configuration. An automat network can be deterministic
or not. Also, in the cases where each automaton has two states, an automata network
is called a Boolean automata network.

Initially, Boolean automata networks were introduced by McCulloch and Pitts in 1943
as a formal model of another type of networks: the neural networks [8]. Later, general
automata networks were introduced in theoretical biology, in order to study dynamics
of gene expression, their activations and inhibitions, as formalized by Kau↵man in 1969
[6] and Thomas in 1973 [13].

Since then problems on automata networks have been studied with the general aims
of being applicable to biology, while having theoretical results on its structure. A lot
of studied problems about automata networks are about their dynamics, which is the
function that computes the next states of every automata at each step. In particular,
given a property, some people asked what the complexity to determine whether an
automata network verifies this property is. For example, Alon proved in 1985 that
knowing whether an automata network admits a fixed point (i.e. a stable configuration)
is complete for the complexity class NP, and is thus as hard to solve as all the problems
of this class [1]. Other problems on fixed points have been studied such as counting
the number of fixed points [9], or computing limit set (the set of configurations visited
infinitely many times if they are visited once) [4], and about the basin of attraction of a
configuration x (set of configurations that can reach x) [3].

Gamard, Guillon, Perrot and Theyssier made a generalisation in 2021 by studying
the complexity of the problem, that given a property expressed with graph first-order
logic, whether a graph verifies this property or not [4]. They showed that for properties
on the dynamics of graphs, in first-order logic, it is always trivial (solvable in constant
time) or at least as hard as problems in the classes NP or coNP, which is a Rice-like
theorem (in the spirit of Rice’s theorem in computability theory [12]).

They noticed that first order graph question on their signature are invariant under
isomorphim, in other words, it is not possible to di↵erenciate configurations. This is
an issue for biology-applications, since the labels of the configurations, for instance the
gene activation states, can carry an information that is not interchangeable. That is
why distinguishing configurations of these networks is interesting, in order to distinguish
genes. A goal of this report is to show what relations it is possible to add to the logic’s
signature in order to di↵erenciate some configurations.

Outline. We first set out all the preliminary notions in Section 2,, in particular con-
cerning automata networks, graph first-order logic and complexity theory. Then, we
present the state of the art which led to our problem in Section 3. We start describing

1

our own controbutions, and we show some properties of questions when we add an order
on the configurations in Section 4. We prove a general complexity lower bound for the
problem when we have a unary relation to distinguish the configuration where all the
automata are in the state 0, and give an extension when we distinguish a finite number
of configurations in Section 5. We also give in Appendix C an improvement of the proof
of the Rice-like theorem by Gamard, Guillon, Perrot and Theyssier, with a reduction of
better complexity.

2 Definitions

For two natural numbers n, q 2 N, we will use the following notations to define sets of
integers: [n] = {1, . . . , n} and JqK = {0, . . . , q � 1}. We write Ai = JqiK with qi 2 N for
all i 2 [n]. Given a set X, we write |X| the cardinality of X, i.e. the number of elements
in X.

A graph G is defined by two sets: the set of vertices V (G) and the set of edges
or arcs depending whether G is directed or not E(G). To define a graph we write
G = (V (G), E(G)). If G is directed, u, v 2 V (G), and there is an arc from u to v we
write that (u, v) 2 E(G). If G is not directed and there is an edge between u and v, we
write that {u, v} 2 E(G). Two graphs G and H are isomorphic if H can be obtained
after renaming all the vertices of G, i.e. there is a bijection ✓ : V (G) ! V (H) such
that (u, v) 2 E(G) () (✓(u), ✓(v)) 2 E(H) (and similarly in the undirected case).
Concerning the size of a graph we consider that |G| = |V (G)| in this report.

2.1 Automata networks

A deterministic automata network (abbreviated by AN here) of size n is a function
f : X ! X where X =

Q
i2[n]Ai is the set of the configurations of the system, and then

Ai is the set of states of the ith automaton of the network. In the Boolean case, each
automaton can only have two states Ai = {0, 1}, hence X = {0, 1}n.

By default, we will consider in this report that the automata networks have one
automaton where n = 1 (cf. Remark 1).

The funtion f can be split into a family of local functions {fi}i2[n], where 8i 2 [n], fi :

A ! Ai. Hence fi returns the state of the ith automaton at the next step. We can also
retrieve f from all the local functions since 8x 2 X, f(x) = (f1(x), f2(x), ..., fn(x)). We
remark that fi does not necessarily depend on the previous state of all the other n
automata.

The function f can be represented by a graph Gf called interaction digraph, such
that Gf = ([n], I), where I is the set of pairs (i, j) such that, for some a, b 2 X with
ak = bk for every k 6= i, we have fj(a) 6= fj(b). We can also represent the graph of
the configurations Gf of an AN f , such that V (Gf) = X and E(Gf) = {(x, f(x)), 8x 2

V (Gf)}. We call it dynamics or transition digraph.
An automata network is encoded as a tuple of n Boolean circuits, one for each of its

local functions, with a total size not greater than n2n, i.e. the size of the dynamics Gf ,

2

i.e. the logarithm of the number of functions on {0, 1}n ! {0, 1}n, since the truth table
of each local function have a size of at most 22

n
.

Remark 1. We can transform any AN f into an equivalent network g with only one
automaton. Let X be the set of configurations of f . There exists an AN g with one
automaton with the set of states J|X|K with dynamics Gf = ✓(Gg), where ✓ is a renaming
of the vertices according to the trivial bijection between X and J|X|K.

Hence we will mainly consider automata networks on one automaton, whose state is
encoded in binary. By convention, configurations x such that x � |X| does not have a
meaning for this automata network (with X = A1 in the case of one automaton).

We note that Boolean automata networks are exactly the automata networks whose
number of configurations is a power of 2.

2.2 Graph First-Order Logic

If P is a property that automata networks may or may not satisfy, and f is an automata
network, then we write f ✏ P if f satisfies P , and f 2 P otherwise. We say that f is a
model of P in the first case, and a counter-model otherwise. This is an abuse of notation,
and we need to know the exact nature of P to know its precise meaning. In particular,
we will study properties expressible on Graph First-Order Logic over a signature S.

A signature S gives symbols to the formulas we can construct. In particular it
describes the possible atomic relations on configurations (also called atoms). In this
report, we will mainly add three symbols in the signature, depending on the AN given
in input f :

� = is a binary relation of the equality between configurations;
� ! is a binary relation such that x ! y if and only if y = f(x) (or (x, y) 2 E(Gf));
� E is a binary relation of order between configurations. We use it to talk indi↵erently

of the bitwise partial order of binary strings denoted by b, or the total order of
integers denoted by t.

To say that we consider three relations =,!,E in a signature we write the signature
S = {=,!,E}.

First-Order formulas, abbreviated by FO, are formulas that are expressible with the
existential quantification 9 on vertices (configurations); conjonction ^, and negation ¬.
We use syntactical shortcuts to express the universal quantification 8, the disjunction
_, the implication =) , and the equivalence () ; that are all derived from the first
three symbols.

The quantifier rank of a formula is its depth of quantifier nesting, see for example
[7, Definition 3.8]. If G and G0 are two structures, we write G ⌘m G0 if and only if they
satisfy the same formulas of quantifier rank m, we say that they are partially isomorphic.
We write ⌘ ' if the two formulae and ' are equivalent, i.e. if they have the same
model set.

3

2.3 Complexity classes

Complexity classes are classes of problems characterized by their complexity, in terms of
resources needed to be solved with a Turing machine: the ressources which we analyse
here, are time and memory (space).

Some classes are defined with oracles that are seen as black boxes a Turing machine
can use to solve certain problems in a single operation: we note XY for the class of
problems in X using an oracle to do an operation in Y .

We define the complexity classes that we will need in this report:
� L: class of problems solvable in logarithmic space on a deterministic Turing ma-

chine; i.e. on an input of size n, it can be solved sequentially in space O(log n);
� NC: class of problems solvable in polylogarithmic time on a parallel computer with

a polynomial number of processors; i.e. there exist two constants k, c such that on
an input of size n it can be solved in time O((log n)k) using O(nc) processors.

� P: class of problems solvable by a deterministic Turing machine in polynomial
time; i.e. there exists a constant k such that on an input of size n it can be solved
sequentially in time O(nk);

� NP: class of problems solvable by a non-deterministic Turing machine in polyno-
mial time; i.e. there exists a constant k such that on an input of size n it can be
solved sequentially and non-deterministically in time O(nk);

� coNP: class of problems whose complement is in NP;
� ⌃P

i
with i 2 N is the ith level of the polynomial hierarchy, defined inductively by

⌃P
0 = P and ⌃P

i+1 = NP
⌃P

i ;

� ⇧P
i
, complementary of ⌃P

i
, defined inductively by ⇧P

0 = P and ⇧P
i+1 = coNP

⇧P
i .

To prove that a problem belongs to a class, we often use a reduction. A reduction is
a transformation of a problem X to another problem Y . If X can be reduced to Y then
it means that X is not more di�cult to solve than Y . There are di↵erent methods of
reduction, but in this report we will focus on the many-one reductions. If the reduction is
done with respect to a class C, then there is an algorithm, with complexity being similar
to problems of C, that transforms the inputs to problem X into inputs to problem Y ,
such that the two problems with these inputs have the same output. If X reduces to Y
with respect to C, we write it X

C Y .
A problem X is said to be hard for a complexity class C if every problem in C can be

reduced to X. This means that no problem in C is harder than X, since an algorithm for
X allows us to solve any problem in C. The reduction needs to be adapted depending
on the class C, for complexity classes larger than P, we often use polynomial-time
reductions, in particular for NP problems. To show that a problem is P-hard, we usually
use NC or L reductions. A problem X is said to be complete for a complexity class C if
X is in C and is hard for C.

To reduce a problem to a certain class, we often use problems of reference. In partic-
ular, for P-reduction (to prove that a problem is P-hard), we often use Circuit-Value-
Problem. We use the same definition of Boolean circuit as defined by [7, Section 6.2],on
n inputs and with the logical relations ^,_,¬. For a circuit C on n inputs and x a vector

4

on n bits, we call C(x) 2 {1, 0} the output of the circuit C on the input x.

Circuit-Value-Problem (CVP)
Input: Boolean circuit C on n inputs and x a vector on n bits.
Question: C(x) = 1 ?

Theorem 1 ([10, Theorem 8.1]). CVP is P-complete with respect to L.

Theorem 2. CVP with fixed input x = 0n is P-complete.

2.4 Nomenclature used for logic circuits

We will represent some logic circuit in this report. Logic circuits are made to be read
from top to bottom. The arrows represent the information flow direction: if an arrow
goes to a box, it will be considered as an input of the function in the box, while if it
goes out, it will be considered as an output.

We give an explicative layout in Figure 1.

(1)

10(3)?

(4)

(5)

(7)

x y

(6) (6)

(9)

(7)

(2)

(8)

� (1) represents the input of the circuit on the
top with a grey arrow;

� (2) at the bottom, is the output of the circuit;
� (3), (4) and (5) are defined by a function with

variables denoted by x, y or z. There are dif-
ferent types of functions: the ones such as (3)
whose only outputs can be 0 or 1; the ones
such as (4) that are defined by a function un-
der the form x 7! f(x), with x an input; (5) is
similar to (4) but the inputs are divided, and
is under the form x, y 7! f(x, y), in this case
we specify which input corresponds to which
variable;

� (6) are pre-existing circuits that we copy (it
appears two times here but it is not necessar-
ily for the same circuit);

� (7) is used to recall an output in the circuit;
� (8) is when a constant is used as an input;
� (9) is a 2 to 1 multiplexer: i.e. from two

inputs, it will output one of them depending
on the bit given from the left or the right.

Figure 1: Explicative circuit.

Most of the time, we don’t specify in each arrow how many bits it bears; we construct
circuits such as the the output of a box has as many bits as the input of the box an
arrow leads to. If this is not the case, we consider that either the vector born by the
arrow will be truncated, or padded with 0s to have the correct number of bits.

5

3 State of the art

Several problems on the dynamics of automata networks have been studied, we give here
some examples of problems about properties expressible in graph first-order logic.

In the dynamics graph Gf , a limit cycle is a cycle of the graph. The set of the limit
cycles of size k is written C

k

f
. We note that C1

f
is the set of fixed points in Gf . We can

questions about the existence of cycles of size k (k being fixed in the problem):

Limit Cycle of size k (k-CL)
Input: a Boolean AN f (local functions encoded as circuits).
Question: does |Ck

f
| > 0?

Alon studied this problem for k = 1, about fixed points and showed the following
result in 1985:

Theorem 3 ([1]). 1-CL is NP-complete, even with the promise that the maximal degree
of Gf is inferior or equal to 2.

Later, Bridoux, Gaze-Maillot, Perrot and Sené studied the problem for all k:

Theorem 4 ([2]). k-CL est NP-complete 8k 2 N+, even with the promise that the
maximal degree of Gf is inferior or equal to 2.

Other problems expressible in graph first-order logic can be in coNP, such as the bi-
jectivity. We can verify that an AN is bijective by only verifying the injectivity expressed
with ⌘ 8x, x0, 9y, y0, (x 6= x0 ^ x ! y ^ x0 ! y0) =) y 6= y0, since:

Theorem 5 ([11]). An AN is bijective if and only if it is injective.

Bijectivity
Input: a Boolean AN f (local functions encoded as circuits).
Question: Is f bijective?

Theorem 6 ([11]). Bijectivity is coNP-complete.

In 2021, Gamard, Guillon, Perrot and Theyssier wrote an article about the complex-
ity of closed first-order logic formulas over the signature {=,!} (both binary relations)
of transition digraphs, which is a generalization of the previous problems, and prove a
Rice-like theorem about the following problem:

 -dynamics
Input: an automata network f (local functions encoded as circuits).
Question: does Gf ✏ ?

Definition 1. A formula is !-nontrivial if there are infinitely many models and in-
finitely many countermodels.

Theorem 7 ([4]). If is !-nontrivial, then -dynamics is either NP- or coNP-hard.

6

The condition of !-nontriviality is optimal: indeed, if is !-trivial, then solving
 -dynamics amounts to testing whether the given AN belongs to a finite fixed list of
objects, which can be done in time O(1).

They noticed that formula on FO logic over the signature {=,!} is up to isomor-
phism, ie. for a graph Gg which is the exact same graph Gf with the vertices renamed
we have Gg ✏ () Gf ✏ .

They proved a complexity’s lower bound, and they also said an evident upper bound
is that it is always in PH = [i2N⌃P

i
(all the problems are in the polynomial hierarchy),

and proved that both bounds were optimal:

Theorem 8 ([4, 11]). For all N 2 N⇤, there is a formula N such that N -Dynamics
is ⌃P

N+1-complete.

4 FO questions on signature {=,!,E}

We recall that we write E to talk indi↵erently of a partial order or a total order, where
the bitwise partial order of binary strings is denoted by b, and the total order of integers
is denoted by t..

4.1 Some FO questions on signature {=,!,E} are P-complete

Theorem 9. For all of the following , the problem -dynamics is P-complete.
� 8x : (8y : x E y) =) x ! x, i.e. configuration 0n is a fixed point;
� 8x : 8y : (x t y ^ (8z : x t z ^ z t y =) z = x_ z = y)) =) (9y1 : 9y2 : y !

y1 ^ y1 ! y2 ^ y2 ! y ^ y1 6= y2 ^ y1 6= y ^ y2 6= y), i.e. configuration 1 (in the
total order, 1 is the smallest configuration after 0) belongs to a cycle of size 3.

Proof. � For 8x : (8y : x E y) =) x ! x, first, given the graph Gf in input, it is
immediately in P, since we just need to compute f(0), which can be computed in
at most polynomial time.
Let C be an instance of Circuit-Value-Problem with n bits of inputs, with fixed
input 0n. We will construct a Boolean automata network of size n, such that for
every local function fi, i 2 [n] (cf. the circuit in the left of Figure 2):

fi(x) = ¬C(0n).

It is immediate by construction that Gf ✏ if and only if C(0n) = 1.
The reduction is in L: the circuit of the automata network can be constructed in
O(log(|C|)) space, where |C| is approximately the number of gates in C.

� First it is in P since, given the graph Gf in input, we just need to compute
f(1), f(f(1)) and f(f(f(1))), which can be done in at most polynomial time. We
use the same method as the previous point, except that if we write each configu-
ration x = xn, ..., x2, x1, we create a cycle between each configurations who ends
by 10, 01, 11 such that 01 ! 10 ! 11 ! 01 without changing the rest. Hence

7

C

0m

¬

C

0m

C

0m

10

1 0

x = 11

x2x1

10 C

0m

10

1 0

x = 01

x2x1

10

x2 x1

Figure 2: Left: local function of each fi defined for the proof of 0n is the fixed point;
Right: the first graph (on the left) local function of each fi for i � 2, the second (middle)
one is the local circuit of f2, and the last (right) one is the one of f1, in for the second
point of the proof.

each local function if i � 2 is defined by fi(x) = x, and for the last two, we define
f2 by :

f2(x) =

8
><

>:

0 if C(0n) = 1 and x2x1 = 01

1 if C(0n) = 1

x2 otherwise

We define f1 similarly, and we represented all the local circuits in Figure 2.

As a consequence of Theorem 9, we aim at a statement of the form : any !-nontrivial
FO formula on {=,!,E} is P-hard, otherwise it is O(1).

4.2 FO questions on signature {=,E} are !-trivial

We will prove that without ! in the signature, i.e. only with an equality relation = and
a comparison relation, FO questions are !-trivial. We will show this for two types of
comparison: the bitwise partial order of binary strings denoted b, and the total order
of integers denoted t.

Proposition 1. For any formula on signature {=,E}, -dynamics is !-trivial.

By definition of !-trivial, it is immediate that:

Corollary 1. For any formula on signature {=,E}, -dynamics can be solved in
time O(1).

We separate the proof in two parts, depending if E is a partial or a total order.

4.2.1 FO questions on signature {=,b} are !-trivial

When we are studying FO questions on signature {=,b}, the questions do not depend
on the dynamic of the automata networks anymore. Hence we prove that:

8

Proposition 2. For any formula on signature {=,b}, -dynamics is !-trivial.

We consider structures in the vocabulary � = {✓} where ✓ is a binary relation
symbol. The intended interpretation of �-structures here is finite Boolean algebras: that
is, h2X ,✓i, where X is a finite set, and 2X is the set of the subsets of X.

We will use the following lemma proved by Libkin:

Lemma 1 ([7, Claim 5.7]). Let |X|, |Y | � 2k. Then h2X ,✓i ⌘k h2Y ,✓i.

We write for each subset S ⇢ [`] with a binary writing such that S(i) = 1 if and
only if i 2 S. So we can suppose that lattices on the subsets of [`] are actualy on the set
{0, ..., 2` � 1}. Hence h2[`],✓i ⌘ h{0, ..., 2` � 1},bi with b the partial order on binary
strings.

Proof of Proposition 2. For the sake of contradiction, let’s assume there exists a formula
 on signature {=,b} that is !-nontrivial, of quantifier rank k. Then it has an infinite
number of models and an infinite number of counter-models, hence models and counter-
models of arbitrary sizes. As a consequence there are two graphs G,G0 of respective
sizes n, n0

� 2k such that G |= whereas G0
6|= , i.e. G 6⌘k G0, which contradicts

Lemma 1.

4.2.2 FO questions on signature {=,t} are !-trivial

Proposition 3. For any formula on signature {=,t}, -dynamics is !-trivial.

We will use the following lemma proved by Libkin:

Lemma 2 ([7, Theorem 3.6]). Let k > 0, and let L1, L2 be linear orders of length at
least 2k. Then L1 ⌘k L2.

The proof of Proposition 3 from Lemma 2 follows the same principle as the proof of
Proposition 2 from Lemma 1.

4.3 Properties

4.3.1 Find a model and a counter-model with exactly one di↵erence

Given a graph G with out-degree 1 for each vertex, and a vertex x we define G(x) the
only vertex such that (x,G(x)) 2 E(G). Also 8i 2 N we write ei the binary number
written only with 0 except on the ith bit, with a 1. We show the following proposition
for -dynamics on FO formula on signature {=,!,E}.

Proposition 4. For any !-nontrivial , there are G,G0 equal except on one configura-
tion x such that G0(x) = G(x) + ei for some i 2 [n], and G |= whereas G0

6|= .

Proof. Since is !-nontrivial, it has infinitely many models and infinitely many counter-
models. Moreover, there exists at least one size of graph such that there are two graphs
H and H 0 which verify H ✏ , H 0 2 and |H| = |H 0

|. Otherwise, let’s assume toward

9

any contradiction that 8n 2 N, 8H, graph on n automata H ✏ or 8H, graph on n
automata H 2 . So the validity of only depends on the number of automata, and not
the dynamic: indeed given two AN f and f 0 on n automata, then it is immediate that
Gf ✏ () Gf ✏ . Hence there exist a formula ' on signature {=,E} such that � is
equivalent to (hence 8G ✏ () G ✏ '). According to Proposition 1, ' is !-trivial,
which is a contradiction with the !-nontriviality of .

We will construct a sequence H = H0, H1,, Hk = H 0, for a certain k 2 N⇤, with
k + 1 distinct graphs (k � 1 since it is immediate that H 6= H 0), with the following
method, where we assume that V (H) = V (H 0):

H0 = H
` = 0
While H 0

6= H`, do:
Find three configurations x, y, y0 such that x ! y in H`

and x ! y0 with y 6= y0 in H 0; find i such that yi 6= y0
i
, and do:

H`+1 = H`

H`+1(y) = H`(y) + ei
` = `+ 1

The algorithm ends since, we can count the number of di↵erences between H` and
H 0 with d` = |{(y, i)|y ! x 2 H`, y ! x0 2 H 0, xi 6= x0

i
}| � 0, and by construction

d`+1 = d` � 1.
Moreover, there exists at least one index j such that Hj ✏ and Hj+1 2 . We take

G = Hj and G0 = Hj+1. By construction of the algorithm, G and G0 are equal except
on one configuration x, such that G0(x) = G(x) + ei for some i 2 [n].

4.3.2 Permutations and Hamming weight

For every permutation � on n 2 N elements and for every transition digraph G on n
automaton, we define �(G) the digraph such that 8v, v 2 V (G) () �(v) 2 V (�(G))
and 8(u, v), (u, v) 2 E(G) () (�(u),�(v)) 2 E(�(G)).

Lemma 3. If is a FO-formula on signature {=,!,b} and � is a permutation then
8G,G ✏ () �(G) ✏ .

Proof. Let be a FO-formula on signature {=,!,b}, G be a transition digraph on n
automaton and � : {0, 1}n ! {0, 1}n be induced by permutation on n elements.

We show that G ✏ =) �(G) ✏ (the other implication �(G) ✏ =) G ✏ is
similar, since we just need to consider the permutation ��1 instead).

Since FO-formula on {=,!} are up-to isomorphisms, if does not contain any
b, it is immediate. Otherwise, we show that permutations do not change the truth
value of a comparison. Indeed, if we write x = x1, ..., xn and y = y1, ..., yn, then we
have by definition that x b y () 8i, xi yi. Let {i1, ..., in} = [n] be such that
�(x) = xi1 , ..., xin , hence we also have �(y) = yi1 , ..., yin , and since 8j, xij yij , it means
that �(x) b �(y).

10

Contrary to the previous point, swaping two configurations of a graph G with the
same Hamming weight to make a graph G0, does not imply that G ✏ () G0 ✏ .

Hk(x) is true means that the Hamming weight of x is k, i.e.
P

n

i=1 xi = k, when
x = x1, ..., xn. Hence k is the number of 1 in the binary writing of x. For any k 2 N, we
can define Hk with a FO formula on signature {=,!,b}, by induction on k.

H0(x) ⌘ 8y, x b y

Hk+1(x) ⌘ 9y,Hk(y) ^ y b x ^ [8z, (y b z ^ z b x) =) (z = y _ z = x)]

000

001

011

010100

111

101 110

000

001

110

010100

111

101 011

Figure 3: Two transition digraphs with only one di↵erence: a permutation of two con-
figurations of the same Hamming weight (in red). Left: G ✏ '. Right: G0 2 '.

To show that swaping two configurations with the same Hamming weight does not
keep the validity of a graph for a formula, we take the following counterexample with
' ⌘ 9x1, x2, H1(x1) ^H2(x2) ^ x1 ! x2 and Figure 3.

5 FO questions on signature {=,!,Z} are P-hard

5.1 General proof

We first resolve a particular case of FO questions on signature {=,!,E}, where we can
only characterize a minimal configurations compared to the cases up to isomorphism (on
the signature {=,!} in particular). We define the unary relation Z called zero such
that for every configuration x, Z(x) is true if and only if 9n 2 N such that x = 0n. In
particular, with an order E, we have the equivalence: Z(x) () 8y, x E y.

We write 0 any configuration on the form 0...0 with a length depending on the
number of automaton, but we know that it is the only configuration in each graph such
that Z(x) () x = 0...0.

We show the following theorem:

Theorem 10. For any !-nontrivial on signature {=,!,Z}, -dynamics is P-hard.

We recall the following notations as in the article of Gamard, Guillon, Perrot and
Theyssier [4]:

Definition 2. Let G and G0 denote graphs; we define three operators t1, t2, t3.

11

� The graph G t1 G0 (or G tG0) is the disjoint union of a copy of G and a copy of
G0.

� If G has a pointed node v and G0 has any number of pointed nodes (possibly zero),
then the graph Gt2G0 is Gt1G0 except that each edge going out of a pointed node
of G0 points to v instead. The result has one pointed node, v.

� If G has a pair of pointed nodes (u, v) and G0 has a pair of pointed nodes (u0, v0),
then G t3 G0 is G t1 G0 except that: the edge going out of v points to u0; and the
edge going out of v0 points to u. Besides, G t3 G0 has pointed nodes (u0, v).

If G is a graph, k is an integer, and z is in {1, 2, 3}, then t
k
zG denotes G tz ... tz G,

with k copies of G. Since the constructions we will sometimes change the configuration
of a graph. The configurations are numbered depending on which copy they are in. In
the kth copy, we add k � 1|G| to each configuration. We extend this to union of di↵erent
graphs such that for G tz G0, the vertices of G are unchanged but in G0, we add |G|.

Let n be an integer, � = (G1, ..., Gn) a n-tuple of graphs, and w a word over alphabet
{1, ..., n}. Define U

G,�
z (w) by induction as follows: U

G,�
z (✏) = G, and U

G,�
z (w1...wk) =

U
G,�
z (w1...wk�1) tz Gwk (where ✏ is the empty word). We represent U

G,�
z (w) for z 2

{1, 2, 3} in Figure 4.

U
G,�
1 (w) = . . .

G Gw1 Gw2 Gw3 Gwk

U
G,�
2 (w) = . . .

G Gw1 Gw2 Gw3 Gwk

U
G,�
3 (w) = . . .

G Gw1 Gw2 Gwk G
u u1 u2 ukv1 v2 vk v

Figure 4: Illustration of the unions with U
G,�
z (w) for z 2 {1, 2, 3} (the pointed nodes are

in black while the other parts of the graphs are in grey) [4].

We will first prove that:

Proposition 5. If is an !-nontrivial formula on the signature {=,!,Z}, then there
exist nonempty graphs G,G0, J, J 0, and z 2 {1, 2, 3} such that |G| = |G0

|, |J | = |J 0
| and

8k � 0, we have G tz (tk
zJ) ✏ and G0

tz (tk
zJ

0) 2 .

Preliminary results. Recall that all our graphs have out-degree 1, so each connected
component of a graph is a cycle, in which each vertex is the root of an upward tree (a
rooted tree where arcs point towards the root). Define T as the set of finite, nonempty
upward trees. Any graph may be seen as a multiset of cyclic words over alphabet T .

We recall that if G and G0 are graphs, we write G ⌘m G0 if and only if they satisfy
the same formulas of qunatifier rank m. Let Em denote the set of equivalence classes of
⌘m over T .

12

We prove that with the signature {=,!,Z} we still have the same lemma, with a
similar proof, as the case on {=,!} [7, Lemma 5.2.1]:

Lemma 4. For all m, the set Em is finite.

Proof. Without loss of generality, we assume that all the formulas are in prenex form
(quantifiers are at the beginning). So, a formula � is of the formQ1x1...Qmxm�0(x1, ..., xm),
where 8i,Qi 2 {9, 8} and �0 is a quantifier-free formula. A quantifier-free formula
�0(x0, ..., xm�1) is a Boolean formula over 2m2 +m variables: “xi ! xj”, “xi = xj” and
“Z(xi)”, for 0 i, j < m. Two Boolean formulas are equivalent if they have the same

truth table. There are 22m
2+m possible assignment for the “variables”, thus 22

2m2+m

possible truth tables. Consequently, there are at most 2m+22m
2+m

nonequivalent formu-
las of quantifier rank m. Any structure satisfying (resp. falsifying) a formula has to
satistfy (resp. falsify) all formulas equivalent to it. Therefore, there are finitely many
possible sets of formulas of quantifier rank m that a given structure may satisfy.

For all T 2 T let Em(T) denote the equivalence class of T for ⌘m. We extend
the map Em to finite words, cyclic or not: if w = w1w2...wk is a word over T , then
Em(w) is the word Em(w1)Em(w2)...Em(wk). Similarly, we extend Em to multisets over
finite words such that if Y = {y,..., yn} is a (multi)set of finite words over T , then
Em(Y) = {Em(y1), ..., Em(yn)}; and similarly, since graphs can be viewed as multiset of
cyclic words, we can define Em(G) for any graph G.

Definition 3. A DULC is a finite digraph that is a vertex-Disjoint Union of Labeled
Cycles, where the labels are in Em.

All graphs of the form Em(G) are DULC. Now define a new signature, with two
binary relation symbols = and ! as before, and one unary relation symbol per element
of Em. Formulas � with this signature talk about graphs where vertices are Em-labeled
(possibly with some multiply-labeled vertices, but this does not matter), such as DULC.
We remark that in a graph Em(G) there can be at most one label of Em corresponding
to an equivalence class of trees containing configuration 0, since this configuration is
unique in every graph. In each graph we will denote this label E0

m(G). We also denote
E
0
m ⇢ Em the set of the equivalence classes whose elements always contain 0.

We will need the following theorems, lemma and defintion about partial isomophisms
between DULC:

Theorem 11 ([4]). For all m and all graphs G,G0, if Em(G) ⌘m Em(G0) then G ⌘m G0.

Definition 4. An r-ball in a graph, where r is an integer, is a subgraph induced by
vertices linked to a given vertex by a path of length at most r. An r-ball type occuring
in a graph is the graph-isomorphism class for a ball (for isomorphisms preserving the
center).

Definition 5. Let m be an integer, e = 2 · 3m +1 the maximum number of vertices in a
3m ball of a DULC, and Bm the (finite) set of possible 3m-balls types in DULC. Given a

13

DULC H, its profile is the function ⇡H,m : Bm ! {0, ...,m · e}t {!} defined as follows:
⇡H,m(b) is the number of balls in H that are isomorphic to b in the case that it does not
exceed m · e, and ! otherwise.

Lemma 5 (Hanf’s lemma [5]). Let m be an integer, and H and H 0 be DULC. If ⇡H,m ⌘m

⇡H0,m, then H ⌘m H 0.

Theorem 12 ([4]). For all integer m and all formula of rank m, there is a formula
E() such that for all graph G, we have G ✏ if and only if Em(G) ✏ E().

We now prove the following lemma, whose proof is inspired by the one of the propo-
sition by Gamard, Guillon, Perrot and Theyssier [4, Proposition 5.2.9.]:

Lemma 6. In a nonempty DULC H, if there exists a cycle of size at least e(|Em|
e + 1)

then there exists a nonempty DULC J that doesn’t contain any label of E0
m, such that

8k,H ⌘m H t (tkJ).

Proof. If there exists a cycle of size at least e(|Em|
e + 1) in H, let call such a cycle C for

counting reasons, there is a word v of length e over the alphabet E that occurs at least
twice in C. Since there is at most one label E0

m(H), it cannot appear multiple times,
and in particular v does not contain it. From a part of the cycle which contains two
occurrences of v and does not contain E

0
m(H), we construct a cycle J of length at least

e + 1 (by folding this part on itself at v, such represented on Figure 5). The graph
H t (tkJ) has the same profile as H for all k; ⇡H,m = ⇡Ht(tkJ),m.

v

v

C J

ℰ0
m(H)

Figure 5: Representation of the construction of J (E0
m(H) is not necessarily in the cycle

C, but we represent in that case).

According to Lemma 5, it means that for all k, H ⌘m H t (tkJ).

Definition 6. A family of models is a set of models. For a family of models F for a
formula , we write Em(F) = {Em(G), 8G 2 F}, hence if we obtain a graph H 2 Em(F)
then there exists a graph G 2 F such that H = Em(G).

We now proceed to a case disjonction, according to some structural property of the
family of models and countermodels. For every point of the disjunction, we will use tools
from finite model theory. The principle will be to have an unbounded characteristic in

14

models such that we can find a graph that we can copy as many time as we want, and
having an easy construction of models as big as we need. After, we will prove how the
cases are combined. Theorem 10 will be proved using Proposition 5 and showing that
with its conclusion, we can make a L-reduction from Circuit-Value-Problem.

Unbounded cycles. We adapt the proof of [4, Proposition 5.3.1.]:

Proposition 6. If of quantifier rank at most m 2 N has a model G, such that there
exists a cycle of size at least e(|Em|

e + 1) in Em(G), then there exist a nonempty graph
J such that 8k,G t (tkJ) ✏ .

Proof. We write H = Em(G) and � = E(). Since G is a model of , according to
Theorem 12, H is a model of �.

According to Lemma 6, there exists another DULC, J 0 such that 8k,H ⌘m H t

(tkJ 0). We note J the graph such that Em(J) = J 0. Also, by definition of Em(F), we
know that G 2 F . Since it is a disjoint union, it is immediate that Em(Gt (tkJ)) = H t

(tkJ 0) for all k. By Theorem 11, we have G ⌘m Gt(tkJ). Thus, 8k,Gt(tkJ) ✏ .

Corollary 2. If has a an infinite family F containing models with unbounded cycles,
then there exists a graph G 2 F and a non-empty graph J such that 8k,G t (tkJ) ✏ .

Proof. Let be a FO-formula on signature {=,!,Z} such that its models have un-
bounded cycles, and whose quantifier rank is at most m 2 N.

Hence, the projection � = E() also has models with unbounded cycles, and the
family Em(F) is also an infinite family of models with unbounded cycles. In particular,
there exists a model H 2 Em(F) such that there exists a cycle of size at least e(|Em|

e+1)
in it.

Hence the graph G = Em(H) verify the hypothesis of Proposition 6, and the result
follows.

Unbounded degrees.

Definition 7. A subtree of a tree T is always complete, i.e., spanned by the set of nodes
coaccessibles from a given node (the root of the subtree). An immediate subtree is a tree
whose root has depth 1 in the ambient tree. If T is a tree and ↵ 2 Em, we write |T |↵ for
the number of immediate subtrees of T of type ↵.

We will need the following lemma:

Lemma 7 ([4]). Let T and T 0 be trees such that, for each ↵ 2 Em, we have either
|T |↵ = |T 0

|↵ or |T |↵, |T 0
|↵ � m. Then T ⌘m T 0.

We write degG : V (G) ! N the function wich gives the in-degrees of each vertex of a
graph G, i.e., if v 2 V (G), degG(v) = |{u 2 V (G), (u, v) 2 E(G)}|. We adapt the proof
of Gamard, Guillon, Perrot and Theyssier of [4, Proposition 5.3.3]:

15

Proposition 7. If of quantifier rank at most m 2 N has a model G, such that there
exists a vertex v of degree degG(v) � m · |Em| + 1 then there exist a nonempty graph J
such that 8k,G t2 (tk

2J) ✏ .

Proof. We know that in the di↵erent subtrees with root v in a graph, at most one of
them contains 0 (hence, whose equivalence class belongs to E

0
m), all the others can be

characterized by FO-formulas on {=,!}, and we can copy multiple times these trees
without having to duplicate a configuration (here 0).

Let v 2 V (G) be a vertex such that degG(v) � m · |Em|+ 1. Hence, v has at least m
equivalent immediate subtrees T1 ⌘m ... ⌘m Tm and none of them contains 0. We use
Lemma 7 on our m equivalent immediate subtrees T1, ..., Tm. It implies that, if we add
more copies of T1 as immediate subtrees of v in G, we have an equivalent graph; i.e., if
we put v as the pointed node of G and r the root of T1 as the pointed node of T1, then
8k,G ⌘m G t2 (tk

2T1), and in particular 8k,G t2 (tk

2T1) ✏ .

Corollary 3. If has an infinite family F of unbounded degrees models, then there
exists a graph G 2 F and a non-empty graph J such that 8k,G t2 (tk

2J) ✏ .

Proof. Let be a FO-formula on signature {=,!,Z} such that its models have bounded
cycles and unbounded degrees, and whose quantifier rank is at most m 2 N.

Since the models of in F have unbounded degrees, there exist one graph G 2 F

and a vertex v 2 V (G) such that degG(v) � m · |Em|+ 1.
With Proposition 7, the result is immediate.

Unbounded subtree depths or unbounded number of occurrences of a con-
nected component that does not contain 0.

Concerning two last cases of the disjunction, for models having unbounded subtree
depths or having unbounded number of occurences of a connected component that does
not contain 0, we provide details in Appendix A (the proofs are similar to the cases
above).

Combining the cases.
It is immediate with the following lemma of Gamard, Guillon, Perrot and Theyssier.

Lemma 8 ([4]). Every formula with infinitely many models has models with either un-
bounded cycles, unbounded degrees, unbounded hanging tree depths, or an unbounded
number of occurrences of each connected component.

Combining Lemma 8, with the Corollary 2, Corollary 3, Corollary 4 and Corollary 5:

Proposition 8. For every FO-formula on signature {=,!,Z} with infinite many mod-
els, and an infinite family F of models, there exists a graph G 2 F and a non-empty
graph J , and z 2 {1, 2, 3} such that:

8k,G tz (t
k

zJ) ✏ .

16

Among the characteristics stated before such as unbounded cycles, unbounded de-
grees, unbounded hanging tree depths, or unbounded number of occurrences of a con-
nected component that don’t contain 0, if we suppose that one of them is true for a
family F , we will denote it C. And for a graph G 2 F we will denote C(G) the size of the
characteristic in G; hence it can be either the maximum size of a cycle, the maximum
degree, the maximum hanging tree depth or the maximum occurences of a connected
component in G. We obtain the following properties:

Proposition 9. For each formula , if it has an infinite number of models in a family
F , then there exists a characteristic C such that for any constant c we have F

0
✓ F with

8G 2 F
0, G ✏ and C(G) � c. Furthermore there exist such a constant s such that

8G 2 F
0, there exists a nonempty graph J such that 9z 2 {1, 2, 3}, 8k,G tz (tk

zJ) ✏ .
Proof. First, we know that for all formula there exists an unbounded characteristic C
for an infinite number of models, according to Lemma 8, in particular for F . We now
suppose that C is fixed.

We do an induction on C, given a model G 2 F :
� If C is the maximum size of a cycle, then according to Proposition 6, s = e(|Em|

e+1)
is enough;

� If C is the maximum degrees, according to Proposition 7, s = m · |Em|+1 is enough;
� If C is the maximum hanging tree depth, according to Proposition 11, s = |Em|+1

is enough;
� If C is the maximum occurences of a connected component in G, according to

Proposition 12, s = m is enough.

Proof of Proposition 5. is !-nontrivial. Hence it has an infinite number of models and
an infinite number of counter-models. Moreover, 8i 2 N, 9j � i such that there exist
models with j automata and counter-models with j automata. Indeed, the graphs can’t
depend on the number of automata to be a model or not if is !-nontrivial.

We first take the family F
+
0 of models of size j such that there exist counter-models

of size j, i.e. F
+
0 = {G,G ✏ and 9G0, G0 2 , |G0

| = |G|} According to the previous
paragraph this family is infinite. Similarly we define F

�
0 for the counter-models.

Moreover, according to proposition 9, for the formula and the family F , there exist
a characteristic C which is unbounded in F and a constant s, such that 8G 2 F , G ✏
and C(G) � s then there exists a nonempty graph J such that 9z 2 {1, 2, 3}, 8k,G tz

(tk
zJ) ✏ .
We define F

+
⇢ F

+
0 , such that 8G 2 F

+,C(G) � s. We also define F
�
⇢ F

�
0 such

that 8G 2 F
�
0 , if there exists G0

2 F
+ such that |G| = |G0

|.
According to Proposition 8, there exists G0

2 F
� and a graph J 0 such that 8k,G0

tz

(tk
zJ

0) 2 . By construction of F�, we can also obtain G 2 F
+ such that |G| = |G0

|.
By definition of s and F

+, we know that C(G) � s, hence there is a graph J such that
8k,G tz (tk

zJ) ✏ .
In the case where |J | 6= |J 0

|, we can take t|J 0|
z J instead of J and t

|J |
z J 0 instead of J 0,

and the result is immediate.

17

Proof of P-hardness.

Proposition 10. Let be a formula and z be an element of {1, 2, 3}. If there exist
nonempty graphs G,G0, J, J 0 such that |G| = |G0

|, |J | = |J 0
| and we have 8k,Gtz (tk

zJ) ✏
 and 8k,G0

tz (tk
zJ

0) 2 , then -dynamics is P-hard.

Proof. We do a reduction from Circuit-Value-Problem with fixed input 0m. Let C
be an instance of Circuit-Value-Problem. Depending on the size of the input m of
C, we will construct an AN using at least m automata. In particular the number of
configuration X will verify: 2m�1 < |X| 2m.

We know that for the formula , there exist z 2 {1, 2, 3} and nonempty graphs
G,G0, J, J 0, such that |G| = |G0

|, |J | = |J 0
| and we have 8k,G tz (tk

zJ) ✏ and
8k,G0

tz (tk
zJ

0) 2 .
We construct a circuit in Figure 6 that can compute two graphs G tz (tp

zJ) and
G0

tz (t
p
zJ 0) and that will choose only one of them depending of the output of C. The

integer p is choosen such that 2m�1 < |G| + p|J | 2m (similarly we have 2m�1 <
|G0

| + p|J 0
| 2m). We suppose that m is big enough so that |J | 2m�1, |G| 2m,

(hence also |J 0
| 2m�1, and |G0

| 2m).

c1, . . . , cm = c

G ⊔i (⊔p
i J)G′ ⊔i (⊔p

i J′)

10C

0m

Figure 6: Base circuit (we recall the explanation of the nomenclature is in Section 2.4).

We just need to construct G tz (tp
zJ) and G0

tz (tp
zJ 0). We can use the same

construction, and it only depends on z, we give the one for z = 1 in Figure 7, while for
z = 2 or 3 they are given in Annex B.

We call fG the AN corresponding to the graph G, and fJ for J . The circuit of
G t1 (t

p

1J), consist in computing for each input c the function f defined by:

f(c) = fG(c) if c < |G|

= fJ(r) + |J | · i+ |G| otherwise, where c� |G| = |J | · i+ r

In the circuit we use the fact that r = c� |G| mod |J |, and i = b
c�|G|
|J | c.

We obtain the fact that for H the graph obtained, H ✏ () C(0n) = 1.
Moreover the reduction is in L. Indeed we first notice that the circuits of G and J

take a constant space here, since they don’t depend on m and we have supposed that

18

G J

c1, . . . , cm = c

10c ≥ |G |?

x ↦ (x − |G |) mod |J |

x, y ↦ x + y − ((y − |G |) mod |J |)

fJ((c − |G |) mod |J |)fG(c)

x y

Figure 7: Circuit of G t1 (t
p

1J).

if their input was taking less than m bits we would troncate it. Also, concerning all
the other boxes, they have a constant number of operations depending on the logarithm
of the size of the input (depends on the number of bits). Hence the circuit can be
constructed in O(log(|C|)) space, depending on the input `.

Proof of Theorem 10. With Proposition 10 and Proposition 5, it is immediate.

5.2 Extention

Lemma 9. Let Z1, ...,Zk be a finite number of unary relations, such that there exist k
binary numbers z1, ...zk such that Zi(x) is true if and only if x = zi.

For any !-nontrivial on signature {=,!,Z1, ...,Zk}, -dynamics is P-hard.

Proof. It is exactly the same proof as in the case with the signature {=,!,Z} in The-
orem 10. We note here the details that change:

� The model G used in Proposition 5 must be non empty but here we suppose that
we have at least max{zi, i 2 JkK} configurations, since we consider that all the
configurations zi belong to the graph G in the end;

� We must note that the equivalent classes Em are not the same as in the case with
zero, but it is still the same principle.

� Lemma 4 is still true, but now there are at most 2m+22m
2+mk

nonequivalent formulas
of quantifier rank m;

� We note that as in Lemma 6 and Proposition 6, if a word u appears twice in a
DULC, then it cannot contain any configuration zi, it is similar as the fact that it
could not contain 0 before;

19

� For Proposition 7, Proposition 11 and Proposition 12: nothing changes.
In the end, all the propositions discussed above are su�cient to show all the same

propositions as in the case with signature {=,!,Z}, but with our new signature.

Remark 2. For k unary relations Z1, ...,Zk, a formula and a dynamics Gf on n
automata, if G ✏ , it depends on the order on the automata. Indeed, for a permutation
� on n elements, we do not necessarily have �(G) ✏ . For example with z1 = 100

and ' = 9x, x ! x ^ Zi(x). With the left graph in Figure 3, we immediatly see a
conterexample if we take �(100) = 001.

6 Conclusion

During my internship, I mainly proved that if we add a finite number of unary relations to
the signature {=,!}, each one characterising exactly one configuration, then evaluating
whether a graph verifies a formula on this signature is either !-trivial, hence solvable in
constant time, or P-hard.

I also found some leads in order to prove our conjecture, that with a signature
with an order, partial or total, the complexity is the same: either trivial or P-hard. I
showed that we might used Hamming weight since models are not closed under swapping
configurations with same Hamming weight; but they are closed under permutations.
With the same goal, I showed that we can find two graphs which di↵er by only one
arrow, such that one is a model and the other is a counter-model.

I strongly suspect that a similar method as with the unary relation zero Z, with a
disjunction of cases depending on the models, might work, as in the case with a total
order; but there are non-trivial issues with the method on models with unbounded cycles
which needs to be improved. Lastly, the problem with a bitwise partial order is still open,
and it is still not clear whether the same disjunction as the one used previously can still
be applied here.

There are still other open questions related to this kind of Rice-like complexity re-
sults: does it still hold on a fixed alphabet i.e. is it possible to have the same theorems
for Boolean AN, and to do a construction fitting graphs whose sizes are povers of two?
Indeed, most of our construction have an arbitrary number of configurations, hence it
doesn’t correspond to any Boolean AN, and the adaptation to this specific case has yet
to be found. Is it possible to extend the theorem to monadic second-order formulas ?
Or to extend it also to non-deterministic AN ? The main di�culty is that lot of trivial
problems for the deterministic case are no longer trivial for the non-deterministic case.

20

Acknowledgments

I would like to thank my supervisors Kévin Perrot and Enrico Porreca for introducing me
to the world of automata networks, and also for helping me improve my understanding
about the tools of finite model theory and complexity theory.

I also would like to thank all the other students for their support and all the discus-
sions we had: Isabella, Ricardo, Léah, Florian, Émilie, Marius, Yannis, Marc, Guillaume,
and Julien.

References

[1] N. Alon. Asynchronous threshold networks. Graphs and Combinatorics, 1(1):305–
310, 1985.

[2] F. Bridoux, C. Gaze-Maillot, K. Perrot, and S. Sené. Complexity of limit-cycle
problems in boolean networks. In International Conference on Current Trends in
Theory and Practice of Informatics, pages 135–146. Springer, 2021.

[3] P. Floréen and P. Orponen. On the computational complexity of analyzing hopfield
nets. Complex Systems, 1989.

[4] G. Gamard, P. Guillon, K. Perrot, and G. Theyssier. Rice-Like Theorems for Au-
tomata Networks. In Proceedings of STACS’2021, volume 187 of LIPIcs, pages
32:1–32:17. Schloss Dagstuhl, 2021.

[5] W. Hanf. Model-theoretic methods in the study of elementary logic. In J. W.
Addison, editor, Journal of Symbolic Logic, pages 132–145. Amsterdam: North-
Holland Pub. Co., 1965.

[6] S. A. Kau↵man. Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of theoretical biology, 22(3):437–467, 1969.

[7] L. Libkin. Elements of finite model theory, volume 41. Springer, 2004.

[8] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[9] P. Orponen. Neural networks and complexity theory. In International Symposium
on Mathematical Foundations of Computer Science, pages 50–61. Springer, 1992.

[10] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1 edition, 1993.

[11] K. Perrot. Études de la complexité algorithmique des réseaux d’automates. PhD
thesis, Aix-Marseille Université, 2022.

[12] H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the AMS, 74(2):358––366, 1953.

21

[13] R. Thomas. Boolean formalization of genetic control circuits. Journal of theoretical
biology, 42(3):563–585, 1973.

A Last cases of the proof about FO questions on signature

{=,!,Z}

Unbounded subtree depths. In a graph G, a hanging tree is a connected component
of the graph obtained from G by removing all the edges in cycles. The treedepth of a
tree T , written d(T) can be define by induction on the number of vertices p of T : if
p = 0 then its treedepth is 0; otherwise let r be the root of F the set of its immediate
subtrees, d(T) = 1 +max{d(T 0), 8T 0

2 F}.
We will prove a lemma similar to Lemma 5.3.4.[4]:

Lemma 10. If of quantifier rank at most m 2 N has a model G, such that has a
hanging tree T of treedepth at least |Em| + 1, then there exists two subtrees T1, T2 of T
such that T2 ⇢ T1 and T1 ⌘m T2.

Proof. We recall that Em is finite according to Lemma 4. We call Em(G) the Em-labeled
copy of G where each node v is labeled by the equivalence class of the subtree rooted in
v. Since, in the tree T has a treedepth bigger than |Em|+ 1, by pigeonhole principle, T
admits two nodes with the same label, the first one being an ancestor of the other one.
We write T1 and T2 the two subtrees whose roots are these two respective nodes. Hence
T2 ⇢ T1. And by definition of label, T1 ⌘m T2.

We will also need the following lemma:

Lemma 11 ([4]). Let T be a tree, t a subtree of T and t0 a tree such that t ⌘m t0. If T 0

is the tree T where the occurences of t have been replaced with t0, then T ⌘m T 0.

Remark 3. If t0 is a subtree of t, the latter being also a subtree of T , and t ⌘m t,
it means that t doesn’t contain the configuration 0; hence, on the signature {=,!,Z},
there is no problem to replace t by t0.

We prove the following proposition, whose proof is similar to the one of Proposition
5.3.6. [4]:

Proposition 11. If of quantifier rank at most m 2 N has a model G, such that has a
hanging tree t of treedepth at least |Em|+ 1, then there exists a nonempty graph J such
that 8k, G̃ t3 (tk

3J) ✏ .

Proof. t has a treedepth is bigger than |Em|+1, according to Lemma 10, there exist two
subtree of t: T and T 0 such that T 0

⇢ T and T ⌘m T 0. We write the tree T 00 = T\T 0.
Let G = (G̃\T 0) t T 0 be a disconnected graph. We name two pointed nodes u and v: u
is in the G̃\T 0 part and is the the leaf of t that should have been the parent of T 0, and
v is the root of T 0.

22

We also give two pointed nodes to each graph T 00: u is the leaf that would be the
parent of T 0 in T and v is its root. By Lemma 11, 8k,G(tkT 00) ⌘m G̃. However
G̃ = G t T 00 so 8k, G̃(tkT 00) ⌘m G̃. We represent this construction in Figure 8.

Thus with J = T 00, 8k, G̃ t3 (tk

3J) ✏ .

•

T 00

•

T 0

T

eG

•

•u

T 00

•v

T 0

G

•v

T 00

T 00

...

T 00

•u

T 00
n

Figure 8: Left: G̃; Middle: G; Right: the union of T 00 that we add to G [4].

Corollary 4. If has models with bounded cycles and bounded degrees, and an infinite
family F of unbounded hanging tree depths models, then there exists a graph G 2 F and
a non-empty graph J such that 8k,G t3 (tk

3J) ✏ .
Proof. Let m be the quantifier rank of . Em is finite according to Lemma 4, so there
exists a graph G 2 F with a hanging tree depth bigger than |Em| + 1. According to
Proposition 11, the result is immediate.

Unbounded number of occurrences of a connected component that doesn’t
contain 0.

We will need the following lemma, in the {=,!} case:

Lemma 12 ([4]). Let G and J be graphs and m an integer. For all k, k0 � m we have
G t (tkJ) ⌘m G t (tk

0
J).

Proposition 12. If of quantifier rank at most m 2 N has a model G, such that more
than m connected components that don’t contain 0 that are isomorph to a graph J , then
8k,G t (tkJ) ✏ .
Proof. We assume that in a graph G there are more than m connected components that
don’t contain 0 and that are isomorph to a graph J . Hence there exist i � m and a
graph H and such that G = H t (tiJ).

According to Lemma 12, 8k,H t (tiJ) ⌘m H t (ti+kJ), because J . Since G ✏ ,
we have 8k,G t (tkJ) ✏ .

23

The following corollary is then immediate:

Corollary 5. If has models with bounded cycles, bounded degrees, and bounded hanging
tree depths, and an infinite family F of unbounded number of occurrences of a connected
component that doesn’t contain 0 models, then there exists a graph G 2 F and a non-
empty graph J where J doesn’t contain 0 such that 8k,G t (tkJ) ✏ .

B Circuit for the reduction of signature {=,!,Z}

We give here the representation of the circuits to construct Gt2 (t
p

2J) and Gt3 (t
p

3J).
Concerning Gt2(t

p

2J), we construct it by considering that the first |G| configurations
simulate G, and every group of |J | configurations after will simulate one copy of J . Hence
we remark that computing c� [(c� |G|) mod |J |] on an input c � |G| is computing the
smallest configuration of the copy J that contains c. If we note u the pointed node of J
and v the one of G, the function of the graph f2 is defined by:

f2(c) = fG(c) if c < |G|

= fJ((c� |G|) mod |J |) + c� [(c� |G|) mod |J |] otherwise if c 6= u

= v if c = u

We represent the circuit that computes f2 in Figure 9.
For G t3 (t

p

3J), it is the same principle but we need to take care about u, u0, v and
v0. u0 and v0 are the pointed nodes of G and u and v the ones of J . The graph is the
dynamics of the function f3 represented on Figure 10 and defined by:

f3(c) = fG(c) if c < |G| and c 6= u

= v + |G| if c < |G|

= fJ((c� |G|) mod |J |) + c� [(c� |G|) mod |J |] otherwise if c 6= u

= v0 if c+ 2|J |+ |G| � 2m and c = u

= v + c� [(c� |G|) mod |J |] + |J | if c = u

We note that we used the fact that b c�|G|
|J | c · |J |+ |G| = c� (c� |G|) mod |J |.

C FO questions on signature {=,!} are P-hard

We know they are hard for NP or coNP, but they are also hard for P. The main
improvement here to the proofs of Gamard, Guillon, Perrot and Theyssier [4], is that we
show that the reduction they have done can be done with respect to L.

Theorem 13. For any !-nontrivial on signature {=,!}, -dynamics is P-hard.

24

G J

c1, . . . , cm = c

10x ≥ |G |?

x ↦ (x − |G |) mod |J |

fJ((c − |G |) mod |J |)fG(c)

x y

10

v

x = u?

x, y ↦ x + y − ((y − |G |) mod |J |)

Figure 9: Circuit of G t2 (t
p

2J).

We adapt the proof of Gamard, Guillon, Perrot and Theyssier, that with any !-
nontrivial on signature {=,!}, -dynamics is NP-hard [4]. Hence we prove propo-
sition 13 and lemma 13.

SAT
Input: a formula ' with n variables
Question: is there an n-tuple (x1, x2, ..., xn) such that '(x1, ...xn) is true?

UNSAT
Input: a formula ' with n variables
Question: is '(x1, ...xn) is false for every n-tuple (x1, x2, ..., xn)?

Proposition 13. SAT and UNSAT are P-hard problems with respect to
L.

Proof. First, we prove it for SAT . We know that :

Theorem 14 (Cook’s theorem [10]). SAT is NP-complete.

In the proof of Papadimitriou for Cook’s theorem, the reductions are made in L

since it uses O(log n) space (with n the size of the input). So the proof also shows that
8L 2 NP, L

L SAT .

25

G J

c1, . . . , cm = c

10x ≥ |G |?

x ↦ (x − |G |) mod |J |

x, y ↦ x + y + |G |

fJ((c − |G |) mod |J |)fG(c)

x y

10 x = u?10

v + |G |

x ↦ ⌊ x − |G |
|J |

⌋ ⋅ |J |

x ↦ v + x + |J | + |G |

10 x + 2 |J | + |G | ≥ 2m?

v′ x = u′ ?

∧

Figure 10: Circuit of G t3 (t
p

3J).

In particular, since P ⇢ NP, 8L 2 P, L
L SAT . Which means that SAT is P-hard

with respect to
L.

Concerning UNSAT , P is closed under complementation hence it is immediate.

Lemma 13. SAT
L -dynamics or UNSAT

L -dynamics .

To prove lemma 13, we will need the following proposition, which is a direct conse-
quence of Lemma 5.3.9[4] combined with Propositions 5.3.1., 5.3.3., 5.3.6. and 5.3.8[4]
of the article Rice-Like Theorems for Automata Networks of Gamard, Guillon, Perrot
and Theyssier.

Proposition 14 ([4]). Let be a a !-nontrivial formula on signature {=,!} and z be
an element of {1, 2, 3}. There exist nonempty graphs G, J,D such that we have:

- either 8k, k0 2 N, G tz (tk
zJ) ✏ and G tz (tk

zJ) tz (tk
0

z D) 2
- either 8k, k0 2 N, G tz (tk

zJ) 2 and G tz (tk
zJ) tz (tk

0
z D) ✏ .

We will now adapt their reduction to show that:

26

Proposition 15. Let be a formula and z be an element of {1, 2, 3}. If there exist
nonempty graphs G, J,D such that for all integers k and k0, we have G tz (tk

zJ) ✏
and G tz (tk

zJ) tz (tk
0

z D) 2 , then SAT
L -dynamics.

We recall the notations of their article, that we already defined in Section 5. If G
is a graph k is an integer, and z is in 1, 2, 3}, then t

k
zG denotes G tz ... tz G, with k

copies of G. Now, let n be an integer, � = (G1, ..., Gn) a n-tuple of graphs, and w a
word over alphabet {1, ..., n}. Define UG,�

z (w) by induction as follows: UG,�
z (✏) = G, and

U
G,�
z (w1...wk) = U

G,�
z (w1...wk�1) tz Gwk (where ✏ is the empty word).

Let S denote an instance of SAT with s variables. Then S̄ is the word of length 2s

over alphabet {1, 2} whose ith letter is 1 if S(i) is false, and 2 if it is true (viewing the
binary expansion of i as an assignment for S).

We now prove proposition 15 :

Proof. Let S be an instance of SAT, z 2 {1, 2, 3} and G, J,D be graphs such that

|G| < |J | = |D| = `. We will know now construct the graph Gf = U
G,(J,D)
z (S̄) tz (tk

zJ)
(with k an integer and an AN f) used in the polynomial reduction [4], but instead
copying every graph G, J,D each time we need them, we will only define the AN f ,
letting the computation for later.

We will define f : {0, ..., 2m} ! {0, ..., 2m} with only one automaton representing the
2m configuration.

We di↵erenciate multiple cases, whether G is empty or not and depending on the
value of z. We will write f = fz depending on the value of z. We will note l = dlog(`)e.

� First, let’s assume that G = ; and z = 1 (so we use disjoint union). We will
take m = n+ l. For every c 2 {0, ..., 2m}, we will note c1, ...cm its binary writing.
We will define cmod = c[2n] which represent n automata, whose binary writing is
cl+1, ..., cm, and cdiv = b

c

2n c which represent the l other automata, whose binary
writing is c1, ..., cl.
The goal, is that we will consider for each configuration c that cmod is the number
of the graph (J or D) where is c, and cdiv is a configuration of J or D. To know
whether c needs to be in a copy of J or D we need to know the value of S̄(cmod).
Hence we can define f1 like this in Figure 11.

� Let’s assume that G 6= ; and z = 1. We know that the configuration `0n (in binary,
otherwise it is equal to ` · 2n) is the smallest configuration that is not defined in
the case where G is empty (and every higher configuration is not defined too):
we want to rename the configuration of G by configurations between ` · 2n and
` · 2n + |V (G)|� 1. Whether ` · 2n + |V (G)|� 1 > l or not, we might need to add
one automaton (compared to the G empty case) so we have two cases. We will
note max = `0n.
If ` ·2n+ |V (G)|�1 l, we keep m = n+ l. We will just associate the configuration

27

f1(c) = fJ(cdiv), cmod if S̄(cmod) = 1

= fD(cdiv), cmod if S̄(cmod) = 2

J D

c1, . . . , cl

S

cm−n+1, . . . , cm

0 1

cm−n+1, . . . , cmc′ 1, . . . , c′ l

fJ(c1, . . . , cl) fD(c1, . . . , cl)

Figure 11: Circuit defined by f1, where J
and D are the circuit of the automata net-
work with the same name, and S the circuit
of a SAT instance.

x in G by ` · 2n + x (we represent the circuit associated to f1 in Figure 12)

f1(c) = c+ fG(c�max) if max c < max+|V (G)|

= fJ(cdiv), cmod if S̄(cmod) = 1

= fD(cdiv), cmod if S̄(cmod) = 2

J D

S

cm−n+1, . . . , cm

0 1

cm−n+1, . . . , cmc′ 1, . . . , c′ l

fJ(c1 . . . cl) fD(c1 . . . cl)
G

x ↦ max + x

fG(max − c1 . . . cl)

0 1

x ↦ x − max

x < max?

c1, . . . , cl, cm−n+1, . . . , cm

c1, . . . , cl

Figure 12: Circuit defined by f1, where J , D and G are the circuit of the automata
network with the same name, and S the circuit of a SAT instance. Here is the represen-
tation with n+ l automata, and the other case where max+|V (G)| � 2n+l is similar.

Otherwise, if ` · 2n + |V (G)| � 1 > l, we add one automaton, whose state will be
the first bit of the configuration on m = n+ l + 1 bits. The principle is the same
as the previous case.

28

f1(c) = c+ fG(c�max) if max c < max+|V (G)|

= 0, fJ(cdiv), cmod if S̄(cmod) = 1 and c1 = 0

= 0, fD(cdiv), cmod if S̄(cmod) = 2 and c1 = 0

= 1, fG(cdiv), cmod if c1 = 1

Now, for z = 2 or z = 3, we always assume that G is not empty. Indeed, in the case
where G is empty, we can assume that G = J instead (since J 6= ;).

� Let’s assume that G 6= ; and z = 2. As before we note u the pointed node of
J and D (since models are up to the isomorphism, we can always rename the
vertices to have the same configuration for their pointed node), and uG the one of
G. We define do the same adaptation as in the case z = 1, and we keep the same
notation. We will do the case where ` · 2n+ |V (G)|� 1 > l so we use m = n+ l+1
automata (the case with n + l automata is the same without the first bit of the
configurations). We represent the circuit associate to f2 in Figure 13.

f2(c) = c+ fG(c�max) if max c < max+|V (G)|

= max+uG if c1 = 0 and cdiv = u

= 0, fJ(cdiv), cmod if S̄(cmod) = 1 and c1 = 0

= 0, fD(cdiv), cmod if S̄(cmod) = 2 and c1 = 0

x ≠ u?

J D

S

cm−n+1, . . . , cm

0 1

cm−n+1, . . . , cmc′ 1, . . . , c′ l

fJ(c1 . . . cl) fD(c1 . . . cl)
G

x ↦ max + x

fG(max − c1 . . . cl)

0 1

x ↦ x − max

x < max?

c1, . . . , cl, cm−n+1, . . . , cm

c1, . . . , cl

1

max + uG

0

Figure 13: Circuit defined by f2, where J , D and G are the circuit of the automata
network with the same name, and S the circuit of a SAT instance. Here is the represen-
tation with n+ l automata, and the other case where max+|V (G)| � 2n+l is similar

29

� Let’s assume that G 6= ; and z = 3. We note u and v the pointed nodes of
G, J and D (since models are up to the isomorphism, we can always rename the
vertices to have the same configuration for their pointed node). Here, we assume
that m = n + l + 1, the case where m = n + l being similar. We represent the
circuit associated to f3 in Figure 14.

f3(c) = 0, v, (cmod + 1) if c1 = 0 and cmod < n and cdiv = u

= max+v if c = 0, u, n

= 0, v, 0n if c = max+u

= c+ fG(c�max) if max c < max+|V (G)|

= 0, fJ(cdiv), cmod if S̄(cmod) = 1 and c1 = 0

= 0, fD(cdiv), cmod if S̄(cmod) = 2 and c1 = 0

x ≠ u?

J D

S

cm−n+1, . . . , cm

0 1

cm−n+1, . . . , cmc′ 1, . . . , c′ l

fJ(c1 . . . cl) fD(c1 . . . cl)
G

x ↦ max + x

fG(max − c1 . . . cl)

0 1

x ↦ x − max

x < max?

c1, . . . , cl, cm−n+1, . . . , cm

c1, . . . , cl

1

v

0

x ↦ x + 1 mod nx ≠ u + max? 10

x ≠ n − 1?∧

v ⋅ 2n

10

v + max

Figure 14: Circuit defined by f3, where J , D and G are the circuit of the automata
network with the same name, and S the circuit of a SAT instance. Here is the represen-
tation with n+ l automata, and the other case where max+|V (G)| � 2n+l is similar

The reduction is in L. Indeed, the circuits of G, J and D take a constant space
here, since they don’t depend on m and we have supposed that if their input was taking
less than m bits we would troncate it. Also, concerning all the other boxes, they have
a constant number of operations depending on the logarithm of the size of the input
(depends on the number of bits). Hence the circuit can be constructed in O(log(`))
space, depending on the input `.

30

