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1 Introduction
A key question in Very Large Scale Integration (VLSI) design is circuit layout: given a logical
circuit, how can one best draw it on a wafer of silicon? By best, one usually means a conjunction
of various minimization constraints. A prominent such constraint is minimizing layout area,
since area impacts cost, reliability, and complexity of testing. Another classical constraint is the
minimization of propagation delay, either by decreasing wire lengths or by increasing transistor
sizes, or minimizing the number of wire crossings; see [6] for instance.

In order to minimize wire crossings, Bernhart and Kainen introduced the notion of book
embeddings of graphs in 1979 [5]. A book embedding of a graph G is a finite collection of
pages which are half-planes, with the same line as boundary. All the vertices are placed on the
boundary line, while the edges are drawn on pages, and only intersect at their endpoints: see
Figure 1.

Figure 1: Example of three-page book embedding of the complete graph K5 [By David Eppstein
- Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=33302655].
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The main question on book embeddings is minimizing the number of books for a given graph.
Berhart and Kainen originally called book thickness of a graph G the minimal number of books
needed for a book embedding of G. Denominations have shifted, and one talks about stack
layouts and stack-number instead of book embeddings and book thickness, nowadays: the order
of the vertices on the boundary line is last-in first-out (LIFO, or stack) order for each page.

Heath and Rosenberg generalized those embeddings in 1992 [15]. Notably, if one replaces the
LIFO order in stack layouts by a first-in first-out (FIFO, or queue) order, one obtains queue
layouts and queue-numbers. We will give precise definitions below.

Outside VLSI design, queue and stack layouts have applications in fault-tolerant computing,
scheduling parallel processes, sorting with networks of queues and stacks, and matrix computa-
tion [15].

In the latter case, it is more realistic to model the application domain with directed acyclic
graphs (DAGs), or with finite partially ordered sets (posets). Indeed, the direction of arcs
imposes some restrictions on the vertex orders that one is allowed [15]. This led to extending
queue and stack layouts from undirected graphs to DAGs and posets.

The domain is young, and many problems are yet unsolved. For a sampler, let us cite a few
problems left open by Heath, Leighton, Rosenberg, and Pemmaraju in 1992 and 1997 [13–15]. To
start off, they conjecture that the queue-number of any planar poset with at most n elements is
O(
√
n). The current best known upper bound is n

2 [14]. Next, and of more central importance to
us, Heath and Rosenberg conjectured that planar graphs have bounded queue-numbers, namely
that the queue-number of all planar graphs is bounded from above by a fixed constant. This
remained unsolved for 27 years. Buss and Shor had proved that planar graphs have bounded
stack-number [7]; Yannakakis gave an upper bound of 4 in 1989 [19], which was shown to be
tight by Bekos, Kaufmann, Klute, Pupyrev, Raftopoulou, and Ueckerdt in 2020 [4]. For queue-
numbers, the conjecture was finally settled in 2020 by Dujmović, Joret, Micek, Morin, Ueckerdt,
and Wood: planar graphs indeed have bounded queue-number.

During my internship, I focused on the problem of finding best possible upper bounds of
queue-numbers of graphs and posets. This is an extraordinarily complex question, and only
recently have the first upper bounds been proved for the planar graphs [10]. The ultimate goal
of my internship was to try and improve upon the best known upper bounds, which is 42 for
planar graphs [3], and 3w− 2 for planar posets of width w [16]. That was probably too much to
be expected, and I spent most of my time reading and understanding the recent literature on the
subject. My aim in this report is to explain recent findings on this subject in the most leisurely
way.

Outline. We set out all preliminary notions in Section 2. The notion of layered width is
particularly important, and will be the keystone to Dujmović, Morin, and Wood’s proof that the
queue-number of planar graphs is at most 49, which we explain in Section 3. The distinction
between intra or inter layer and intra or inter-bag edges is also the keypoint of the improvement
of the previous bound to 42 by Bekos, Gronemann, and Raftopoulou in Section 3. The latter
bound allows us to derive upper bounds on queue-numbers of planar posets of bounded height
in Section 4. In Section 4, we present upper bounds of the queue-number of posets in function
not only of their height but also in function of their width and their number of elements.
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2 Preliminaries
2.1 Queue and stack layouts
We will use standard definitions of total order, partially ordered set (poset), and graphs [8]. All
our graphs are undirected and simple (where there cannot exist several edges for the same pair
of vertices). For a graph G, we will write V (G) for its set of vertices and E(G) for its edges. We
will write an edge between u and v: uv. We now define all the important notions we need in this
report.

Definition 2.1 (Vertex Order) A vertex order ≺ of a simple undirected graph G is a total
order of its vertices. We say that such that for any two vertices u and v of G u precedes v if
u ≺ v.

Definition 2.2 (Queue Layout) Let G be a graph and ≺ be a vertex order of G. We say that
the edges uv, u′v′ ∈ E(G) are nested with respect to ≺ if u ≺ u′ ≺ v′ ≺ v or u′ ≺ u ≺ v ≺ v′.
We say that the edges u1v1, u2v2, ..., ukvk of G form a rainbow of size k if u1 ≺ u2 ≺ ... ≺ uk ≺
vk ≺ ... ≺ v1 (see Figure 2).

v4v3v2v1

u1 u2 u3 u4 xxxx
u1 u2 u3 u4 v4 v3 v2 v1

Figure 2: Example of a 4-rainbow in the graph at the left with respect to the order: u1 ≺ u2 ≺
u3 ≺ u4 ≺ v4 ≺ v3 ≺ v2 ≺ v1. The edges of the graph are in black and red; those in red are the
one that form the 4-rainbow.

Given a graph G and a vertex order ≺ on G, a queue (with respect to ≺) is a subset of the
edges of G that does not contain any pair of nested edges with respect to ≺. A queue layout
of a graph G consists of a vertex order ≺ of G and of a partition of its edges into queues with
respect to that vertex order. The minimum number of queues needed in a queue layout of a
graph G is called its queue-number and denoted by qn(G). Note that minimization occurs over
all partitions into queues, but also over all vertex orders. If we keep the vertex order fixed, we
have the following key lemma.

Proposition 2.3 ([15]) Given a graph G and a vertex order ≺, the edges of G can be partitioned
into k queues with respect to ≺ if and only if there is no rainbow of size k + 1 in G with respect
to ≺.

Example 2.4 See Figure 3.

Those definitions extend to posets, through the following construction.

Definition 2.5 (Posets and Queue Layouts) Two elements a, b of a poset are called com-
parable if a < b or b < a where < is the relation of the poset, and incomparable, denoted a||b,
otherwise. All our posets are finite and non-empty.

Posets are visualized by their Hasse diagrams: Elements are placed as points in the plane
and whenever a < b in the poset, and there is no element c with a < c < b, there is a curve from
a to b going upwards. This case is denoted by a ≺ b.
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Figure 3: Example of two different vertex orders for a 4× 4 grid graph: the first one is ordered
horizontally, the second one diagonally [10].
The queues are represented with different colors, the first queue is blue, the second one is red
(which exists only in the first example). With the first order there are rainbows of size two, it
is impossible to obtain a queue layout with only one queue like with the second order. Better
vertex orders yield better bounds on queue-numbers.

The cover relations are the relations which are essential in the sense that they are not implied
by transitivity. The diagram represents those relations. The undirected graph implicitly defined
by such a diagram is the cover graph GP of the poset P .

Given a poset P , a linear extension L of P is a linear order on the elements of P such that
x <P y implies x <L y.

The queue-number of a poset P , denoted qn(P ), is the smallest k such that there is a linear
extension L of P for which the resulting linear layout of GP contains no (k+1)-rainbow. Clearly
we have qn(GP ) ≤ qn(P ), i.e., the queue-number of a poset is at least the queue-number of its
cover graph.

Definition 2.6 (Width and Height of a Poset) A chain of a poset is a non empty set of
pairwise comparable elements, for a chain C = {c1, c2, ...ck} of length k, we can assume that the
elements are ordered such that c1 < c2 < ... < ck. An antichain of a poset is a non-empty set
of pairwise incomparable elements. For chains and antichains, we will talk about length to talk
about their cardinalities.

The width of a poset P is the maximum length of an antichain of P . The height of a poset
P is the maximum length of a chain of P .

Figure 4: Example of a poset of width 5 and queue-number 2.

Definition 2.7 (Chain decomposition) A chain decomposition is a set of chains which par-
tition the edge set of the graph.
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An important theorem about the queue-number of posets, is Dilworth’s Theorem [9]:

Theorem 2.8 In any finite partially ordered set, the largest antichain has the same length as
the smallest chain decomposition.

Hence, by reformulating, the width of a poset P coincides with the smallest natural number
w such that P can be decomposed into w pairwise disjoint chains of P .

2.2 Layering, Treewidth and Layered Treewidth
Definition 2.9 (Layering) A layering of a graph G is an ordered partition (V0, V1, ...) of V (G)
such that for every edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj , then |i− j| ≤ 1.

If i = j then vw is an intra-layer edge. If |i− j| = 1 then vw is an inter-layer edge.

If r is a vertex in a connected graph G and Vi := {v ∈ V (G) : distG(r, v) = i} for every i ≥ 0,
then (V0, V1, ...) is called a breadth-first search (BFS) layering of G rooted at r, where distG is
the usual distance in a graph G [8].

Definition 2.10 (H-decomposition) For graphs H and G, an H-decomposition of G consists
a collection of subsets Bx of V (G) (the bags), one for each vertex x of H, with the following
properties:

• for every vertex v of G, the set {x ∈ V (H) : v ∈ Bx} induces a non-empty connected
subgraph of H, and

• for every edge vw of G, there is a vertex x ∈ V (H) for which v, w ∈ Bx.

The width of such an H-decomposition is max{|Bx| : x ∈ V (H)} − 1. The elements of V (H)
are called nodes while the elements of V (G) are called vertices.

Definition 2.11 (Treewidth) A tree-decomposition is a T -decomposition for some tree T . The
treewidth of a graph G is the minimum width of a tree-decomposition of G.

Figure 5: A graph G with eight vertices, and a tree decomposition of it onto a
tree T with six nodes. Each tree node lists at most three vertices, so the width
of this decomposition is two. [By David Eppstein - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3011976].
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It measures how similar a given graph is to a tree. In 2005, Dujmović, Morin, and Wood
proved that the queue-number is bounded in a graph of bounded treewidth [11], their bound was
improved by Wiechert in 2016 [18]:

Theorem 2.12 ([11,18]) Every graph with treewidth k has queue-number at most 2k − 1.

The case k = 3 was improved in 2018 by Alam, Bekos, Gronemann, Kaufmann, and Pupyrev
[2]:

Lemma 2.13 Every planar graph with treewidth at most 3 has queue-number at most 5.

Definition 2.14 (Partition) A vertex partition, or simply partition, of a graph G is a set P of
non-empty set of vertices in G such that each vertex of G is in exactly one element of P. Each
element of P is called a part. The quotient (sometimes called the touching pattern) of P is the
graph, denoted by G/P, with a vertex set P where distinct parts A,B ∈ P are adjacent in G/P
if and only if some vertex in A is adjacent in G to some vertex in B. A partition of G is connected
if the subgraph induced by each part is connected.

A partition P of a graph G is called an H-partition if H is a graph that contains a spanning
subgraph isomorphic to the quotient G/P. Alternatively, an H-partition of a graph G is a
partition {Ax : x ∈ V (H)} of V (G) indexed by the vertices of H, such that for every edge
vw ∈ E(G), if v ∈ Ax and w ∈ Ay then x = y (and vw is called an intra-bag edge) or xy ∈ E(H)
(and vw is called an inter-bag edge). The width of such an H-partition is max{|Ax| : x ∈ V (H)}.
Note that a layering is equivalent to a path-partition.

A tree-partition is a T -partition for some tree T .

With the aim of showing that planar graphs have bounded queue-number, those results are
only partial answers; indeed, planar graphs do not have bounded treewidth (already grids, see
Figure 3). The next idea was found by Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood in
2020, in the form of the notion of layered width [10], a layered variant of partitions (analogous
to layered treewidth being a layered variant of treewidth, that is a notion that Dujmović, Morin,
and Wood introduced in 2017 [12]).

Definition 2.15 The layered width of a partition P of a graph G is the minimum integer ` such
that for some layering (V0, V1, ...) of G, each part in P has at most ` vertices in each layer Vi.

Example 2.16 In the n× n grid graph G (like the Figure 3 which is the 4× 4 grid graph): the
columns determine a partition P of layered width 1 with respect to the layering determined by
the rows. The quotient G/P is an n-vertex path.

Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood showed in 2020 that if one does not
care about the exact treewidth bound, then it suffices to consider partitions with layered width
1 [10].

Lemma 2.17 If a graph G has an H-partition of layered width ` with respect to a layering
(V0, V1, ...), for some graph H of treewidth at most k, then G has an H ′-partition of layered
width 1 with respect to the same layering, for some graph H ′ of treewidth at most (k + 1)`− 1.

Definition 2.18 (`-Blowup) Let ` ≥ 1. An `-blowup of a graph H is any graph G built as
follows. The vertex set V (G) of G is the disjoint union of sets Bv of cardinality at most `, one
for each vertex v of H. The sets Bv are the blocks. There is an edge between x ∈ Bv and y ∈ Bw
in G if and only if vw is an edge of H.
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In other words, we blow up each vertex v of H into at most ` pairwise distinct vertices in G,
and for each vertex vw in H, we connect each vertex in block Bv to every vertex in block Bw.
The following lemma is a key argument in the proof of Dujmović, Joret, Micek, Morin, Ueckerdt,
and Wood. Bekos, Gronemann, and Raftopoulou for Lemma 2.20 [10]:

Lemma 2.19 Let H be a graph with a 1-queue layout with respect to some vertex order �. Let
` ≥ 1, and G be any `-blowup of H. Let also Bv denote the blocks of G, one for each vertex v of
H. One obtains a vertex order on G by letting every vertex of Bv be smaller than every vertex
of Bw whenever v ≺ w, and by linearly ordering the elements of each Bv in an arbitrary way.
With any such vertex order, G has an `-queue layout.

The proof is immediate, and is omitted.

v1
v2

v3

v4

v5
v6

u10

u11

u12u9

u8

u7

u1 u6

u5

u4

u3u2

u1 u2 u3 u4 u5 u6 u9 u10u7 u8 u11 u12

v1 v2 v3 v4 v5 v6

Figure 6: Left: a graph H with 6 vertices. Middle: the 2-blowup graph G of H, for which
∀i ∈ [1, 6], Bi = {u2i−1, u2i}. Right: Queue-layouts of H and G. Since ` = 2 here, we present a
2-queue layout of G: one queue is in blue, the other is in red.

The following lemma is the key argument in the proof that every planar graph has bounded
queue-number. It is due to Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood. Bekos, Grone-
mann, and Raftopoulou improved it for one case in Lemma 3.13.

Given any vertex order < on a graph G = (V,E), one can sort the vertices of G in increasing
<-order, yielding an enumeration ~V of the elements of V , namely, a tuple listing each element
of V once exactly. Conversely, every enumeration ~V of V defines a unique vertex order on G.
We will switch freely between the two views. This will also apply to subsets of V : enumerations
~V ′ of a subset V ′ of V are in one-to-one correspondence with vertex orders on the subgraph of
G induced by V ′.

Given a partition of V into pairwise disjoint subsets V0, ..., Vn, and given corresponding enu-
merations ~V0, ..., ~Vn, the concatenation ~V0; ...; ~Vn defines an enumeration of V , hence a vertex
order on G.

Lemma 2.20 Let H be a graph with a k-queue layout. Let G be a graph with a layering V0, ..., Vn,
and with an H-partition of layered width ` with respect to that layering. Then G has a (3`k +
b 3

2`c)-queue layout using the vertex order ~V0; ...; ~Vn, where each ~Vi is some enumeration of Vi.
In particular,

qn(G) ≤ 3`qn(H) + b32`c.

Proof Let {Ax : x ∈ V (H)} be an H-partition of G of layered width l with respect to some
layering (V0, V1, ..., Vn) of G; that is |Ax ∩ Vi| ≤ ` for all x ∈ V (H) and i ≥ 0. We remember
that this means that |Ax ∩ Vi| ≤ ` for every vertex x of H and for every i, 0 ≤ i ≤ n. Let the
vertex order on H enumerate its vertices as x1, ..., xh. We fix a k-queue layout QL(H) of H,
with queues E1, ..., Ek. For each i, 0 ≤ i ≤ n, and for each j, 1 ≤ j ≤ h, we fix an arbitrary
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enumeration ~Vij of Axj ∩ Vi, and we define the required enumeration ~Vi as the concatenation
~Vi1 ; ...; ~Vih . In other words, ~Vi lists the elements of Vi by putting the elements of Ax1 ∩ Vi first,
then those of Ax2 ∩ Vi, ..., and finally those of Axh ∩ Vi.

The enumeration ~V0; ...; ~Vn now defines a vertex order ≤ on the set V of vertices of G. We
recall that the sets Vi are the layers, and that the sets Axj are the bags. We call the sets Axj ∩Vi
are the parts. Every vertex of G lies in a unique part.

We will use the following property, which follows directly from the definition of ≤: if u and u′
are two vertices of G such that u ≤ u′, if u is in part Axj ∩ Vi, and if u′ is in part Ax′

j
∩ V ′i , then

(i, j) is lexicographically smaller than or equal to (i′, j′). This gives us two other properties:

1. Two intra-layer intra-bag edges uv and u′v′ are nested so that u ≤ u′ ≤ v ≤ v′ only if
u, u′, v′, v belong to the same part.
Indeed, by definition of intra-layer intra-bag edges, u and v are in the same part Axj ∩ Vi,
and u′ and v′ are in the same part Axj′ ∩ Vi′ . Since u ≤ u′, and by definition of ≤, (i, j)
is lexicographically smaller than or equal to (i′, j′). Similarly, v′ ≤ v entails that (i′, j′) is
lexicographically smaller than or equal to (i, j). Hence i = i′ and j = j′.

2. For any two inter-layer edges uv and u′v′, nested so that u ≤ u′ ≤ v′ ≤ v, there is a natural
number i, 0 ≤ i < n, such that u and u′ both belong to Vi and v and v′ both belong to
Vi+1.
Indeed, we remember that uv, with u ∈ Vi and v ∈ Vj , is an inter-layer edge if |i− j| = 1.
Hence j = i+ 1 or i = j + 1. However, u ≤ v can only hold in the first case, so j = i+ 1.
Similarly, u′ is in some layer Vi′ and v′ is in the next layer Vi′+1, for some index i′. Since
u ≤ u′, and by definition of <, i ≤ i′. Similarly, v′ ≤ v entails i′ ≤ i, so i = i′.

3. Two inter-layer intra-bag edges uv and u′v′ are nested so that u ≤ u′ ≤ v ≤ v′ only if
u, u′, v′, v belong to the same bag and for some 0 ≤ i < n, u, u′ ∈ Vi, v, v′ ∈ Vi+1.
Indeed, let uv and u′v′ be two nested edges such that u ≤ u′ ≤ v′ ≤ v, where u ∈ Axj ∩Vi,
v ∈ Axj ∩ Vi+1, u ∈ Ax′

j
∩ V ′i , and v′ ∈ Ax′

j
∩ Vi′+1. By Property (2), since uv and u′v′

are two nested inter-layer edges, we have i = i′. Since u ≤ u′, by definition of ≤, (i, j)
is lexicographically smaller than or equal to (i, j′), so j ≤ j′. Similarly, since v′ ≤ v, by
definition of <, (i, j′) is lexicographically smaller than or equal to (i, j), so j′ ≤ j. Hence
j = j′. So two inter-layer intra-bag edges uv and u′v′ nest only if uv, u′v′ belong to the
same bag and for some 0 ≤ i < n, u, u′ ∈ Vi, v, v′ ∈ Vi+1.

It remains to construct a partition of the edges of G into queues so that the constraints of
the lemma are satisfied. We will proceed as follows. We will first separate the edges of G into
four categories, namely intra vs. inter layer and intra vs. inter bag edges, and we will partition
the edges of each category into queues.

• intra-layer intra-bag edges. For all i and j, let Gij be the subgraph of G induced by
the part Axj ∩Vi. We will also call Gij itself a part. Let also G′ be the disjoint union of all
the subgraphs Gij , 0 ≤ i ≤ n, 1 ≤ j ≤ h. The edges of G′ are exactly the edges of G that
connect two vertices in the same layer Vi and in the same bag Axj . We note that the vertex
order ≤ is also a vertex order on G′. With respect to that vertex order, let us consider
any pair of edges uv and u′v′ of G′, nested so that u ≤ u′ ≤ v′ ≤ v. It must be the case
that u, v, u′ and v′ are in the same part, because of Property (1) of intra-layer intra-bag
edges. It follows that any m-rainbow in G′, for any m ≥ 1, must be an m-rainbow inside
a unique part Gij : all its edges must lie in the same part. Now an m-rainbow involves

8



Figure 7: Illustration of (a) Intra-bag edges; the intra-layer ones are red, while the inter-layer
ones are blue, and (b) inter-bag edges; the intra-layer ones are green, while the inter-layer ones
are purple (forward) and orange (backward) [3].

exactly 2m vertices. By assumption |Axj ∩Vi| ≤ `, namely, each part Gij contains at most
` vertices. This implies that m ≤ b `2c, and therefore, there is no (b `2c+ 1)-rainbow in G′.
By Proposition 2.3, the edges of G′ can be partitioned into b `2c queues with respect to ≤.
This gives us our first group of queues.

• intra-layer inter-bag edges. For i ∈ [0, n], j ∈ [1, k], let Gij be the subgraph of G formed
by those edges vw ∈ E such that v ∈ Ax ∩ Vi and w ∈ Ay ∩ Vi for some edge xy ∈ Ej . We
remember that Ej is a queue from the k-queue layout of H, QL(H). Let Zj be the 1-queue
layout of the subgraph (V (H), Ej) of H. We observe that Gij is a subgraph of the graph
isomorphic to the `-blowup of Zj . By Lemma 2.19, Gij admits an `-queue layout.
Let Gj be the disjoint union of all the subgraphs Gij , 0 ≤ i ≤ n. Let G′ be the disjoint
union of all the subgraphs Gj , 1 ≤ j ≤ k. We claim that ` queues suffice for Gj . Indeed we
show that if uv and u′v′ are two intra-layer inter-bag edges with u, u′ ∈ Axa and v, v′ ∈ Axb
for some edge xaxb ∈ Ej , then they nest only if u, u′, v, v′ are in the same layer. Let i, i′ be
two natural numbers such that u ∈ Axa ∩Vi, v ∈ Axb ∩Vi, u′ ∈ Axa ∩Vi′ and v′ ∈ Axb ∩Vi′ .
We assume that uv and u′v′ nest such that u ≤ u′ ≤ v′ ≤ v. Since u ≤ u′, by definition
of ≤, (i, a) is lexicographically smaller than or equal to (i′, a), so i ≤ i′. Similarly, since
v′ ≤ v, by definition of ≤, (i′, b) is lexicographically smaller than or equal to (i, b), so i′ ≤ i.
Hence i = i′. Since, in Gij , there are only intra-layer inter-bag edges, two edges uv ∈ Gij
and u′v′ ∈ Gi′j′ with (i, j) 6= (i′, j′) cannot nest. Since G′ is partitioned into k subgraphs,
Gj for 1 ≤ j ≤ h, `k queues suffice for G′. This gives us our second group of queues.

• inter-layer intra-bag edges. Let Gij be the subgraph of G formed by those edges vw ∈ E
such that v ∈ Axj ∩ Vi und w ∈ Axj ∩ Vi+1 for some 1 ≤ j ≤ h and 0 ≤ i ≤ n− 1. Let G
be the disjoint union of all the Gij . We remember that there are no inter-layer intra-bag
edges in G that are not in G′, since by definition of layering, when v ∈ Vi and w ∈ Vj , we
have |i− j| = 1, and without loss of generality we can assume that j = i+ 1.
Using Property (3), it is immediate to see that two edges uv ∈ E(Gij) and u′v′ ∈ E(Gi′j′)
cannot nest if i 6= i′ or j 6= j′. It follows that any m-rainbow in G′, for any m ≥ 1, must
be an m-rainbow inside a unique part Gij .
Moreover, V (Gij) = (Axj ∩Vi)∪(Axj ∩Vi+1). So |V (Gij)| ≤ 2`. Similarly to the intra-layer
intra-bag case, Gij can be partitioned into b 2`

2 c = `-queues with respect to <. Thus, `
queues suffice for G′. This gives us our third group of queues.
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• inter-layer inter-bag edges: Let uv be an inter-layer inter-bag edge with u ∈ Ax ∩ Vi
and v ∈ Ay ∩ Vi+1, for some i, 0 ≤ i < n. Then uv is forward, if x <H y holds in H, see
the purple edges in Figure 8b; otherwise, it is backward, see the orange edges in Figure 8b.
We will show that `k queues suffice for forward edges, the case of backward edges being
similar.
For i ∈ [0, n], j ∈ [0, k], let Gij be the subgraph of G formed by the forward edges vw ∈ E
such that v ∈ Ax ∩ Vi and w ∈ Ay ∩ Vi+1 for some edge xy of H in Ej . Similarly as the
intra-layer inter-bag case, `-queues suffice for each Gij . Let Gj by the disjoint union of
Gij for 0 ≤ i ≤ n. By Property (2), two edges uv ∈ Gij and u′v′ ∈ Gi′j cannot nest when
i 6= i′. So `-queues suffice for Gj .
Let G′ be the disjoint union of the Gj for 1 ≤ j ≤ k. So `k queues suffice for G′. The case
of backward edges, being similar, they also only requires at most `k queues. In the end,
2`k queues suffice for inter-layer intra-bag edges. This gives us our last group of queues.

In total 3`k + b 3
2`c suffice.

Our proof of Lemma 2.20 corrects a mistake from Bekos, Gronemann, and Raftopoulou [3].
They claim that any two intra-bag edges are nested if and only if they belong to the same bag.
This is wrong, as one realizes by considering the 2 × 3 grid graph on six vertices (see Figure
7) ordered as u1 < u2 < u3 < v1 < v2 < v3. If we consider the layers V0 = {u1, u2, u3} and
V1 = {v1, v2, v3}, and the bags Ai = {ui, vi} for i ∈ {1, 2, 3}, the two edges u1v1 and u2u3 are
nested, but belong to different bags. The claim holds if the two edges are both intra-layer or
both inter-layer. We fix this mistake in our proof by establishing Properties (1) and (3) instead.

u1 u2 u3

v1 v2 v3

V0

V1

A1 A2 A3

Figure 8: 2× 3 grid graph. We represent a layering V0, V1 and bags A1, A2, A3.

Lemma 2.20 has the following corollary.

Corollary 2.21 If a graph G has a partition P of layered width ` such that G/P has treewidth
at most k, then G has queue-number at most 3`(2k − 1) + b 3

2`c.

Remark: In the case k = 3, with Lemma 2.13, this bound is reduced to 15`+ b 3
2`c.

3 Queue-Number of Planar Graphs
In 1992, Heath, Leighton, and Rosenberg made the conjecture that planar graphs had bounded
queue-number [13]. They also showed a property for a subclass of planar graphs:

Definition 3.1 (Arched leveled-planar graph) Consider the normal cartesian (x, y) coordi-
nate system for the plane. For i an integer, let li be the vertical line defined by li = {(i, y)|y ∈
Reals}. A graph G = (V,E) is leveled-planar if V can be partitioned into levels V1, V2, ..., Vm,
in such a way that

• G has a planar embedding in which all vertices of Vi are on the line li;
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• Each edge in E is embedded as a straight-line segment wholly between li and li+1 for some
i.

Such a planar embedding is called a leveled-planar embedding.
A leveled-planar graph augmented by (zero or more) arches is called an arched leveled-planar

graph.

The following lemma of theirs will be instrumental in the 2020 solution of the conjecture:

Lemma 3.2 A graph G is a 1-queue graph if and only if G is an arched leveled-planar graph.

It is only recently, in 2020, that Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood proved
the conjecture of Heath, Leighton and Rosenberg [10]:

Theorem 3.3 The queue-number of planar graphs is bounded.

They first proved that it is bounded by 766, and in the same paper they improved this bound
to 49. In 2021, Bekos, Gronemann, and Raftopoulou improved this bound to 42 [3]. It is still
unknown whether it is the best upper bound.

3.1 The 766 Bound
Lemma 3.4 ([10]) The queue-number of planar graphs is at most 766.

Every theorem in this section is from the paper Planar graphs have bounded queue-number
by Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood [10]. Lemma 3.4 is a direct consequence
of Corollary 2.21 and the following theorem:

Lemma 3.5 ([10]) Every planar graph G has a connected partition P with layered width 1 such
that G/P has treewidth at most 8. Moreover, there is such a partition for every BFS layering of
G.

To prove this theorem they have been inspired by Pilipczuk and Siebertz [17] and they
strengthened their result:

Lemma 3.6 Let T be a rooted spanning tree in a connected planar graph G. Then G has a
partition P into vertical paths in T such that G/P has treewidth at most 8.

To prove Lemma 3.6 they used a variant of Sperner’s Lemma [1]. We will not explain more
details about the proof of this lemma here, since the proof for the 49 bound is different from this
point, so it is not fundamental to understand the 49 bound.

3.2 The 49 Bound
Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood improved the bound 766 to 49 [10], by
proving a theorem similar to Lemma 3.5 where the partition has a layered width 3 instead of the
previously known value 8:

Lemma 3.7 Every planar graph G has a partition P with layered width 3 such that G/P is
planar and has treewidth at most 3. Moreover, there is such a partition for every BFS layering
of G.

11



Remark: In Lemma 3.7, the partition is not necessarily connected contrarily to the partition
in the Lemma 3.5.

Thus, with Corollary 2.21:

Lemma 3.8 The queue-number of planar graphs is at most 49.

To prove the Lemma 3.7, they proved a theorem similar to the Lemma 3.6.

Lemma 3.9 Let T be a rooted spanning tree in a triangulation G. Then, G has a partition P
into tripods in T such that G/P has treewidth at most 3.

To prove this bound, they used the following notion of tripods:

Definition 3.10 (Tripod) In a rooted spanning tree T of a graph G, a tripod consists of up to
three pairwise disjoint vertical paths in T whose lower endpoints form a clique in G.

Lemma 3.11 Let G+ be a plane triangulation, let T be a spanning tree of G+ rooted at some
vertex r on the boundary of the outer-face of G, and let P1, ..., Pk, for some k ∈ {1, 2, 3}, be
pairwise disjoint bipods such that F = [P1, ..., Pk] is a cycle in G+ with r in its exterior. Let G
be the near triangulation consisting of all the edges and vertices of G+ contained in F and the
interior of F .

Then, G has a partition P into tripods such that P1, ..., Pk ∈ P , and the graph H := G/P is
planar and has a tree-decomposition in which every bag has size at most 4 and some bag contains
all the vertices of H corresponding to P1, ..., Pk.

3.3 The 42 Bound
Lemma 3.12 ([3]) The queue-number of planar graphs is at most 42.

To prove this bound, Bekos, Gronemann, and Raftopoulou improved the bound found in the
Lemma 2.20 in the case where the H-partition of the graph G has treewidh at most 3, hence a
5-queue layout, with the Lemma 3.13. We recall that for this case, Lemma 2.20 proved that:

Let H be a graph with a 5-queue layout. Let G be a graph with a layering V0, ..., Vn, and with
an H-partition of layered width 3 with respect to that layering. Then b 3

2c = 1 queue suffices
for intra-layer intra-bag edges; 15 queues suffice for intra-layer inter-bag edges; 3 queues suffice
for inter-layer intra-bag edges; and 30 queues suffice for inter-layer intra-bag edges. So, Bekos,
Gronemann, and Raftopoulou improved the following statements:

• In G, no 4 intra-bag inter-layer edges of G form a 4-rainbow;

• and the inter-bag edges of G do not form a 46-rainbow.

Lemma 3.13 Let H be a graph with a 5-queue layout. Let G be a graph with a layering V0, ..., Vn,
and with an H-partition of layered width 3 with respect to that layering. There is a queue layout
such that

• no three intra-bag inter-layer edges of G form a 3-rainbow.

• the inter-bag edges of G do not form a 40-rainbow.

Since the upper bound of the number of queues needed by the intra-bag intra-layer edges
(which is 1) is not improved by Bekos, Gronemann, and Raftopoulou, there is no 43-rainbow, so
that proves Lemma 3.12.

The best known corresponding lower bound is 4 due to Alam, Bekos, Gronemann, Kaufmann,
and Pupyrev [2]. The exact queue-number of planar graphs is still unknown.
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4 Queue-Number of Posets
4.1 Posets of bounded width
We recall that the cover graph GP of a poset P is the undirected graph implicitly defined by the
Hasse diagram of P . The queue-number qn(P ) of a poset P is the smallest k such that there is a
linear extension L of P for which the resulting linear layout of GP contains no (k + 1)-rainbow.
We recall that qn(GP ) ≤ qn(P ), i.e., the queue-number of a poset is at least the queue-number
of its cover graph.

In 1997, Heath and Pemmaraju made the following conjecture [14]:

Conjecture 1 Every poset of width w has queue-number at most w.

Currently the conjecture has only been proved for some subclasses of planar posets. Neverthe-
less, some improvements have been made concerning planar posets of bounded width compared
with general ones, but the conjecture has only been proved asymptotically.

4.1.1 In General

We do not know a lot about the general case, for now, the best upper bound was proved by
Knauer, Micek, and Ueckerdt [16]:

Lemma 4.1 For every poset P , if width(P ) ≤ w then qn(P ) ≤ w2.

To be more precise, they even proved:

Corollary 4.2 Every poset of width w has queue-number at most w2 − 2bw2 c.

It is still unknown if Conjecture 1 can be approached asymptotically for the general case.

4.1.2 Planar Posets with 0 and 1

Even though Conjecture 1 hasn’t been completely proved for planar posets (as we will see in the
next subsection), it has been proved for a subclass of planar posets:

Definition 4.3 (Planar Posets with 0 and 1) A planar posets with 0 and 1 is a planar poset
(P,≤) where there exist two elements 0, 1 ∈ P such that ∀x ∈ P, 0 ≤ x and x ≤ 1. We call 0 the
minimal element and 1 the maximal element.

In fact, the conjecture has been proved for a larger subclass, and the fact that it is true for
planar posets with 0 and 1 is only a corollary. The proof is on the posets that do not contain
any embedded Pk for k > 2, where Pk is defined by:

Figure 9: Left: The posets P2, P3, and P4. Right: The existence of an element z with cover
relation z < x and non-cover relation z < y gives rise to a gray edge from x to y [16].
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Definition 4.4 (Subdivided k-Crown) For a natural number k > 2 we define a subdivided
k-crown as the poset Pk. The elements of Pk are {a1, ..., ak, b1, ..., bk, c1, ..., ck} and the cover
relations are given by ai < bi and bi < ci for i = 2, ..., k, ai < ci−1 for i = 1, ..., k−1, and a1 < ck;
see the left of Figure 9. We refer to the covers of the form ai < cj as the diagonal covers and we
say that a poset P has an embedded Pk if P contains 3k elements that induce a copy of Pk in P
with all diagonal covers of that copy being covers of P .

Theorem 4.5 ([16]) If P is a poset that for no k > 2 has an embedded Pk, then the queue-
number of P is at most the width of P .

Corollary 4.6 For any planar poset with 0 and 1 P of width w we have qn(P ) ≤ w.

As we will see in Section 4.1.3, the question of the upper bounds of queue-number on arbitrary
planar posets reduces to posets with 0 and 1.

Also, this bound is tight:

Lemma 4.7 ([16]) For each w there exists a planar poset Qw with 0 and 1 of width w and
queue-number w.

Proof By induction on w. For w = 1, Q1 can be any chain. Then, for the inductive step, by
taking P and P ′, two copy of Qw−1, and three other points a, b, c as in Figure 10, it constructs
Qw. Indeed, for any vertex order of Qw, either we have b < x′, where x′ is the minimal element
of P ′, and it adds the edge bc to a w−1-rainbow in P ′, either we have x′ < b and it adds the edge
ab to a w − 1-rainbow in P . In the end, there is at least one w-rainbow, and no w + 1-rainbow,
which proves this lemma according to Proposition 2.3.

Figure 10: Recursively constructing planar posets Qw of width w and queue-number w. Left:
Q1 is a two-element chain. Middle: Qw is defined from two copies P , P ′ of Qw−1. Right: The
general situation for a linear extension of Qw [16].

4.1.3 Planar Posets

In 1997, Heath and Pemmaraju showed that the largest queue-number among planar posets of
width w lies between

√
w and 4w− 1 [14]. Knauer, Mice, and Ueckerdt proved better bounds in

2018:

Theorem 4.8 ([16]) Every planar poset of width w has queue-number at most 3w − 2.
Moreover, there are planar posets of width w and queue-number w.

The proof relies on how to add edges to the planar poset P such that the new constructed
poset P ′ is a planar poset with 0 and 1. But if there are two edges ab and cb in P and we add
an edge ac in P ′ then the relation a ≺ b is assured by transitivity since a < c < b with < the
partial order of P ′ (the edges of a poset representing exactly its cover relations), so some edges
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of P are not in P ′. Hence it is not possible to take the same queue layout for P and P ′. They
show that there are no more than 2w − 2 edges that are in P and not in P ′.

Hence they proved that every planar poset of width w has queue-number O(w), but it remains
to know if it is possible to improve the bound or to found a counter example of the conjecture 1.

My supervisor and I made several attempts at improving the previous bound. One of our
ideas was to think about the inverse problem: from a planar poset of queue-number n, can we
find a lower bound of it width in function of n? Our best result is when there exists a specific
type of n-rainbow in the poset.

Let (P,≤) be a planar poset of queue-number n. According to Proposition 2.3, there is a
vertex order ≺ such that there is at least one n-rainbow and no n+1-rainbow in P . Let B be the
sub-poset composed by the vertices of n-rainbow of P . We write a1, ..., an for the bottom nodes
of the rainbow, and b1, ..., bn, the top nodes, such that the a1b1, a2b2, ..., anbn form an n-rainbow
(so V (B) = {a1, ..., an, b1, ..., bn}). We made several assumptions concerning the edges of B (see
Figure 11), we will write them the assumptions (*):

• on the Hasse diagram of P , the edges of the rainbow respect the left-to-right order, ie.
when scanning the diagram from left to right, we encounter first the edge a1b1, and for
every i ∈ [1, n− 1], we encounter aibi before ai+1bi+1 ;

• We can partition B into k ∈ [1, n] non-empty blocks B1, ..., Bk, such that ∃(ij)j∈[1,k+1] ⊆
[1, n], such that i1 = 1, ik+1 = n+1, and for all j ∈ [1, k], V (Bj) = {aij , ..., aij+1−1, bij , ..., bij+1−1}

• For all j ∈ [1, k] there exists a path from aij to aij+1−1 going through each as with
s ∈ (ij , ij+1);

• There is no path between other pairs of elements in a1, ..., an;

• Let i, j ∈ [1, n] there is no path from ai to bj that does not begin with the arrow aibi.

B2 Bk…B1

a1 a2

ai2ai2−1

aik

an

bn

bik

bi2

b1

Figure 11: Left: The blocks B1, B2, ..., Bk. Right: example of a block with arrows among top
vertices; the dotted arrows are arrows that cannot exist according to Proposition 4.9.

We do not make any explicit assumption on comparability between the top vertices. Some
properties about the comparability of top vertices nonetheless hold.

Proposition 4.9 Let P be a planar posets of queue-number n. Let a1b1, a2b2, ..., anbn form an
n-rainbow in P such that a1, a2, ..., an are the top vertices, and b1, b2, ..., bn, the bottom vertices
that verify the assumptions (*).

1. In each block Bj, all the top vertices bij , ..., bij+1−1 are not comparable.

2. If bi is a top vertex in the block Bj then: bi′ ≺ bi or bi||bi′ for all top vertex b′i in a block
Bj′ with j′ > j; and bi ≺ bi′ or bi||bi′ for all top vertex b′i in a block Bj′ with j′ < j.
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3. For every top vertex bb in a block Bj such that there are two other top vertices ba, bc that
verify ba ≺ bb ≺ bc, for all b ∈ Bj: if b ≺ bb, there is no top vertex b′ such that b ≺ b′;
otherwise if bb ≺ b, there is no top vertex b′ such that b′ ≺ b.

4. In each block, there is at most one top vertex bb such that there are two other top vertices
ba, bc that verify ba ≺ bb ≺ bc.

Proof 1. Let us assume that there there are in a block, two top vertices b and b′ such that
b ≺ b′. For the two corresponding bottom vertices a and a′ such that ab, a′b′ are in the
rainbow at the origin of B. So a′ ≺ a, and a and a′ are bottom vertices of the same block.
So there is a path p from a′ to a. Since b ≺ b′ there is also a path p′ from b to b′. Hence,
the concatenation of p; ab; p′ is a path from a′ to b′. So the edge a′b′ doesn’t exist by
transitivity, which is impossible.

2. We assume that there exists a top vertex bi′ in a block B′j with j′ > j such that bi ≺ bi′ .
Since j < j′, aij ≺ aij′ and bij′ ≺ bij , and since the edges axby of the rainbow respect the
left-to-right order, ∀x, y if bx is in the block By then biy−1 ≺ bx � biy . So bi′ � bij′ �
bij−1 ≺ bi � bij , and bi′ ≺ bi, which is a contradiction with the hypothesis that bi ≺ bi′ .
The second case when j′ < j and b′i ≺ bi is similar.

3. We prove only the case b ≺ bb since the other case is symmetrical. Let us assume that b′
exists. Because of the property 1, b′ is a top vertex of a block Bj′ such that j′ < j. So for
any path from b to b′, it cross the path from ba to bb. By planarity they cross at a vertex
x, and b ≺ x and x ≺ bb. By transitivity, b ≺ bb, which is impossible according to the
previous property.

4. It is immediate from the previous property.

We define nbdouble, the number of top vertices bb such that there exist two other top vertices
ba, bc that verify ba ≺ bb ≺ bc; nbin the number of top vertices bb such that there exists another
top vertices ba that verify ba ≺ bb; nbout the number of top vertices bb such that there exists
another top vertices ba that verify bb ≺ bc; nbnothing the number of top vertices incomparable with
all the other top vertices. With these notations, we have: nbout +nbin−nbdouble +nbnothing = n.

Construction of an antichain. Those properties enable us to build an antichain A of length
at least n

2 as follows. Let A = {} be the antichain at the beginning, we add vertices with the
following method:

• If nbin + nbnothing ≥ n
2 + nbdouble: let bb be a top vertex such that there is no other top

vertex bc such that bb ≺ bc. There are at least n
2 such vertices bb, we add all of them to A.

• Otherwise, we know that nbout ≤ n
2 . Let bb be a top vertex such that there is no other top

vertex ba such that ba ≺ bb. There are at least n
2 − nbdouble such vertices bb, we add all of

them to A. Also, for every j ∈ [2, k] such that bij−1 is in A, we add aij−1 to A. There are
at least nbdouble such vertices.

In every case, at the end there are n
2 vertices in A, and the properties of Proposition 4.9 and

the assumptions (*) enable us to prove that is really an antichain.
This technique is the best that Piotr Micek and I have been able to achieve on the question

of the lower bound of the length of the maximal antichain in a planar poset of queue-number
n. The shape of rainbows is severely restricted, and there is no evidence that there actually
are planar posets with queue-number n which would satisfy all the conditions we require. Also,
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a1
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a4

a5
a6

a7
a8

a9

b9

b1 b2 b3 b4 b5 b6 b7 b8

a1
a2

a3
a4

a5
a6

a7
a8

a9

b9

b1 b2 b3 b4 b5 b6 b7 b8

Figure 12: Two examples of 9-rainbows where we have constructed an antichain with with
the method of section 4.1.3. The nodes of the antichain are represented by red points. Left:
nbin = 5, nbout = 5, nbdouble = 1, nbnothing = 0, so nbin + nbnothing < n

2 + nbdouble. Right:
nbin = 6, nbout = 3, nbdouble = 1, nbnothing = 1, so nbin + nbnothing ≥ n

2 + nbdouble, in this one we
remark that it is possible to add a9 to the antichain too.

our conditions on rainbows fail to take into account the relations that hold between the bottom
vertices, and between bottom and top vertices; adding constraints to maintain those relations
tends to contradict the goal of keeping an n

2 antichain.

4.2 Of Bounded Height
Heath and Pemmaraju made a conjecture in 1997 about a bound of the queue-number of posets
of bounded height [14] and it has been proven only partially for now:

Conjecture 2 Every planar poset of height h has queue-number at most h.

In 2018, Knauer, Micek, and Ueckerdt found a counter example [16]:

Lemma 4.10 There is a planar poset of height 2 with queue-number at least 4.

But it is still interesting to understand if there are subclasses of planar posets such that this
conjecture still holds. Knauer, Micek, and Ueckerdt proved the conjecture for planar posets with
0 and 1 [16]:

Lemma 4.11 Every planar poset with O and 1 of height h has queue-number at most h− 1.

Also, it is still possible to show that it is true for planar posets asymptotically, by using the
bound of planar graphs. In 1997, Heath and Pemmaraju proved a link between the queue-number
of a bounded height poset and the one of its cover graph [14]:

Lemma 4.12 For any poset P of bounded height h, if we note its cover graph H(P ), then:

qn(P ) ≤ 2(h− 1)qn(H(P )).

With Lemma 3.12, since the cover graph of a planar poset is planar, it is immediate that:

Corollary 4.13 For any poset P of bounded height h:

qn(P ) ≤ 84(h− 1).

Thus, planar posets of bounded height have queue-number O(h). There is still the question
whether the constant 84 can be reduced or whether it is tight.
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4.3 Of Bounded Number of Elements
Heath and Pemmaraju made the following conjecture in 1997 [14]:

Conjecture 3 For any n-element planar poset P , qn(P ) = O(
√
n).

For now, apart from the trivial upper bound, no other upper bound have been proven:

Proposition 4.14 Every planar poset on n elements has queue-number at most n
2 .

Proof Any two nested edges must have disjoint sets of vertices.

Compared to the situation with posets of bounded width or bounded height, bounding the
number of elements of a planar poset gives much less information on the structure of the poset.
My supervisor and I thought about proving a relaxed variant of Conjecture 3, which is the
following conjecture:

Conjecture 4 Every planar poset on n elements has queue-number in O(nα) with α < 1.

We tried to define several cases depending on the width w and the height h of a planar posets
on n elements. Let c be the constant, such that we want to prove that qn(P ) ≤ cnα.

• if w ≤ cnα+2
3 then it is immediate from Theorem 4.8;

• if h ≤ c
84n

α + 1 then it is immediate from Corollary 4.13;

• it remains the case where w > cnα+2
3 and h > c

84n
α + 1. The idea was that if α ≥

√
n that

from the decomposition of P into w chains of Theorem 2.8, it was not possible to have w
distinct chains of length at least h since wh ≥ α2 ≥ n. One may then hope to partition the
posets, by induction on n, into a finite number of sub-posets verifying one of the previous
two conditions, such that the sum of the upper bounds of their queue-number would be
less than cnα. None of our attempts to achieve this succeeded.

Concerning the lower bound, it has been proven that it is possible to construct a planar poset
with a O(

√
n)-queue-number:

Lemma 4.15 For each n ≥ 1, there exists a planar poset Pn with 3n+ 3 elements such that

d
√
n+ 1e ≤ qn(Pn) ≤ d

√
ne+ 1

.

Proof We just need to prove that the poset of Figure 13 has the right queue-number. In fact,
all the proof comes from the following lemma:

Lemma 4.16 (Erdös and Szekeres [14]) Let (xi)ni=1 be a sequence of distinct elements from
a set X. Let δ be a total order on X. Then (xi)ni=1 either contains a monotonically increasing
subsequence of size d

√
ne or a monotonically decreasing subsequence of size d

√
ne with respect to

δ.

To give the intuition of the bound, in fact all (ui) and (vi) are always ordered the same way
relatively to each other in every extension of the partial order. The number of queues depends
only on the order of the (wi), we apply the Erdös and Szekeres’ lemma on this sequence, if
the found a subsequence is increasing then there is a d

√
ne rainbow between the (ui) and (wi),

otherwise it is between the (vi) and (wi). 2
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Figure 13: Representation of the planar posets constructed for n = 5, which can be extended to
every n.

Conclusion
We have presented the state of the art on the problem of finding best possible upper bounds on
planar graphs and posets of bounded width, height or number of elements.

Concerning planar graphs, after that Dujmović, Joret, Micek, Morin, and Ueckerdt proved
that the queue-number was bounded, their bound has been improved twice, and now the current
best upper-bound is 42, which was proved by Bekos, Gronemann, and Raftopoulou.

The upper-bound of the queue-number for posets of bounded width w in general has not
experienced major improvement since the first bound proved by Heath and Pemmaraju in 1997,
and remains in O(w2). Also their conjecture that planar posets of width at most w have a
queue-number at most w was proved by Knauer, Micek, and Ueckerdt for planar posets with 0
and 1, but still remain open for planar posets, for which the current best bound is 3w − 2.

The conjecture of Heath and Pemmaraju concerning the planar posets of height at most h
that they have a queue-number at most h was refuted by Knauer, Micek, and Ueckerdt, but it
is still true asymptotically; the question remains whether it is a tight bound or whether one can
still prove a better bound. Another conjecture of Heath and Pemmaraju that planar posets with
at most n elements have a queue-number

√
n is still unknown, and the problem is still open.

We have also described a few ideas that we have explored in order to expand and improve on
those recent results. While we have not succeeded, we hope that those attempts shed some light
on the difficulty of the endeavour.
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