
Parsing with Lexicalized Probabilistic Recursive

Transition Networks

Alexis Nasr and Owen Rambow

1 Lattice-CNRS (UMR 8094),
Université Paris 7, Paris, France

alexis.nasr@linguist.jussieu.fr
2 Center for Computational Learning Systems,

Columbia University, New York, NY, USA
rambow@cs.columbia.edu

Abstract. We present a formalization of lexicalized Recursive Transi-
tion Networks which we call Automaton-Based Generative Dependency
Grammar (gdg). We show how to extract a gdg from a syntactically
annotated corpus, present a chart parser for gdg, and discuss different
probabilistic models which are directly implemented in the finite au-
tomata and do not affect the parser.

1 Introduction

While finite-state methods are becoming ever more popular in natural language
processing (NLP), parsing (as opposed to chunking) has resisted the use of finite-
state methods, presumably because of the difficulty of properly modeling struc-
ture using only finite state methods (but see [1]). An early proposal to extend
finite state methods for syntax were the Recursive Transition Networks (rtns) of
[2], which add a stack mechanism to a collection of finite-state automata (fsms).
rtns have been used to implement context-free grammars.

In the field of syntax, there has been much interest since the 1990’s in lexi-
calized formalisms, in which each elementary structure of a grammar formalism
represents the syntactic behavior of a single lexical item. The question arises
what happens if we add lexicalization to rtns. In this paper, we present proba-
bilistic lexicalized rtn, which we call Probabilistic Automaton-Based Generative

Dependency Grammar or gdgp. A gdgp is a collection of weighted fsms, such
that in each of these fsms, every path includes at least one lexical transition. As
with all lexicalized generative formalisms, the derivation tree is a dependency
tree. gdg as a formalization allows us to relate rtns to Tree Adjoining Gram-
mars (tag), and thus to profit from work on extracting tags from treebanks.
We show how to convert a tag extracted from a treebank into a gdg. We also
show we can vary the conversion algorithm to obtain different automata which
represent different ways of probabilistically modeling multiple attachments of
the same type (such as adjectives attaching to a noun). Thus, in our approach,

2

the automata represent both the algebraic part of the grammar and the prob-
abilistic model. As a result the same algorithms (for parsing and searching for
the best parses) are used for different probabilistic models.

The outline of the paper is as follows. We start out by presenting related
work in section 2, and then present our definitions in section3. We very briefly
present a simple parsing algorithm for gdg in section 4. We then turn to the
key contributions of this paper: we present probabilistic models of adjunction in
section 5, and then show how to extract a gdgp from a treebank (section 6).

2 Related Work

This work is based on previous work in string rewriting systems for dependency
grammars, as well as on the notion of Recursive Transition Networks [2]. In this
section, we quickly review the literature on such string-rewriting systems. The
formalism presented here can be seen as having some similarities with [3, 4],
who proposed generative formalisms for string rewriting. These formalisms were
basically context-free grammars in which there is, on the right-hand side of rules,
at least one terminal symbol. To overcome the inadequacy of such formalisms,
[5] suggests extending the notation of [4] with regular expressions in the right-
hand side, similar to the approach used in extended context-free grammars (for
example, [6]). This approach was worked out in some detail in [7], and in a
similar manner in [8], who present a string-rewriting version of gdg.

There has been some work on modeling syntactic dependency between words
using automata. [9] use cascaded head automata to derive dependency trees, but
leave the nature of the cascading under-formalized. [10] provides a formalization
of a system that uses two different automata to generate left and right children
of a head. His formalism bears some similarity to the one we present.

3 Generative Dependency Grammars

3.1 Informal Definition

A gdg is a set of finite-state automata (fsms) of a particular type, namely lex-

icalized automata. A lexicalized automaton with the anchor (word) m describes
all possible dependents of m. Each automaton has a name, which defines not
only the part-of-speech of m, but also the active valency of m (i.e., all word
classes that can depend on it), as well as their linear order. Thus this name can
be thought of as a supertag in the sense of [11], and we will adopt the name
“supertag” here to avoid confusion with simple part-of-speech tags. A sample
lexicalized automaton is shown in Figure 13. For expository purposes, in these
examples, the supertags are simply standard part-of-speech tags. The transi-
tions of the automaton are labeled with pairs 〈f, c〉, where f is a grammatical

3 The initial state of an automaton is labeled 0 while its accepting states are indicated
in boldface. The empty transitions are represented in dotted lines.

3

function (subject, object, different types of adjuncts, etc.), and c is a supertag,
or by pairs 〈LEX, m〉, where m is an anchor of the automaton. This automaton
indicates that the verb eat had a dependent which is its subject, obligatory and
non-repeatable, and whose category is noun or pronoun; a dependent which is its
object that is optional and non-repeatable; and an adjunct prepositional phrase
which is repeatable.

3210

〈SUBJ, N〉

〈SUBJ, PRO〉

〈CIRC, P 〉

SUBJ DOBJ

N N

CIRC

NN P

〈CIRC, P 〉
〈LEX, eat〉

eateat

PN

eat

CIRCSUBJ

P

SUBJ

〈DOBJ, N〉

V

CIRC DOBJ

Fig. 1. A lexicalized automaton and three elementary trees that can be derived from
it

Each word (in the formal language theory sense), i.e., each sentence (in the
linguistic sense) accepted by an automaton is a sequence of pairs 〈f, c〉. Each
such sequence corresponds to a dependency tree of depth one, which we will call
an elementary tree of the grammar. Three sample elementary trees can be seen
in the lower part of figure 1. The word corresponding to the leftmost tree is:
〈SUBJ, N〉 〈LEX, mange〉 〈CIRC, P 〉.

A gdg derivation is defined like a derivation in an rtn [2]. It uses a stack,
which contains pairs 〈c, e〉 where c is the name of an automaton from the gram-
mar, and e is a state of c. When 〈c, e〉 is on the top of the stack, and a transition
of type 〈f, c′〉 goes from state e to state e′ in automaton c, 〈c, e〉 is popped and
〈c, e′〉 is pushed as well as the machine c′ in its initial state (〈c′, q〉). When we
reach an accepting state q′ in c′, the pair 〈c′, q′〉 is popped, uncovering 〈c, e′〉,
and the traversal of automaton c resumes. We need to use a stack because, as
we saw, during a derivation, several automata can be traversed in parallel, with
one invoking the next recursively.

Since our automata are lexicalized, each traversal of a non-lexical arc (i.e., an
arc of the form 〈f, c〉) corresponds to the establishment of a dependency between
the lexical anchor of the automaton we are traversing and which we then put
on the stack (as governor), and the lexical anchor of the new automaton which
we start upon traversing the arc (as dependent). Thus, the result of a derivation

4

can be seen as a sequence of transitions, which can be bijectively mapped to a
dependency tree.

A probabilistic gdg, gdgp, is a gdg in which the automata of the grammar
are weighted finite state automata. For each state in an automaton of the gram-
mar, the weights of the outgoing arcs represent a probability distribution over
possible transitions out of that state.

3.2 The Sites of an Automaton

The transitions of a lexicalized automaton do not all play the same role. We
have already seen the lexical transitions which provide the words that anchor
the automaton. In addition, we will distinguish the argument transitions which
attach an argument as a dependent to the lexical anchor. All argument transi-
tions which share the same grammatical function label constitute an argument

site of the automaton. An example can be seen in Figure 2, where site 1 is the
subject site, while site 4 is the object site. Note that since we consider in this
example the grammatical object of manger to be optional, site 4 can be skipped
using an ε -transition.

〈CIRC, P 〉

10

〈SUBJ,PRO〉

〈CIRC, P 〉

2 3 4 5 6 7
〈LEX, eat〉

〈SUBJ, N〉

site 2 site 3 site 4 site 5site 1

〈DOBJ, N〉

Fig. 2. Sites of the automaton in figure 1

The transitions associated with adjuncts are called adjunct transitions. They
are grouped into adjunct sites, such as sites 3 and 5 in figure 2. Some adjunct
sites are repeatable, while others (such as determiners in some languages) are
not. When several dependencies are generated by the same repeatable adjunct
site, we distinguish them by their position, which we mark with integers. The
argument and adjunct sites are distinguished from the lexical transitions, which
are called lexical sites.

4 Parsing with fsms

The parsing algorithm is a simple extension of the chart parsing algorithm for
context-free grammar (CFG). The difference is in the use of finite state machines
in the items in the chart. In the following, we will call t-fsm an fsm M if its
supertag is t. If T is the parse table for input sentence W = w1 · · ·wn and gdg G,

5

then Ti,j contains (M, q) where M is a t-fsm and q is one of the accepting states
of M , iff we have a complete derivation of substring wi · · ·wj such that the root
of the corresponding dependency tree is the lexical anchor of M with supertag
t. If Ti,j contains (M, q1), if there is a transition in M from q1 to q2 labeled t,
and if Tj+1,k contains (M ′, q′) where M ′ is a t-fsm and q′ is an accepting state,
then we add (M, q2) to Ti,k. Note that because our grammars are lexicalized,
each such step corresponds to one attachment of a lexical head to another as a
dependent.

Before starting the parse, we create a tailored grammar by selecting those
automata associated with the words in the input sentence. An important ques-
tion is how to associate automata with words in a sentence; we do not discuss
this issue in this paper, and refer to the literature on supertagging (for example,
[11]). The parsing algorithm is extended to lattice input in the usual manner.
The lattice represents several supertag sequences that can be associated to the
sentence to parse. At the end of the parsing process, a packed parse forest has
been built. The nonterminal nodes are labeled with pairs (M, q) where M is an
fsm and q a state of this fsm. Obtaining the dependency trees from the packed
parse forest is performed in two stages. In a first stage, a forest of binary phrase-
structure trees is obtained from the packed forest and in a second stage, each
phrase-structure tree is transformed into a dependency tree.

In order to deal with gdgp, we extend our parser by augmenting entries in the
parse table with probabilities. The algorithm for extracting parses is augmented
to choose the best parse (or n-best parses) in the usual manner.

5 Probabilistic Models

The parser introduced in Section 4 associates to a supertag sequence S =
S1 . . . Sn one or several analyses. Each analysis A can be seen as a set of n − 1
attachment operations (either adjunction or substitution) and the selection of
one supertag token as the root of the analysis (the single supertag that is not
attached in another supertag). For the sake of uniformity, we will consider the
selection of the root as a special kind of attachment, A is therefore of cardinality
n.

From a probabilistic point of view, each attachment operation is considered
as an event and an analysis A as the joint event A1, . . . , An. A large range of dif-
ferent models can be used to compute such a joint probability, from the simplest
which considers that all events are independent to the model that considers that
they are all dependent. The two models that we describe in this section vary in
the way they model multiple adjuncts attaching at the same adjunct site. Put
differently, the internal structure of repeatable adjunct sites is the only differ-
ence between the models. The reason to focus on this phenomenon comes from
the fact that it is precisely at this level that much of the structural ambiguity
occurs. The two models described below consider that attachments at argument
sites are independent of all the other attachments that make up an analysis.

6

What is important is that the models we present in this section change the
automata, but the changes are fully within sites; if we abstract to the level of
sites, the automata are identical. Note that this hypothesis is not entailed by
the gdgp formalism, one can produce a gdgp which changes the topology of
the automata.

The two models for adjunction will be illustrated on a simple example where
two automata c1 and c2 are candidates for attachment at a given repeatable
adjunct site (which we will simply refer to as a “site”). Both sites can generate
(c1|c2)∗ but associate different probabilities to the generated strings. Recall that
when several adjunctions occur at the same site, the first one is said to be of
order 1, the second of order 2 and so on. The two models described below differ
mainly in the fact the the first one (the positional model) focuses on the nature of
the attachment at order i (how probable is it to have a prepositional attachment
at order i) as well as on the number of attachments (how probable is it to have n

attachments on this site). The second model (the bigram model) focuses on the
dependency between an attachement and the preceding one (how probable is it
to have a prepositional attachment following another prepositional attachment
or an adjectival one). Both models have been used extensively in probabilistic
models for parsing, but our use is slightly different as we only use these models
for ordering within the same adjunct site. In the context of standard probabilistic
context-free grammars, these models are ususally used to model the entire right-
hand side of context-free rules.

5.1 Model 1: Positional Model

1

P (o1 = c1)

P (o1 = c2)

P (o2 = c1)

P (o2 = c2)

P (no = 1|no > 0)

P (no = 0)

P (no > 1|no > 0)P (no > 0)

2 3 4 5

P (no > 2|no > 1)

P (no = 2|no > 1)

P (on = c2)

P (on = c1)

6 7

Fig. 3. Repeatable site with two distinguished positions

The automaton for a repeatable site with two positions is shown in Figure 3.
It is made of a series of transitions between consecutive pairs of states. The first
“bundle” of transitions models the first attachment at the site, the second bundle,
the second attachment, and so on, until the maximum number of explicitly
modeled attachments is reached, which is a parameter of the model. This limit on

7

the number of attachments concerns only the probabilistic part of the automaton,
more attachments can occur on this node, but their probabilities will not be
distinguished. These additional attachments correspond to the loops on state 6
of the automaton. ε-transitions allow the attachments to stop at any moment by
transitioning to state 7. Under Model 1, the probability of the sequences c1c2

and c1c2c1c2 being adjoined are:

P (c1c2) = P (o1 = c1) × P (o2 = c2) × P (no = 2)

P (c1c2c1c2) = P (o1 = c1) × P (o2 = c2) × P (on = c1) × P (on = c2) × P (no > 2)

Where variables o1 and o2 represent the first and second order adjunctions.
Variable on represents adjunctions of order higher than 2. Variable no represents
the total number of adjunctions.

3

41

2
P (c1|START)

P (c1|c1)

P (c2|c2)

P (END|START)

P (c1|c2)

P (END|c1)

P (END|c2)

P (c2|c1)

P (c2|START)

Fig. 4. Repeatable site with bigram modeling

5.2 Model 2: N-Gram Model

The previous model takes into account the nature of an attachment at a given
order as well as the total number of attachements but disregards the nature
of the attachments that happened before (or after) a given attachment. The
model described here is, in a sense, complementary to the previous one since
it takes into account, in the probability of an attachment, the nature of the
n − 1 attachments that occurred before and ignores the order of the current
attachment. The probability of a series of attachments on the same side of the
same node will be computed by an order-n Markov chain. The order of the
Markov chain is a parameter of the model. The first order Markov chain for the
repeatable site discussed is represented as a finite state automaton in Figure 4.
The transitions with probabilities P (x|START) (respect. P (END|x)) correspond
to the occurrence of automaton x as the first (respectively the last) attachment
at this node and the transition with probability P (END|START) corresponds to

8

the null adjunction (the probability that no adjunction occurs at a node). The
probability of the sequence c1c2c1c2 being adjoined is now:

P (c1c2c1c2) = P (c1|START) × P (c2|c1) × P (c1|c2) × P (c2|c1) × P (END|c2)

6 Extracting a gdgp From a Corpus

We first describe the algebraic part of the extraction process, then briefly de-
scribe the estimation of the parameters of the probabilistic models.

6.1 Basic Approach

To extract a gdg (i.e., a lexicalized rtn) from the Penn Treebank (PTB), we
first extract a tag, and then convert it to a gdg. We make the detour via tag

for the following reason: we must extract an intermediate representation first in
any case, as the automata in the gdg may refer in their transitions to any other
automaton in the grammar. Thus, we cannot construct the automata until we
have done a first pass through the treebank. We use tag as the result of the
first pass because this work has already been done, and we can reuse previous
work, specifically the approach of [12] (which is similar to [13] and [14]). Note
that the different models discussed in Section 5 only affect the manner in which
the tag grammar extracted from the corpus is converted to an fsm; the parsing
algorithm (and code) is always the same.

We first briefly describe the work on tag extraction, but refer the reader to
the just cited literature for details. However, we optimize the head percolation
in the grammar extraction module to create meaningful dependency structures,
rather than (for example) maximally simple elementary tree structures. For ex-
ample, we include long-distance dependencies (wh-movement, relativization) in
elementary trees, we distinguish passive transitives without by-phrase from ac-
tive intransitives, and we include strongly governed prepositions (as determined
in the PTB annotation, including passive by-phrases) in elementary verbal trees
as secondary lexical heads. Generally, function words such as auxiliaries or deter-
miners are dependents of the lexical head,4 conjunctions (including punctuation
functioning as conjunction) are dependent on the first conjunct and take the
second conjunct as their argument, and conjunction chains are represented as
right-branching rather than flat.

In the second step, we directly compile this tag into a set of fsms which
constitute the gdg and which are used in the parser. An fsm is built for each
elementary tree of the tag, during its depth-first traversal. For predicative aux-
iliary trees which are left auxiliary trees (in the sense of [15], i.e., all nonempty
frontier nodes are to the left of the footnode), the traversal ends at the footnode.

4 This is a linguistic choice and not forced by the formalism or the PTB. We prefer
this representation as the resulting dependency tree is closer to predicate-argument
structure.

9

For right auxilary predicative trees (which do not occur for English), the traver-
sal would start at the footnode. In all other cases, the tree traversal goes from
the root to the root (but excluding the root and foot nodes of adjunct auxiliary
trees).

Non-leaf nodes are visited twice: first during the downward traversal, second
during upward traversal. Each time a node is visited, a site is built in the corre-
sponding automaton. Each transition in the site corresponds to an attachment
that can be performed on the node. If the node visited is a substitution node
of category X , a substitution site will be created in the fsm. The transitions
in the substitution site are labeled with all the initial trees of the tag whose
root has category X . If the node is the lexical root of the elementary tree, a
lexical site is created with one transition, labelled with the lexical anchor, if the
elementary tree is lexicalized, or with the special symbol HEAD in the case of a
tree schema. Internal nodes of the elementary tree give rise to adjunction sites
in the automaton.

Finally, in the basic model in which adjunctions are modeled as independent,
we proceed as follows for non-leaf nodes. (In Section 5, we discussed two other
models that treat non-leaf nodes in a more complex manner.) To each non-leaf
state, we add one self loop transition for each tree in the grammar that can
adjoin at that state from the specified direction (i.e., for a state representing a
node on the downward traversal, the auxiliary tree must adjoin from the left),
labeled with the tree name. There are no other types of leaf nodes since we do not
traverse the passive valency structure of adjunct auxiliary tees. The result of this
phase of the conversion is a set of FSMs, one per elementary tree of the grammar,
whose transitions refer to other FSMs. When an internal node of category X is
visited during the downward traversal (upward traversal, respectively), we list
all auxiliary trees that adjoin from the left (right) at a node of category X .
For each of them, transitions are added to the adjunction site. Depending on
the topology of the adjunction site (positionnal v/s N -gram), this addition of a
transition will be realized differently.

We give a sample grammar in 5 and the result of converting one of its trees
to an fsm in Figure 65.

6.2 Parameter estimation

During the production of the tag, three kinds of counts are collected for each
elementary tree schema T of the grammar: the number of times T has been
selected as a root of a derivation tree, the number of substitutions of another
elementary tree schema at the different substitution nodes of T , and the number
of adjunctions of other elementary tree schemas at the internal nodes of T . Along
with the last type of counts, the direction of the adjunction (left or right) is
specified, as well as the order of the adjunction and the n preceding adjunctions
of the same direction at this node.

5 Due to space scarseness, we do not label the arcs of the automata of figure 6 with
both probabilities and function, supertag pairs.

10

t4 t28 t30t2

S

NP↓ VP

V♦ NP↓

HEAD

HEAD

N ♦

NP VP

VP∗ AdvP

Adv♦

HEAD

VP

VP∗ PP

P♦ NP↓

HEAD

Fig. 5. Sample small grammar: trees for a transitive verb, a nominal argument, and
two VP adjuncts from the right

0 1 2

〈PREP, t4〉〈LEX, HEAD〉
0 1

〈LEX, HEAD〉

4

〈LEX, HEAD〉〈SUBJ, t4〉
1 2 3

〈DOBJ, t4〉

P (no = 0)

P (o1 = t30) P (o2 = t30)

t
M2

2

t30t4 = t28

t
M1

2

P (no = 1|no > 0)

P (no = 2|no > 1)

P (o1 = t28)
×P (no > 0)

×P (no > 0)

P (on = t28)

P (on = t30)
×P (no > 1)

P (o2 = t28)
×P (no > 1)

5 6 70

P (t30|START)

P (t30|t30)

P (t28|t28)

P (END|START)

P (t30|t28)

P (END|t30)

P (END|t28)

〈LEX, HEAD〉〈SUBJ, t4〉
1 2 3

4

5

P (t28|t30) 6

〈DOBJ, t4〉
0

1

P (t28|START)

P (no > 2|no > 1)

Fig. 6. fsms derived from the grammar in figure 5. Two versions of tree t2 has been
built, corresponding to models 1 and 2.

11

These counts are used to estimate the root selection probabilities of the au-
tomata (the probability that an elementary tree schema constitues the root of a
derivation tree) as well as the probabilities of their transitions. The probability
of the initial probabilities, the substitution transitions and the adjunction prob-
abilities in the positional models are estimated using simple add-one smoothing
(actually, add-X smoothing with X tuned to 0.00001 on a devvelopment corpus),
with the quantities added to the counts optimized on a developpment corpus.
The adjunction probabilities in the N -gram models are smoothed using linear
interpolation with lower order N -grams.

7 Conclusion

We have presented a probabilistic generative formalism for dependency gram-
mars which can be seen as a probabilistic lexicalized version of Recursive Tran-
sition Networks. The topology of the automata that constitue the grammars
can be modified in order to account for different probabilistic models. Two such
models have been discussed. We showed how gdgp can be extracted from a tree-
bank. Empirical results using gdg on the Penn Treebank have been presented
in [8] and results on a French treebank can be found in [16].

Further work on this topic will focus on the coupling of a supertagger with
the parser and the developpment of other probabilistic models.

References

1. Rambow, O., Bangalore, S., Butt, T., Nasr, A., Sproat, R.: Creating a finite-
state parser with application semantics. In: Proceedings of the 19th International
Conference on Computational Linguistics (COLING 2002), Taipei, Republic of
China (2002)

2. Woods, W.A.: Transition network grammars for natural language analysis. Com-
mun. ACM 3 (1970) 591–606

3. Hays, D.G.: Dependency theory: A formalism and some observations. Language
40 (1964) 511–525

4. Gaifman, H.: Dependency systems and phrase-structure systems. Information and
Control 8 (1965) 304–337

5. Abney, S.: A grammar of projections. Unpublished manuscript, Universität
Tübingen (1996)

6. Madsen, O., Kristensen, B.: LR-parsing of extended context-free grammars. Acta
Informatica 7 (1976) 61–73

7. Lombardo, V.: An Earley-style parser for dependency grammars. In: Proceedings
of the 16th International Conference on Computational Linguistics (COLING’96),
Copenhagen (1996)

8. Nasr, A., Rambow, O.: Supertagging and full parsing. In: Proceedings of the Work-
shop on Tree Adjoining Grammar and Related Formalisms (TAG+7), Vancouver,
BC, Canada (2004)

9. Alshawi, H., Bangalore, S., Douglas, S.: Learning dependency translation models
as collections of finite-state head transducers. cl 26 (2000) 45–60

12

10. Eisner, J.M.: Three new probabilistic models for dependency parsing: An explo-
ration. In: COLING’96, Copenhagen (1996)

11. Bangalore, S., Joshi, A.: Supertagging: An approach to almost parsing. Compu-
tational Linguistics 25 (1999) 237–266

12. Chen, J.: Towards Efficient Statistical Parsing Using Lexicalized Grammatical
Information. PhD thesis, University of Delaware (2001)

13. Xia, F., Palmer, M., Joshi, A.: A uniform method of grammar extraction and its
applications. In: Proc. of the EMNLP 2000, Hong Kong (2000)

14. Chiang, D.: Statistical parsing with an automatically-extracted tree adjoining
grammar. In: 38th Meeting of the Association for Computational Linguistics
(ACL’00), Hong Kong, China (2000) 456–463

15. Schabes, Y., Waters, R.C.: Tree Insertion Grammar: A cubic-time, parsable formal-
ism that lexicalizes Context-Free Grammar without changing the trees produced.
Computational Linguistics 21 (1995) 479–514

16. Nasr, A.: Analyse syntaxique probabiliste pour grammaires de dépendances ex-
traites automatiquement. Habilitation à diriger des recherches, Université Paris 7
(2004)

