A Linguistic Framework for Controlled Language
Systems

Alexis Nasr
Laboratoire d’Informatique d’Avignon
alexis.nasr@lia.univ-avignon.fr

Owen Rambow, Richard Kittredge
CoGenTex Inc.

(owen/richard)@cogentex.com

Abstract
In this paper, we discuss the use of the Meaning-Text Theory (MTT) of [Mel8§]
in a controlled language (CL) application!. We show that MTT defines a linguistic
framework which is ideally suited for the definition and automation of CL rules. In the
paper, we first briefly present a CL system based on MTT. We then discuss MTT in
more detail. We show how CL-specific information can be represented so that it can
be exploited within an MTT-based CL system, and give an extended example.

1 Introduction

A crucial advantage of the use of a general-purpose linguistic theory and particularly MTT
in a CL application is that we can distinguish between two types of knowledge:

e The linguistic knowledge which allows us to generate all possible (meaning-preserving)
paraphrases in a given language. This knowledge is the responsibility of the linguistic
theory and of the linguistic model of the language within that theory.

e The constraints introduced by a Controlled Language which allow us to choose a CL
compliant paraphrase among all possible paraphrases. This knowledge derives from
the specification of the CL.

This factorization makes the whole system more easily portable to new CL applications:
only the CL-specific modules need change (and maintenance). For example, keeping a CL
system updated according to the changing definition of the implemented CL is straight-
forward. Furthermore, it is possible for someone with only minimal linguistic training to
create an entirely new CL system for a new CL specification. In fact, this need not be a
controlled language in the traditional sense, but could also correspond to a generic “style
sheet”. Finally, we observe that some of the generic linguistic paraphrasing rules are in fact
valid for many languages and can be re-used when the system is ported to a CL based on a
new language.

!The use of MTT in a CL application was first discussed in [Nas96]

2 System Overview

The system we propose is based on the architecture for a transfer-based MT system?. (The
machine translation system was developed as a prototype English-to-French translation sys-
tem [RNP797].) The input text is parsed into the Deep-Syntactic Structure of MTT. Tt is
at this level that transfer to the CL occurs. Then, the CL-compliant Deep Syntactic Struc-
ture is used as the starting point for generation using the REALPRO text generation system
[LRI7]. The architecture is shown in Figure 1.

Input Sentence
PARSER
General
DSyntS
Paraphrase S
Knowledge
CL
PARAPHRASER
CL Specific
Rules and
Dictionaries CL-DyntS
GENERATOR
Output Sentence

Figure 1: CL Paraphrase System Overview

3 The MTT Paraphrase Framework

According to the division drawn above, between the responsibility of the linguistic theory
and the CL constraints, the former must provide a framework for paraphrase. The theory
on which our reformulation architecture is based, Meaning Text Theory [Mel88], gives a
special place for paraphrase by defining an abstract linguistic representation level allowing
for a simple representation of paraphrase phenomena (the Deep Syntactic Level) along with
formal means for describing semantic relations between lexemes (the lexical functions) and
a formalism for paraphrase rules. These three aspects of the theory are described below.

2See also [Adr94] for a similar approach.

3.1 Deep Syntactic Representation of an Utterance

The Deep Syntactic Structure (DSyntS) specifies the syntactic organization of a sentence in
terms of a dependency tree. Such trees are composed of nodes labeled by generalized lex-
emes and directed arcs (dependencies) labeled with Deep Syntactic Relations. A generalized
lexeme is a full lexeme, a multilexemic unit (idiom), or a lexical function (see Section 3.2
for details). Semantically empty lexemes, such as governed prepositions or auxiliaries are
not represented at this level. Generalized lexemes can be enriched with meaning bearing
morphological features such as number or gender in nouns and tense and/or aspect in verbs.
Syntactically conditioned morphological features, induced by syntactic rules (such as agree-
ment rules), are not represented in the Deep Syntactic Structure.

Each type of Deep Syntactic Relation stands for a family of specific syntactic construc-
tions. There are different arc labels for the different arguments (‘I’ for subject, ‘II’ for direct
object, ‘IIT” for indirect object, and so on); label ‘ATTR’ covers all adjuncts. Two additional
labels handle coordination and parentheticals and related constructions.

The Deep Syntactic Structure is closely related to a specialized lexicon, the Ezplanatory
Combinatorial Dictionary [MP87] which, among other information, defines the subcatego-
rization frames of predicative lexemes, as well as the prepositions introducing the actants of
a predicate and the lexical functions linking the different lexical entries.

For the sake of illustration, a Deep Syntactic Structure, corresponding to the sentence
The decontamination of the aircraft must be done in an authorized area, is represented in
figure 2.

Operl
class:verb voice:passive modal:oblig tense:pres
| ATTR
decontamination in
class:noun det:def class: preposition
1] 1
aircraft area
class:noun det:def class:noun det:indef
ATTR
authorized

class:adjective

Figure 2: A Deep Syntactic Structure

The DSyntS of figure 2 is represented internally in the following way.

Operl [class:verb voice:passive modal:oblig tense:pres 1f:0Operi]
(I decontamination [lexeme:contamination class:noun det:def]
(IT aircraft [lexeme:aircraft class:noun det:def])
ATTR in [lexeme:in class:preposition]
(IT area [lexeme:area class:noun det:indef]
(ATTR authorized [lexeme:authorized class:adjective])))

In the preceding DSyntS, the articles are not represented as nodes, as well as the prepo-
sitions of, the auxiliary be and the modal must. The lexical value of the main verb of the
sentence is represented by a lexical function Operl! (see 3.2).

Through the use of generalized lexemes and deep syntactic relations, the abstraction
achieved at the Deep Syntactic level concerns lexical as well as syntactic aspects of utterances.
This level of abstraction allows generation, from a single Deep Syntactic Structure, of several
semantically equivalent Deep Syntactic Structures by application of rules of a simple format,
called paraphrase rules. The generated structures will themselves give rise to a large number
of paraphrastic sentences.

3.2 Lexical Functions

The heart of lexical paraphrase in M'T'T lies in the lexical functions. Such functions formalize
a semantic relation between two lexemes L and Ly (F(L1) = Lo) (L4 is called the key of the
lexical function and Ly its wvalue). The semantic relations represented by lexical functions
are extremly varied, as the function Magn which expresses intensity (Magn(rain) = heavy)
or the function Syn which relates a lexeme and its synonyms. The paraphrastic richness of a
Meaning Text Model® depends on the number and variety of the lexical functions represented
in the model. Asshown in 3.1 some lexemes of a Deep Syntactic Structure are not represented
directly, but by means of a lexical function, like the verb do which is represented as a support
verb of the noun decontamination by means of the lexical function Operi*. The lexical
functions are hosted by the Explanatory Combinatorial Dictionary, each lexical entry L of
the dictionary lists the values of the different lexical functions defined for L (for example
Syn(L) Magn(L) ...).

3.3 Paraphrase Rules

The transformation of a Deep Syntactic Structure into a synonymous one is carried out by
application of paraphrase rules. They represent semantic equivalences expressed in terms
of lexical functions. More precisely, a paraphrase rule relates together two paraphrastic
lexico-structural structures (portions of Deep Syntactic Structure), some lexemes of the two
structures being related by lexical functions. We have represented below a simple rule,
relating two structures reduced to a node, linked by the synonymic lexical function (Syn).

PARA-RULE:Syn_substitution
[$X] | [($X [lexeme:$X_lex])]
<—=>

[$X] | [($X [lexeme:Syn($X_lex)])]

END:

3 A Meaning Text Model is an actual collection of linguistic rules along with a lexicon, both expressed in
the formal apparatus defined by the Meaning Text Theory.

4Lexical functions represent actually two quite different phenomena, syntagmatic lezical cooccurrence
(Operl, Magn ...) where the value and the key of the lexical function appear in the DSyntS and paradigmatic
lezical cooccurrence (Syn, Conv3l ...) where the two lexemes do not cooccur in the DSyntS

This rule replaces the lexical value of node $X ($X_lex) by a synonym of the latter
(Syn($X_lex)). It must be noted that the rule does not have to worry about the possible
difference in number between $X_lex and Syn($X_lex) if they are nouns or the nature of
preposition introducing their actants if they are predicative lexemes, these “details” being
taken care of at a later stage in the generation of the sentence, illustrating the advantages
of performing paraphrase at an abstract level.

A slightly more complex rule, which replaces a verb $V_lex by a converse Conv31 ($V_lex)
(for example: Conv31(receive) = give) and swaps the first and the third actants (respectively
$N1 and $N2) of the two verbs is represented in figure 3:

d ai\:{,erb Conv31($V)

| i <> | i

$N1 $N2 $N2 $N1

Figure 3: A conversive paraphrastic rule

Internally, the rule of figure 3 is represented in the following way:

PARA-RULE:Conv31_permutation

[($v I $N1)

($V IITI $N2)] | [($V [lexeme:$V_lex class:verb])]
<-=>

[($V I $N2)

($V IITI $N1)]1 | [($V [lexeme:Conv31($V_lex)])]
END:

During the application of a paraphrase rule on a given Deep Syntactic Structure, only
the elements of the latter which appear in the rule will be modified, leaving the rest of the
structure unchanged.

According to MTT, a paraphrase rule should always provoke at least one lexical trans-
formation through the use of lexical functions. We will relax this constraint and allow for
Syntactic paraphrase rules as well as Lexical parpahrase rules, described below.

3.3.1 Syntactic Paraphrase Rules

A syntactic paraphrase rule does not introduce any lexical transformation to a DSyntS on
which it applies, as in the passive to active following rule.

PARA-RULE:passive-to-active

[($V I $N1)
($V IT $N2)] | [($V [class:verb voice:passive])]
<==>

[($V I $N2)

($V II $N1)] | [($V [class:verb voice:active])]
END:

This rule merely changes the value of the feature voice of the verb (node $V) from
passive to active and permutates the first and second actant of the verb. The rule does
not contain any condition on the lexeme feature, the reason being that in this case it is a
syntactic configuration which is transformed, independently of the lexical nature of the verb.

3.3.2 Lexical Paraphrase Rules

Lexical paraphrase rules provoke lexical changes but do not embed any lexical function, relat-
ing directly two lexico syntactic structures which do not fall under a productive paraphrase
pattern.

PARA-RULE:assess—->make_estimate_of
[($A II $B)] | [($A [class:verb lexeme:assess])]
<==>
[($A II $C)
($C II $B)]1| [($A [class:verb lexeme:make])
($C [class:noun lexeme:estimate])]

The preceding rule replaces the verb assess by the multi lexemic structure make estimate.
This equivalence cannot be represented by a “normal” support verb expansion since there is
no lexical function relating the verb assess and the noun estimate.

4 The Controlled Language System

The previous section introduced the formal means MTT proposes to perform paraphrase: the
definition of the deep syntactic level, paraphrase rules and lexical functions. We will describe
in this section the organization of the linguistic knowledge needed for a CL reformulation
application. Three different sources of knowledge will be distinguished: general linguistic
knowledge, CL linguistic knowledge and CL control information. The nature of the first
two sources is the same: they represent paraphrase rules and linkage of lexemes by lexical
functions. They differ by their level of generality. The purpose of this distinction is to avoid
redefining in the CL specific part some generic linguistic knowledge. The third source of
knowledge, the control information, implements the writing rules of a Controlled Language.

4.1 General Linguistic Knowledge

The general linguistic knowledge comprises paraphrase rules and lexical functions that are
of a general usage. For sake of illustration, we have represented below a complex support
verb expansion rule:

PARA-RULE:(Operl_expansion
[($V II $N1)
($V ATTR $ADV)]| [($V [class:verb lexeme:$V_lex])
($ADV [class:adverb lexeme:$ADV_lex])]

<==>

[($V II $N2)

($N2 IT $N1)

($N2 ATTR $ADJ)] | [($V [lexeme:0Operl1(NO($V_lex)) class:verb 1f:operi])
($N2 [lexeme:NO($V_lex) class:noun])
($ADJ [lexeme:AdjO($ADV_lex) class:adjective])]

END:

Such a rule transforms a simple verb ($V) into a support verb structure, (($vV II $N2))
where $N2 is a nominal derivative of the verb $V (NO($V_lex)) and $V a support verb of $N2.
The rule also moves the direct object ($N1) of the original verb to become the second actant
of the nominalisation. Finally, it transforms the adverb attached to V into an adjective, using
the lexical function Adj0 and attaches it to the nominalisation. The application of such a
rule to the sentence Functionally test warning system will give rise to Do a functional test
of the warning system.

Lexical functions are represented as a list of triples (LF, lex1, lex2) where LF is the name
of a lexical function and lexl and lex2 two lexemes such that (LF(lexl) = lex2). Further
conditions can be added to any of the two lexemes. They are related by the lexical function
only if the conditions are fulfilled. In the following list, the noun rain is linked to the adjective
heavy by the lexical function Magn expressing the idea of intensity. The condition on lexeme
rain prevent the establishment of the link between the verb rain and heavy.

[(Magn, rain [class:noun], heavy [])
(Conv31, give [], receive [])]

4.2 CL Linguistic Knowledge

CL linguistic knowledge is composed of paraphrase rules and lexical functions® which are
particular to a given textual genre and cannot be seen as generic linguistic knowledge.

The following paraphrase rule which transforms into active an agentless passive verb
while introducing the pronoun you as subject cannot be considered generic, it is specific to
procedural texts where the agent is the mechanic reading the manual.

PARA-RULE:passive-to-active-no-agent
[($v II $N2)] | [($V [class:verb voice:passive])]
<==>
[($V I $N2)
($V IT $N1)] | [($V [class:verb voice:active])
($N1 [class:pronoun pers:2nd number:sing])]
END:

The CL lexical functions are grouped together in a list. In the following list example,
the verb abandon is linked to the verb stop through the lexical function Syn which links

5The expression CL lexical function can be misleading: it is not the nature of semantic relation represented
by the lexical function which is CL specific, but the decision to relate two particular lexemes by a given
lexical function.

two synonymic lexemes. The linking of these two lexemes cannot be seen as general: in
everyday’s discourse, abandon is not a synonym of stop.

[(Syn, abandon [class:verb], stop [class:verb])

(VO, decontamination [], clean [class:verb])

(Syn, authorized [class:adjective], approved [class:adjective])
(Operl, decontamination [], do [])]

4.3 Control Information

The control information describes the way linguistic knowledge (CL specific and generic)
must be used to enforce the writing rules of the controlled language. It is important to
notice that at this level, no paraphrase rules, nor lexeme linkage through lexical functions
are defined. Two kinds of control information are distinguished: the lexical control list and
the syntactic control list.

The lexical control list is composed of couples made of a lexeme and a paraphrase rule
name. This couple indicates that the lexeme must be replaced using the associated para-
phrase rule. The lexeme will be called a trigger. The firing of the rule associated to a lexeme
is also conditioned by (optional) constraints (appearing between brackets) on the lexeme .
The paraphrase rule associated to a trigger can be either a CL specific or a generic rule:

Lexical Control List:

[(decontamination [], support_verb_contraction)
(assess [], assess->make_estimate_of)
(authorized [class:adjective], syn-substitution)]

The first couple of the list indicates that the noun decontamination must be replaced,
using the support_verb_contraction rule, the second couple states that lexeme assess must
be replaced by the multi lexemic structure make an estimate of. Finally, the third couple
shows that the adjective authorized must be replaced by a synonym.

The syntactic control information is composed of an ordered list of non lexical rule names.

Syntactic Control List:
[active-to-passive
active-to-passive-no-agent
modal-elimination]

4.4 The CL Correction Algorithm

The algorithm takes as input a DSyntS, a syntactic control list and a lexical control list. It
proceeds in two steps:

1- The DSyntS is visited top down. For each node N, the rules of the syntactic control
list in their order of appearance are checked. The order in which the rule names appear
in the list is therefore important. When several rules can apply on a given node, it is the
first one in order of appearance which will be applied first. Its application can modify the
DSyntS, preventing possible application of other rules.

2- The DSyntS is visited a second time top down. For each node N visited, a lookup
in the lexical control list is performed. If N appears as a trigger of a couple in the lexical
control list, its associated rule is checked.

To show how the algorithm works, we now discuss an example taken from the AECMA

Simplified English Guide:
e Bad: The decontamination of the aircraft shall be done in an authorized area.

e Good: Clean the aircraft in an approved area.

The input DSyntS is represented in 3.1 and the control lists are the ones of 4.3.

The system first visits the root node Oper! which stands for the verb do. It tries to apply
the active-to-passive rule which fails since the verb does not possess a second actant.
The active-to-passive-no-agent rule is then checked, it succeeds transforming the voice
of the sentence and introducing the pronoun you as a subject. This results in the DSyntS
for You shall do the decontamination of the aircraft in an authorized area represented below.

Operl [class:verb voice:active modal:oblig tense:pres 1f:0Operil]
(I XX [class:personal_pronoun pers:2nd number:sing]
II decontamination [lexeme:contamination class:noun det:def]
(IT aircraft [lexeme:aircraft class:noun det:def])
ATTR in [lexeme:in class:preposition]
(ITI area [lexeme:area class:noun det:indef]
(ATTR authorized [lexeme:authorized class:adjective])))

Then, the modal-elimination rule paraphrases the “you shall V7 construction with an im-
perative, resulting in the DSyntS for Do the decontamination of the aircraft in an authorized
area.

Operl [class:verb voice:active mode:imper tense:pres 1f:0peril]
(IT decontamination [lexeme:contamination class:noun det:def]
(IT aircraft [lexeme:aircraft class:noun det:def])
ATTR in [lexeme:in class:preposition]
(IT area [lexeme:area class:noun det:indef]
(ATTR authorized [lexeme:authorized class:adjective])))

The rest of the DSyntS nodes are visited but no syntactic paraphrasing rule applies.
The second visit begins, using the lexical control list. Here, we find that “decontamination”
is entered for support verb contraction, with Operl(decontamination) = do (thus, the rule
matches the input) and VO(decontamination) = clean. The resulting application of the gen-
eral support-verb contraction rule yields the DSyntS for Clean the aircraft in an authorized
area. (Note that the rule applies irrespective of the verb form.)

clean [lexeme:clean class:verb voice:active mode:imper tense:pres]
(IT aircraft [lexeme:aircraft class:noun det:def]
ATTR in [lexeme:in class:preposition]
(IT area [lexeme:area class:noun det:indef]
(ATTR authorized [lexeme:authorized class:adjective])))

When finally the node authorized is reached, the lookup in the lexical control list shows
that it should be replaced using the synonymic substitution rule. authorized is therefore
replaced by approved, and we obtain the desired result.

clean [lexeme:clean class:verb voice:active mode:imper tense:pres]
(IT aircraft [lexeme:aircraft class:noun det:def]
ATTR in [lexeme:in class:preposition]
(IT area [lexeme:area class:noun det:indef]
(ATTR approved [lexeme:approved class:adjective])))

5 Discussion

We have presented a CL system based on the clear separation between general linguistic
paraphrasing knowledge and CL-specific paraphrasing knowledge. We have argued that this
separation makes it easier to maintain the system and port it to new languages and/or new
controlled languages.

We have not addressed the issue of the fluency of the entire text: the proposed approach
is based on a sentence-level paraphrase. There are several dimensions to this problem, but
one major contribution could be made by including in the parahrase rules restrictions on the
theme (the part of the DSyntS that the sentence is about) and the rheme (the part of the
DSyntS that represents the information communicated about the theme). For example, if a
passive-to-active paraphrase and a conversive paraphrase are both possible, the conversive
paraphrase could be chosen because it eliminates the passive but maintains the theme as the
subject. We intend to investigate this issue further.

References

[Adr94] Geert Adriaens. Simplified english grammar and style correction in an MT frame-
work : the LRE SECC project. In Proceedings of the 16th Conference on Translating
and the Computer, pages 78-88, London, 1994.

[AEC89] Association Européenne des Constructeurs de Matériel Aérospatial, Paris. A guide
for the preparation of aircraft maintenance documentation in the international
aerospace maintenance language, 1989.

[LRI7] Benoit Lavoie and Owen Rambow. RealPro — a fast, portable sentence real-
izer. In Proceedings of the Conference on Applied Natural Language Processing

(ANLP’97), Washington, DC, 1997.

[Mel88] Igor A. Mel'cuk. Dependency Syntax: Theory and Practice. State University of
New York Press, New York, 1988.

[IMP87] Igor A. Mel’éuk and Alain Polguere. A formal lexicon in the meaning-text theory.
Computational Linguistics, 13(3-4):13-54, 1987.

[Nas96] Alexis Nasr. Un modéle de reformulation automatique fondé sur la Théorie Sens
Texte: Application aux langues controlées. PhD thesis, Université Paris 7, 1996.

[RNPT97] Owen Rambow, Alexis Nasr, Martha Palmer, Tonia Bleam, Michael Collins,
Karin Kipper, Dan Melamed, Jong Park, Joseph Rosenzweig, William Schuler,
and B. Srinivas. Machine translation of battlefield messages using lexico-
structural transfer. Technical report, CoGenTex, Inc., 1997.

