Plan

•

- Processus stochastiques
- Chaînes de Markov
- Chaînes de Markov Cachées

Processus stochastique

- Un processus stochastique (ou processus aléatoire) est une séquence $X_1, X_2 ... X_N$ de variables aléatoires fondées sur le même ensemble fondamental Ω .
- Les valeurs possibles des variables aléatoires sont appelées les états possibles du processus.
 - La variable X_t représente l'état du processus au temps t (on dit aussi l'observation au temps t).
- Les différentes variables aléatoires ne sont en général pas indépendantes les unes des autres. Ce qui fait réellement l'interêt des processus stochastiques est la dépendance entre les variables aléatoires.

Processus stochastique

- Pour spécifier entièrement un processus stochastique, il suffit de spécifier :
 - 1. la loi de probabilité de la première variable alétaoire X_1 , qui spécifie donc l'état du processus lors de la première observation.
 - 2. pour toute valeur de t > 1 la probabilité conditionnelle :

$$P(X_t = j | X_1 = i_1, \dots, X_{t-1} = i_{t-1})$$

Propriété de Markov

ne chaîne de Markov est un type particulier de processus ochastique qui vérifie deux conditions :

L'état au temps t du processus ne dépend que de son état au temps t-1 :

$$P(X_t = j | X_1 = i_1, \dots, X_{t-1} = i_{t-1}) = P(X_t = j | X_{t-1} = i_{t-1})$$

La probabilité de passage d'un état i à un état j est constante, elle ne varie pas avec le temps :

$$\forall t, 1 < t \leq N, \ P(X_t = j | X_{t-1} = i) = C$$

Processus de Markov

n processus de Markov peut être décrit par

une matrice de transition T telle que :

$$T(i,j) = P(X_t = j | X_{t-1} = i), 1 < t \le N$$

$$\operatorname{avec} T(i,j) \ge 0, \ \forall i,j$$

et
$$\sum_{j=1}^{N} T(i,j) = 1 \ \forall i$$

L'état du processus à l'instant 1 donc la loi de probabilité, notée π , de la variable X_1 :

$$\pi(i) = P(X_1 = i)$$

Processus de Markov

n peut éviter le recours à la loi π en imposant que le ocessus débute toujours dans le même état 0, par exemple en utilisant les transitions depuis cet état pour représenter s probabilités π :

 $T(0,i)=\pi(i)$, pour tout état i du processus

Processus de Markov

n processus de Markov peut aussi être représenté par un Itomate fini :

- Chaque état du processus est représenté par un état de l'automate
- Une transition de l'état i à l'état j est étiqueté par la probabilité T(i,j).

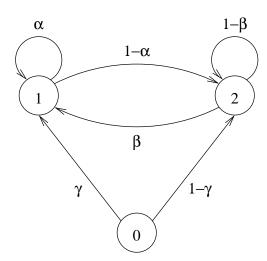
Exemple

- On admet que le fait que le temps qu'il fera demain ne dépend que du temps qu'il fait aujourd'hui.
- Plus précisément, s'il pleut aujourd'hui, il pleuvra demain aussi avec une probabilité de α et s'il ne pleut pas aujourd'hui la probabilité qu'il pleuve demain est β .
- On convient de dire que le système est dans l'état 1 s'il pleut et 2 s'il ne pleut pas. La situation peut être représentée par une chaîne de Markov à deux états dont la matrice de transition est :

$$\left| \begin{array}{cc} \alpha & 1 - \alpha \\ \beta & 1 - \beta \end{array} \right|$$

Exemple (suite)

- De plus, la probabilité que le processus soit dans l'état 1 à l'instant 1 est égale à γ .
- Le même processus peut être représenté par l'automate :



Probabilité d'une suite d'observations

Les propriétés de Markov permettent de calculer simplement la probabilité qu'une suite d'états particulière de longueur T soit observée (la loi de probabilité conjointe de $(X_1, X_2, \dots X_T)$):

$$P(X_1, X_2, \dots, X_T) = \text{(règle de multiplication)}$$
 $P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots P(X_T|X_1, \dots, X_{T-1}) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1}) \text{(hypothèse de Markov)}$

Exemple

Etant donné le processus de Markov de l'exemple précédent, la probabilité d'avoir trois jours consécutifs de pluie est égale à :

$$P(X_1 = 1, X_2 = 1, X_3 = 1) = P(X_1 = 1)P(X_2 = 1|X_1 = 1)P(X_3 = 1|X_2 = 1)$$

= $\gamma \times \alpha \times \alpha$
= $\gamma \alpha^2$

Modèles de Markov Cachés

- Dans les chaînes de Markov, les observations correspondent aux états du processus.
- Dans un modèle de Markov caché, on ne peux observer directement les états du processus, mais des symboles (appelés aussi *observables*) émis par les états selon une certaine loi de probabilité.
- Au vu d'une séquence d'observation on ne peux savoir par quelle séquence d'états (ou *chemin*) le processus est passé, d'où le nom de modèles de Markov cachés (HMM).
- On distingue le processus $X = X_1, X_2, \ldots, X_T$ qui représente l'évolution des états du HMM et le processus $O = O_1, O_2, \ldots, O_T$ qui représente la suite des symboles émis par le HMM.

Exemple

Eléments d'un HMM

n HMM est défini par un quintuplet $\langle S, A, \pi, T, E \rangle$ où :

- S est l'ensemble des états : $\{1,\ldots,N\}$
- A est l'alphabet des symboles émis par les états : $\{a_1, \ldots, a_M\}$
- π est la loi de probabilité de l'état initial $\pi(i) = P(X_1 = i)$. π étant une loi de probabilité, on a :

$$\sum_{i=1}^{N} \pi(i) = 1$$

Eléments d'un HMM - 2

- n HMM est défini par un quintuplet $\langle S, A, \pi, T, E \rangle$ où :
- T est la matrice des probabilités de transition d'un état vers un autre.
- La probabilité de transition d'un état i vers un état j $(P(X_t = j | X_{t-1} = i))$ est notée T(i, j).
- La somme des probabilités des transitions émanant d'un état vaut 1 :

$$\sum_{j=1}^{N} T(i,j) = 1, \ \forall \ i \in S$$

Eléments d'un HMM - 3

- n HMM est défini par un quintuplet $\langle S, A, \pi, T, E \rangle$ où :
- E est la matrice des probabilités d'émission des symboles de A pour chaque état.
- La probabilité que l'état i émette le symbole j $(P(O_t = j | X_t = i))$ est notée E(i, j).
- Les probabilités d'émission de symboles de A pour chaque état du HMM constituent une loi de probabilité :

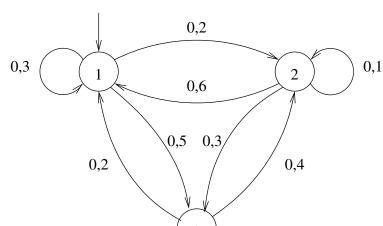
$$\sum_{j=1}^{M} E(i, o_j) = 1, \ \forall \ i \in S$$

L'ensemble constitué des probabilités initiales, des probabilités de transition et d'émission d'un HMM λ est souvent appelé les paramètres λ .

Exemple

$$= \left\langle \big\{1,2,3\big\}, \big\{a,b,c\big\}, \pi, T, E \right\rangle \text{ avec : } \\ E(1,a) = 0,6 \quad E(2,a) = 0 \qquad E(3,a) = 0,3 \\ E(1,b) = 0,2 \quad E(2,b) = 0,5 \quad E(3,b) = 0 \quad \text{et } \\ E(1,c) = 0,2 \quad E(2,c) = 0,5 \quad E(3,c) = 0,7 \\ T(1,1) = 0,3 \quad T(2,1) = 0,6 \quad T(3,1) = 0,2 \\ T(1,2) = 0,2 \quad T(2,2) = 0,1 \quad T(3,2) = 0,4 \\ T(1,3) = 0,5 \quad T(2,3) = 0,3 \quad T(3,3) = 0,4 \\ \text{et } \\ \pi(1) = 1 \quad \pi(2) = 0 \quad \pi(3) = 0$$

présentation graphique



Trois questions

Calcul de la probabilité d'une séquence d'observations o:

$$P(o) = \sum_{x \in \mathcal{C}_T} P(o, x)$$

où C_T est l'ensemble des séquences de T états.

Calcul du chemin le plus probable :

$$\hat{x} = \arg\max_{x \in \mathcal{C}_T} P(x|o)$$

Estimation des paramètres du HMM:

$$\hat{\lambda} = \arg\max_{\lambda} P(o|\lambda)$$

alcul de la probabilité d'une séquence d'observations

- Etant donné un HMM $\lambda = \langle S, A, \pi, T, E \rangle$, la suite d'observation $o = o_1 o_2, \dots, o_T$ peut généralement être générée en suivant différents chemins dans le HMM
- La probabilité que λ émette la séquence o est égale à la somme des probabilités que la séquence o soit émise en empruntant les différents chemins pouvant émettre o.
- Ce raisonnement correspond en fait à l'application de la formule des probabilités totales à la probabilité P(o)

$$P(o) = \sum_{x \in \mathcal{C}_T} P(o|x)P(x)$$

où C_T est l'ensemble des séquences de T états de λ et $x=x_1,\ldots,x_T$ ($x_i\in S,\ 1\leq i\leq T$) une de ces séquences

cul de la probabilité d'une séquence d'observations - 2

la probabilité conditionnelle que o soit générée lorsque λ passe successivement par la séquence d'états $x=x_1,\ldots,x_T$ est le produit des probabilités que l'état atteint à l'instant t (x_t) émette le symbole observé à cet instant (o_t) :

$$P(o|x) = \prod_{t=1}^{T} E(x_t, o_t)$$

cul de la probabilité d'une séquence d'observations - 3

et la probabilité que le HMM suive une séquence particulière d'états x est le produit des probabilités que λ passe de l'état x_t à l'état x_{t+1} entre les instants t et t+1, comme dans un modèle de Markov visible :

$$P(x) = \pi(x_1) \prod_{t=1}^{T-1} T(x_t, x_{t+1})$$

En remplaçant P(o|x) et P(x) dans l'équation initiale, on obtient :

$$P(o) = \sum_{x \in \mathcal{C}_T} \pi(x_1) \times \prod_{t=1}^{T-1} E(o_t, x_t) T(x_t, x_{t+1}) \times E(o_T, x_T)$$

Treillis - 1

- Le calcul précédent est particulièrement inefficace, il nécessite dans le cas général (où tous les états sont reliés entre eux par une transition et chaque état peut émettre chacun des N symboles) $2 \times T \times N^T$ multiplications (N^T chemins et 2T multiplications à effectuer par chemin.).
- On a recours à une méthode de programmation dynamique pour effectuer ce calcul.
- Cette méthode repose sur la représentation, sous forme d'un *treillis*, de l'évolution du HMM ayant donné lieu à une suite d'observables $o_1 \dots o_k$.

Treillis - 2



Treillis - 3

On associe à chaque sommet (i,t) du treillis la variable $\alpha(i,t)$ qui correspond à la probabilité de se trouver dans l'état i du HMM λ à un instant t, ayant observé la suite $o_1 \ldots o_{t-1}$:

$$\alpha(i,t) = P(o_1 \dots o_{t-1}, X_t = i)$$

Treillis - 4

- Le treillis permet de *résumer* au niveau d'un sommet (i, t) des informations portant sur l'ensemble des chemins menant à l'état i à l'instant t tout en ayant observé la séquence $o_1 \ldots o_{t-1}$.
- Dans notre cas, cette information est la somme des probabilités de ces chemins.
- Cette particularité permet de calculer la probabilité de se trouver dans un état quelconque à un instant t en fonction de la probabilité de se trouver dans les différents états à l'instant t-1
- c'est l'étape récursive de l'algorithme suivant.

Algorithme de calcul de P(o)

. Initialisation:

$$\alpha(i,1) = \pi(i), \ 1 \le i \le N$$

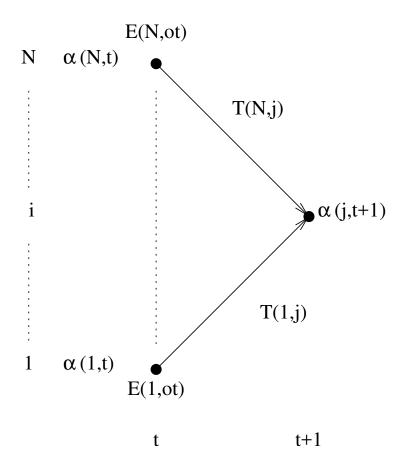
. Etape récursive :

$$\alpha(j, t+1) = \sum_{i=1}^{N} \alpha(i, t) E(i, o_t) T(i, j), \ 1 \le t < T-1, \ 1 \le j \le N$$

. Calcul de la probabilité totale :

$$P(o) = \sum_{i=1}^{N} \alpha(i, T) E(i, o_T)$$

Calcul de $\alpha(j, t+1)$



ette façon de calculer P(o) est bien plus économique isqu'elle n'exige (dans le cas général) que $2N^2T$ ultiplications : $N\times T$ sommets et 2N multiplications paremet.

Calcul backward

- La procédure de calcul de P(o) présentée ci-dessus est appelée quelquefois procédure *forward* (en avant) car le calcul de la probabilité à un instant t est effectué à partir de la probabilité à un instant t-1, en parcourant le treillis de la gauche vers la droite.
- Il est aussi possible d'effectuer le calcul dans l'ordre inverse, où la probabilité à un instant t est calculée à partir de la probabilité à l'instant t+1.
- On définit la variable $\beta(i,t)$ de la façon suivante :

$$\beta(i,t) = P(o_t \dots o_T | X_t = i)$$

Calcul backward

- La procédure de calcul de P(o) présentée ci-dessus est appelée quelquefois procédure *forward* (en avant) car le calcul de la probabilité à un instant t est effectué à partir de la probabilité à un instant t-1, en parcourant le treillis de la gauche vers la droite.
- Il est aussi possible d'effectuer le calcul dans l'ordre inverse, où la probabilité à un instant t est calculée à partir de la probabilité à l'instant t+1.
- On définit la variable $\beta(i,t)$ de la façon suivante :

$$\beta(i,t) = P(o_t \dots o_T | X_t = i)$$

Attention : $\alpha(i, t) = P(o_1 \dots o_{t-1}, X_t = i)$

orithme de calcul de P(o) grâce aux probabilités $\emph{backward}$

. Initialisation:

$$\beta(i,T) = E(i,o_T), \ 1 \le i \le N$$

. Etape récursive :

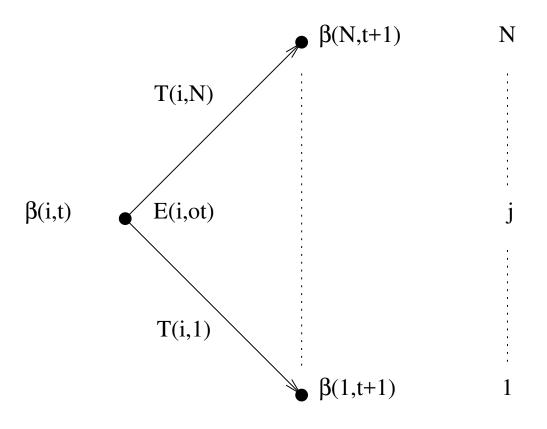
$$\beta(i,t) = \sum_{j=1}^{N} \beta(j,t+1)T(i,j)E(i,o_t), \ 1 \le t \le T-1, \ 1 \le i \le N$$

. Calcul de la probabilité totale :

$$P(o) = \sum_{i=1}^{N} \pi(i)\beta(i,1)$$

Calcul de $\beta(i,t)$

.



$$i, t) = \sum_{j=1}^{N} \beta(j, t+1) T(i, j) E(i, o_t), \ 1 \le t \le T-1, \ 1 \le i \le N$$

Combinaison des probabilités backward et forward

Les probabilités forward et backward peuvent être combinées pour calculer P(o) de la façon suivante :

$$P(o) = \sum_{i=1}^{N} \alpha(i, t) \beta(i, t) \ \forall t \ 1 \le t \le T$$

Ce résultat est établi en utilisant d'une part la formule des probabilités totales :

$$P(o) = \sum_{i=1}^{N} P(o, X_t = i)$$

Combinaison des probabilités backward et forward

puis en remarquant que chacun des termes de la somme peut être exprimée en fonction des probabilités forward et backward de la façon suivante :

$$P(o, X_{t} = i) = P(o_{1}, ..., o_{T}, X_{t} = i)$$

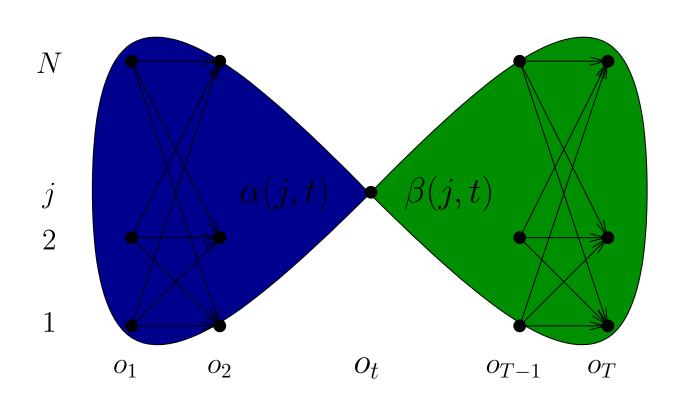
$$= P(o_{1}, ..., o_{t-1}, X_{t} = i, o_{t}, ..., o_{T})$$

$$= P(o_{1}, ..., o_{t-1}, X_{t} = i) \times P(o_{t}, ..., o_{T} | o_{1}, ..., o_{t-1}, X_{t} = i)$$

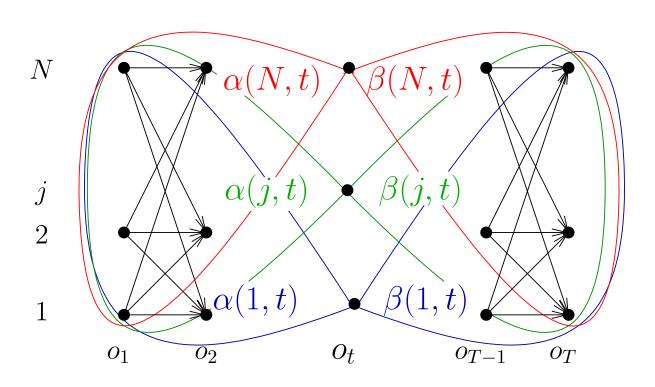
$$= P(o_{1}, ..., o_{t-1}, X_{t} = i) \times P(o_{t}, ..., o_{T} | X_{t} = i)$$

$$= \alpha(i, t)\beta(i, t)$$

Combinaison des probabilités backward et forward



Probabilité de o



$$P(o) = \sum_{i=1}^{N} \alpha(i, t) \beta(i, t) \ \forall t \ 1 \le t \le T$$

Recherche du chemin le plus probable

- Il est souvent intéressant, étant donné un HMM λ et une séquence d'observations $o = o_1 \dots o_T$ de déterminer la séquence d'états $\hat{x} = \hat{x}_1, \hat{x}_2, \dots \hat{x}_T$ la plus probable ayant pu générer o.
- Première solution : déterminer toutes les séquences d'états ayant pu générer o, puis calculer leur probabilités afin de déterminer la plus probable.
- Méthode particulièrement coûteuse car, dans le cas général, il existe N^T chemins possibles.
- Solution: utiliser le treillis (algorithme de Viterbi)

- Idée générale : on détermine, pour chaque sommet du treillis, le meilleur chemin (le chemin de probabilité maximale) menant à ce sommet, tout en ayant généré la suite $o_1 \dots o_t$.
- On définit pour chaque sommet (j,t) du treillis la variable $\delta(j,t)$:

$$\delta(j,t) = \max_{x \in \mathcal{C}_{t-1}} P(x, o_1 \dots o_t, X_t = j)$$

où C_{t-1} est l'ensemble des séquences de t-1 états de λ et x une de ces séquences.

On définit de plus, pour chaque sommet (j,t) la variable $\psi(j,t)$ dans laquelle est stocké l'état du HMM au temps t-1 qui a permis de réaliser le meilleur score, qui n'est donc autre que l'état précédent dans le meilleur chemin menant à (j,t).

. Initialisation du treillis :

$$\delta(j,1) = \pi(j)E(j,o_1), \ 1 \le j \le N$$

. Etape récursive :

$$\delta(j, t+1) = \max_{1 \le i \le N} \delta(i, t) T(i, j) E(j, o_{t+1}), \ 1 \le t < T, \ 1 \le j \le N$$

stockage du meilleur état précédent :

$$\psi(j, t+1) = \arg\max_{1 \le i \le N} \delta(i, t) T(i, j) E(j, o_{t+1}), \ 1 \le t < T, \ 1 \le j \le N$$

•

. Détermination du meilleur chemin :

$$\hat{x}_{T} = \arg \max_{1 \leq i \leq N} \delta(i, T)$$

$$\hat{x}_{t} = \psi(\hat{x}_{t+1}, t+1)$$

$$P(\hat{x}) = \max_{1 \leq i \leq M} \delta(i, T)$$

Estimation des paramètres d'un HMM

- Les paramètres d'un HMM ne sont généralement pas données par avance, ils doivent être estimés à partir de données.
- On suppose que l'on dispose d'une longue suite d'observations $o = o_1 \dots o_T$, appelée *données d'apprentissage* qui est sensée être représentative du type de données que le HMM peut produire.
- On suppose de plus que la structure du HMM (le nombre d'états et les transitions possibles entre états) est fixée.

Estimation des paramètres d'un HMM

- L'objectif est de déterminer les paramètres qui rendent le mieux compte de o, ou, en d'autres termes, de déterminer les paramètres qui, parmi l'ensemble des paramètres possibles, attribuent à o la meilleure probabilité.
- Si l'on note $P_{\lambda}(o)$ la probabilité qu'attribue le HMM λ à la suite o, le but de l'estimation est de déterminer le HMM $\hat{\lambda}$ qui maximise $P_{\lambda}(o)$:

$$\hat{\lambda} = \arg\max_{\lambda} P_{\lambda}(o)$$

Estimation des paramètres d'un HMM

- Nous allons supposer que la séquence o a été générée par un HMM. Ceci n'est qu'une vision de l'esprit et l'on ne connaît pas le processus qui est à l'origine de o.
- Deux cas peuvent alors se présenter :
 - données complètes : on dispose des données d'apprentissage o et de la séquence d'états $x = x_1 \dots x_T$ ayant permis la génération de o.
 - **données incomplètes**: on ne dispose que de la suite d'observation o.

Données complètes

n définit les variables :

$$\mathcal{C}_e(i) = \sum_{t=1}^T \delta_{x_t,i}$$

$$\mathcal{C}_{o,e}(a,i) = \sum_{t=1}^{T} \delta_{o_t,a} \times \delta_{x_t,i}$$

$$\mathcal{C}_{e,e}(i,j) = \sum_{t=2}^{T} \delta_{x_{t-1},i} \times \delta_{x_t,j}$$

ne façon naturelle d'estimer les probabilités d'émission et transition est :

$$E_{\hat{\lambda}}(i,a) = \frac{\mathcal{C}_{o,e}(a,i)}{\mathcal{C}_{e}(i)} \quad T_{\hat{\lambda}}(i,j) = \frac{\mathcal{C}_{e,e}(i,j)}{\mathcal{C}_{e}(i)}$$

ette méthode d'estimation des probabilités est appelée timation par maximum de vraisemblance.

Données incomplètes

états
$$x = ?$$
 ? ? ... ? observations $o = o_1 \quad o_2 \quad o_2 \quad \dots \quad o_T$

- On ne dispose que des données d'apprentissage o et de la structure du HMM $\hat{\lambda}$.
- On ne connaît pas de méthode permettant de calculer directement $\hat{\lambda}$.
- Il existe une procédure, appelée algorithme de Baum-Welsh ou algorithme forward-backward qui permet de s'en approcher.
- Procédure itérative : on calcule une suite de HMM $\lambda_0, \lambda_1, \dots, \lambda_n$ où λ_{i+1} est construit à partir de λ_i et tel que :

$$P_{\lambda_{i+1}}(o) \ge P_{\lambda_i}(o)$$

Algorithme de Baum-Welsh

- On donne aux paramètres de λ_0 des valeurs arbitraires, qui peuvent être aléatoires, comme elles peuvent être guidées par la connaissance a priori que nous avons du problème.
- On considère que o a été généré par λ_0 . Cette hypothèse permet de calculer la probabilité, notée $\gamma(i,t)$, que λ_0 soit dans l'état i à l'instant t:

$$\gamma(i,t) = P(X_t = i|o)$$

$$= \frac{P(X_t = i,o)}{p(o)}$$

$$= \frac{\alpha(i,t)\beta(i,t)}{\sum_{j=1}^{N} \alpha(j,t)\beta(j,t)}$$

Algorithme de Baum-Welsh - 2

- On effectue la somme $\sum_{t=1}^{T} \gamma(i,t)$
- Somme des probabilités que λ_0 soit passé par l'état i aux différents instants t de la génération de o.
- Il ne s'agit pas d'une probabilité :
 - elle peut être supérieure à 1
 - on ne voit à quel évenement elle correspond.
- On l'interprète comme une approximation du nombre de fois que λ_0 est passé par l'état i lors de la génération de o.
- On se retrouve dans une situation proche de l'estimation avec des données complètes.

Réestimation des probabilités d'émission

n peut calculer (on dit aussi réestimer) de nouvelles obabilités d'émission, notées $E_{\mathbf{1}}$, par maximum de aisemblance :

$$E_1(i,a_j) = \frac{\text{nombre de fois que } \lambda_0 \text{ s'est trouvé dans l'état i et que } a \text{ a été émis nombre de fois que } \lambda_0 \text{ s'est trouvé dans l'état i} \\ = \frac{\sum_{t:o_t=a} \gamma(i,t)}{\sum_{t=1}^T \gamma(i,t)}$$

Réestimation des probabilités initiales

s probabilités intiales peuvent, elles, être réestimées de la çon suivante :

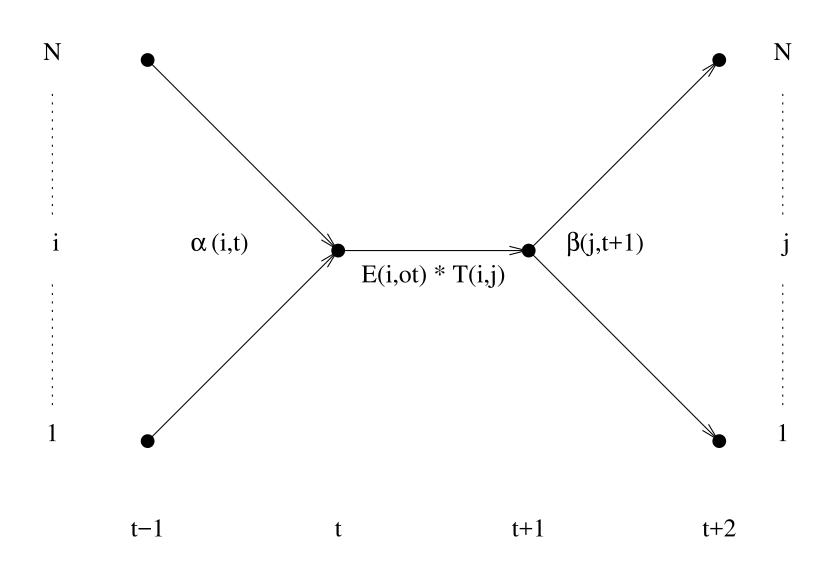
$$\pi_1(i) = \text{probabilit\'e d'être en } i$$
 à l'instant $t=1$ $= \gamma(i,1)$

On note $p_t(i, j)$ la probabilité que λ_0 soit passé de l'état i à l'état j entre les instants t et t + 1:

$$p_{t}(i,j) = P(X_{t} = i, X_{t+1} = j | o)$$

$$= \frac{P(X_{t} = i, X_{t+1} = j, o)}{P(o)}$$

$$= \frac{\alpha(i,t) \times E(i, o_{t}) \times T(i,j) \times \beta(j, t+1)}{\sum_{k=1}^{N} \alpha(k, t) \beta(k, t)}$$



peut maintenant effectuer la somme $\sum_{t=1}^{T} p_t(i,j)$ que sus allons interpréter comme le nombre de fois qu'une ansition de i vers j a été empruntée lors de la génération de et on peut recalculer à partir de cette quantité des nouvelles obabilités de transition T_1 par maximum de vraisemblance :

$$\begin{array}{ll} (i,j) & = & \frac{\text{nombre de fois qu'une transition de i vers j a été empruntée}}{\text{nombre de fois qu'un transition émanant de i a été empruntée}} \\ & = & \frac{\sum_{t=1}^T p_t(i,j)}{\sum_{t=1}^T \gamma(i,t)} \end{array}$$

 λ_1 possède la propriété remarquable d'attribuer à la séquence o une probabilité meilleure ou égale à celle que lui attribuait λ_0 :

$$P_{\lambda_1}(o) \ge P_{\lambda_0}(o)$$

Cette propriété s'explique par le fait que lors du calcul des paramètres de λ_1 , nous avons augmenté la probabilité des transitions et des émissions qui étaient à l'origine de la génération de o, et ce faisant, diminué les autres probabilités.

- En réitérant le pocessus de réestimation des probabilités, nous obtiendrons des paramètres attribuant une probabilité de plus en plus élevée à la séquence o, jusqu'à ce qu'une valeur limite soit atteinte, pour un HMM λ_n .
- λ_n n'est cependant pas le meilleur possible, il peut s'agir d'un maximum local, qui dépend de λ_0 :

