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Introduction

Overview of the Course

◮ Dependency parsing (Joakim)

◮ Machine learning methods (Ryan)

◮ Transition-based models (Joakim)

◮ Graph-based models (Ryan)

◮ Loose ends (Joakim, Ryan):
◮ Other approaches
◮ Empirical results
◮ Available software
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Introduction

Notation Reminder

◮ Sentence x = w0,w1, . . . ,wn, with w0 = root

◮ L = {l1, . . . , l|L|} set of permissible arc labels

◮ Let G = (V ,A) be a dependency graph for sentence x where:
◮ V = {0, 1, . . . , n} is the vertex set
◮ A is the arc set, i.e., (i , j , k) ∈ A represents a dependency from

wi to wj with label lk ∈ L

◮ By the usual definition, G is a tree
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Introduction

Data-Driven Parsing

◮ Goal: Learn a good predictor of dependency graphs

◮ Input: x

◮ Output: dependency graph/tree G

◮ This lecture:
◮ Parameterize parsing by transitions
◮ Learn to predict transitions given the input and a history
◮ Predict new graphs using deterministic parsing algorithm

◮ Next lecture:
◮ Parameterize parsing by dependency arcs
◮ Learn to predict entire graphs given the input
◮ Predict new graphs using spanning tree algorithms
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Introduction

Lecture 3: Outline

◮ Transition systems

◮ Deterministic classifier-based models
◮ Parsing algorithm
◮ Stack-based and list-based transition systems
◮ Classifier-based parsing

◮ Pseudo-projective parsing
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Transitions Systems

Transition Systems

◮ A transition system for dependency parsing is a quadruple
S = (C ,T , cs ,Ct), where

1. C is a set of configurations, each of which contains a buffer β

of (remaining) nodes and a set A of dependency arcs,
2. T is a set of transitions, each of which is a (partial) function

t : C → C ,
3. cs is an initialization function, mapping a sentence

x = w0, w1, . . . , wn to a configuration with β = [1, . . . , n],
4. Ct ⊆ C is a set of terminal configurations.

◮ Note:
◮ A configuration represents a parser state.
◮ A transition represents a parsing action (parser state update).
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Transitions Systems

Transition Sequences

◮ Let S = (C ,T , cs ,Ct) be a transition system.

◮ A transition sequence for a sentence x = w0,w1, . . . ,wn in S
is a sequence C0,m = (c0, c1, . . . , cm) of configurations, such
that

1. c0 = cs(x),
2. cm ∈ Ct ,
3. for every i (1 ≤ i ≤ m), ci = t(ci−1) for some t ∈ T .

◮ The parse assigned to x by C0,m is the dependency graph
Gcm = ({0, 1, . . . , n},Acm), where Acm is the set of
dependency arcs in cm.
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Parsing Algorithm

Deterministic Parsing

◮ An oracle for a transition system S = (C ,T , cs ,Ct) is a
function o : C → T .

◮ Given a transition system S = (C ,T , cs ,Ct) and an oracle o,
deterministic parsing can be achieved by the following simple
algorithm:

Parse(x = (w0,w1, . . . ,wn))
1 c ← cs(x)
2 while c 6∈ Ct

3 c = [o(c)](c)
4 return Gc

◮ NB: Oracles can be approximated by classifiers (cf. lecture 2).
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Stack-Based Transition Systems

Stack-Based Transition Systems

◮ A stack-based configuration for a sentence x = w0,w1, . . . ,wn

is a triple c = (σ, β,A), where

1. σ is a stack of tokens i ≤ m (for some m ≤ n),
2. β is a buffer of tokens j > m,
3. A is a set of dependency arcs such that G = ({0, 1, . . . , n}, A)

is a dependency graph for x .

◮ A stack-based transition system is a quadruple
S = (C ,T , cs ,Ct), where

1. C is the set of all stack-based configurations,
2. cs(x = w0, w1, . . . wn) = ([0], [1, . . . , n], ∅),
3. T is a set of transitions, each of which is a function t : C → C ,
4. Ct = {c ∈ C |c = (σ, [ ], A)}.

◮ Notation:
◮ σ|i = stack with top i (| left-associative)
◮ i |β = buffer with next token i (| right-associative)
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Stack-Based Transition Systems

Shift-Reduce Dependency Parsing

◮ Transitions:
◮ Left-Arck :

(σ|i , j |β, A) ⇒ (σ, j |β, A∪{(j , i , k)})

◮ Right-Arck :

(σ|i , j |β, A) ⇒ (σ, i |β, A∪{(i , j , k)})

◮ Shift:

(σ, i |β, A) ⇒ (σ|i , β, A)

◮ Preconditions:
◮ Left-Arck :

¬[i = 0]
¬∃i ′∃k ′[(i ′, i , k ′) ∈ A]

◮ Right-Arck :

¬∃i ′∃k ′[(i ′, j , k ′) ∈ A]

Introduction to Data-Driven Dependency Parsing 10(29)



Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ [Economic1 news2 had3 little4 effect5 on6 financial7 markets8 .9]β
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1]σ [news2 had3 little4 effect5 on6 financial7 markets8 .9]β

Shift
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ Economic1 [news2 had3 little4 effect5 on6 financial7 markets8 .9]β

nmod

Left-Arcnmod
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2]σ [had3 little4 effect5 on6 financial7 markets8 .9]β

nmod

Shift
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ Economic1 news2 [had3 little4 effect5 on6 financial7 markets8 .9]β

sbjnmod

Left-Arcsbj
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3]σ [little4 effect5 on6 financial7 markets8 .9]β

sbjnmod

Shift
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4]σ [effect5 on6 financial7 markets8 .9]β

sbjnmod

Shift
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3]σ little4 [effect5 on6 financial7 markets8 .9]β

sbjnmod nmod

Left-Arcnmod

Introduction to Data-Driven Dependency Parsing 11(29)



Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4 effect5]σ [on6 financial7 markets8 .9]β

sbjnmod nmod

Shift
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4 effect5 on6]σ [financial7 markets8 .9]β

sbjnmod nmod

Shift

Introduction to Data-Driven Dependency Parsing 11(29)



Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4 effect5 on6 financial7]σ [markets8 .9]β

sbjnmod nmod

Shift
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4 effect5 on6]σ financial7 [markets8 .9]β

sbjnmod nmod nmod

Left-Arcnmod
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4 effect5]σ [on6 financial7 markets8 .9]β

sbjnmod nmod

pc

nmod

Right-Arcpc
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3]σ little4 [effect5 on6 financial7 markets8 .9]β

sbjnmod nmod nmod

pc

nmod

Right-Arcnmod
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ Economic1 news2 [had3 little4 effect5 on6 financial7 markets8 .9]β

obj

sbjnmod nmod nmod

pc

nmod

Right-Arcobj
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ Economic1 news2 had3 little4 effect5 on6 financial7 markets8 [.9]β

objpred

sbjnmod nmod nmod

pc

nmod

Right-Arcpred
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[]σ [root0]β Economic1 news2 had3 little4 effect5 on6 financial7 markets8 .9

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Right-Arcp
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Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ [ ]β Economic1 news2 had3 little4 effect5 on6 financial7 markets8 .9

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Shift
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Stack-Based Transition Systems

Theoretical Results

◮ Complexity:
◮ Deterministic shift-reduce parsing has time and space

complexity O(n), where n is the length of the input sentence.

◮ Correctness:
◮ For every transition sequence C0,m, Gcm is a projective

dependency forest (soundness).
◮ For every projective dependency forest G , there is a transition

sequence C0,m such that Gcm = G (completeness).

◮ Note:
◮ A dependency forest is (here) a dependency graph satisfying

Root, Single-Head, and Acyclicity (but not Connectedness).
◮ A dependency forest G = (V , A) can be transformed into a

dependency tree by adding arcs of the form (0, i , k) (for some
lk ∈ L) for every root i ∈ V (i 6= 0).
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Stack-Based Transition Systems

Variations on Shift-Reduce Parsing

◮ Empty stack initialization:
◮ If we can assume that there is only one node i such that

(0, i , k) ∈ A, then we can reduce ambiguity by starting with an
empty stack (and adding the arc (0, i , k) after termination).

◮ Iterative parsing [Yamada and Matsumoto 2003]:
◮ Same transition system (with empty stack initialization)1

◮ Given a terminal configuration:
◮ (σ, [ ], A) =⇒ ([ ], σ, A)
◮ Terminate when A has not been modified in the last iteration.

◮ Modified transition systems:
◮ Arc-eager parsing [Nivre 2003]
◮ Non-projective parsing [Attardi 2006]

1NB: Left-Arc ⇒ Right, Right-Arc ⇒ Left
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Stack-Based Transition Systems

Arc-Eager Parsing

◮ Transitions:
◮ Left-Arck :

(σ|i , j |β, A) ⇒ (σ, j |β, A∪{(j , i , k)})
◮ Right-Arck :

(σ|i , j |β, A) ⇒ (σ|i |j , β, A∪{(i , j , k)})
◮ Reduce:

(σ|i , β, A) ⇒ (σ, β, A)
◮ Shift:

(σ, i |β, A) ⇒ (σ|i , β, A)

◮ Preconditions:
◮ Left-Arck :

¬[i = 0]
¬∃i ′∃k ′[(i ′, i , k ′) ∈ A]

◮ Right-Arck :
¬∃i ′∃k ′[(i ′, j , k ′) ∈ A]

◮ Reduce:
∃i ′∃k ′[(i ′, i , k ′) ∈ A]
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0]σ [Economic1 news2 had3 little4 effect5 on6 financial7 markets8 .9]β
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1]σ [news2 had3 little4 effect5 on6 financial7 markets8 .9]β

Shift
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0]σ Economic1 [news2 had3 little4 effect5 on6 financial7 markets8 .9]β

nmod

Left-Arcnmod
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2]σ [had3 little4 effect5 on6 financial7 markets8 .9]β

nmod

Shift
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0]σ Economic1 news2 [had3 little4 effect5 on6 financial7 markets8 .9]β

sbjnmod

Left-Arcsbj
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3]σ [little4 effect5 on6 financial7 markets8 .9]β

pred

sbjnmod

Right-Arcpred
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4]σ [effect5 on6 financial7 markets8 .9]β

pred

sbjnmod

Shift
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3]σ little4 [effect5 on6 financial7 markets8 .9]β

pred

sbjnmod nmod

Left-Arcnmod
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5]σ [on6 financial7 markets8 .9]β

objpred

sbjnmod nmod

Right-Arcobj
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6]σ [financial7 markets8 .9]β

objpred

sbjnmod nmod nmod

Right-Arcnmod
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6 financial7]σ [markets8 .9]β

objpred

sbjnmod nmod nmod

Shift
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6]σ financial7 [markets8 .9]β

objpred

sbjnmod nmod nmod nmod

Left-Arcnmod
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6 financial7 markets8]σ [.9]β

objpred

sbjnmod nmod nmod

pc

nmod

Right-Arcpc
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6]σ financial7 markets8 [.9]β

objpred

sbjnmod nmod nmod

pc

nmod

Reduce
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5]σ on6 financial7 markets8 [.9]β

objpred

sbjnmod nmod nmod
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nmod
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Stack-Based Transition Systems

Example: Arc-Eager Parsing
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Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0]σ Economic1 news2 had3 little4 effect5 on6 financial7 markets8 [.9]β

objpred

sbjnmod nmod nmod
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nmod

Reduce

Introduction to Data-Driven Dependency Parsing 15(29)



Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6 financial7 markets8 .9]σ []β

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Right-Arcp
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Stack-Based Transition Systems

Non-Projective Parsing

◮ New transitions:
◮ NP-Left-Arck :

(σ|i |i ′, j |β, A) ⇒ (σ|i ′, j |β, A∪{(j , i , k)})

◮ NP-Right-Arck:

(σ|i |i ′, j |β, A) ⇒ (σ|i , i ′|β, A∪{(i , j , k)})

◮ Handles most naturally occurring non-projective dependency
relations (94% in the Prague Dependency Treebank).

(“Only one of them concerns quality.”)

root0 Z1

(Out-of

� �

?

AuxP

nich2

them

� �

?

Atr

je3

is

� �

?

Pred

jen4

only

� �

?

AuxZ

jedna5

one-fem-sg

� �

?

Sb

na6

to

� �

?

AuxP

kvalitu7
quality

?

� �
Adv

.8

.)

� �

?

AuxK

◮ More expressive extensions are possible [Attardi 2006].
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Stack-Based Transition Systems

Comparing Algorithms

◮ Expressivity:
◮ Arc-standard and arc-eager shift-reduce parsing is limited to

projective depedendency graphs.
◮ Simple extensions can handle a subset of non-projective

dependency graphs.

◮ Complexity:
◮ Space complexity is O(n) for all deterministic parsers (even

with simple extensions).
◮ Time complexity is O(n) for single-pass parsers, O(n2) for

iterative parsers.

◮ More complex extensions to handle non-projective dependency
graphs will affect time complexity.

Introduction to Data-Driven Dependency Parsing 17(29)



List-Based Transition Systems

List-Based Transition Systems

◮ A list-based configuration for a sentence x = w0,w1, . . . ,wn is
a quadruple c = (λ1, λ2, β,A), where

1. λ1 is a list of tokens i1 ≤ m1 (for some m1 ≤ n),
2. λ2 is a list of tokens i2 ≤ m2 (for some m2, m1 < m2 ≤ n),
3. β is a buffer of tokens j > m2,
4. A is a set of dependency arcs such that G = ({0, 1, . . . , n), A)

is a dependency graph for x .
◮ A list-based transition system is a quadruple

S = (C ,T , cs ,Ct), where
1. C is the set of all list-based configurations,
2. cs(x = w0, w1, . . . wn) = ([0], [ ], [1, . . . , n], ∅),
3. T is a set of transitions, each of which is a function t : C → C ,
4. Ct = {c ∈ C |c = (λ1, λ2, [ ], A)}.

◮ Notation:
◮ λ1|i = list with head i and tail λ1 (| left-associative)
◮ i |λ2 = i and tail λ2 (| right-associative)
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List-Based Transition Systems

Non-Projective Parsing

◮ Transitions:
◮ Left-Arck :

(λ1|i , λ2, j |β, A) ⇒ (λ1, i |λ2, j |β, A∪{(j , i , k)})
◮ Right-Arck :

(λ1|i , λ2, j |β, A) ⇒ (λ1, i |λ2, j |β, A∪{(i , j , k)})
◮ No-Arc:

(λ1|i , λ2, β, A) ⇒ (λ1, i |λ2, β, A)
◮ Shift:

(λ1, λ2, i |β, A) ⇒ (λ1.λ2|i , [ ], β, A)

◮ Preconditions:
◮ Left-Arc:

¬[i = 0]
¬∃i ′∃k ′[(i ′, k ′, i) ∈ A]
¬[i →∗ j]A

◮ Right-Arc:
¬∃i ′∃k ′[(i ′, k ′, j) ∈ A]
¬[j →∗ i]A
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List-Based Transition Systems

Projective Parsing

◮ Transitions:
◮ Left-Arck :

(λ1|i , λ2, j |β, A) ⇒ (λ1, λ2, j |β, A∪{(j , i , k)})
◮ Right-Arck :

(λ1|i , λ2, j |β, A) ⇒ (λ1|i |j , [ ], β, A∪{(i , k , j)})
◮ No-Arc:

(λ1|i , λ2, β, A) ⇒ (λ1, i |λ2, β, A)
◮ Shift:

(λ1, λ2, i |β, A) ⇒ (λ1.λ2|i , [ ], β, A)

◮ Preconditions:
◮ Left-Arc:

¬[i = 0]
¬∃i ′∃k ′[(i ′, k ′, i) ∈ A]

◮ Right-Arc:
¬∃i ′∃k ′[(i ′, k ′, j) ∈ A]

◮ No-Arc:
∃i ′∃k[(i ′, k , i) ∈ A]
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List-Based Transition Systems

Theoretical Results

◮ Complexity:
◮ Deterministic list-based parsing has time complexity O(n2) and

space complexity O(n), where n is the length of the input
sentence.

◮ Correctness:
◮ For every transition sequence C0,m, Gcm is a (projective)

dependency forest (soundness).
◮ For every (projective) dependency forest G , there is a

transition sequence C0,m such that Gcm = G (completeness).
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Classifier-Based Parsing

Classifier-Based Parsing

◮ Data-driven deterministic parsing:
◮ Deterministic parsing requires an oracle.
◮ An oracle can be approximated by a classifier.
◮ A classifier can be trained using treebank data.

◮ Learning problem:
◮ Approximate a function from configurations (represented by

feature vectors) to transitions, given a training set of (gold
standard) transition sequences.

◮ Three issues:
◮ How do we represent configurations by feature vectors?
◮ How do we derive training data from treebanks?
◮ How do we learn classifiers?
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Classifier-Based Parsing

Feature Representations

◮ A feature representation f(c) of a configuration c is a vector
of simple features fi(c).

◮ Typical features are defined in terms of attributes of nodes in
the dependency graph.

◮ Nodes:
◮ Target nodes (top of σ, head of λ1, λ2, β)
◮ Linear context (neighbors in σ, λ1, λ2, or β)
◮ Structural context (parents, children, siblings given A)

◮ Attributes:
◮ Word form (and/or lemma)
◮ Part-of-speech (and morpho-syntactic features)
◮ Dependency type (if labeled)
◮ Distance (between target tokens)
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Classifier-Based Parsing

A Typical Model [Nivre et al. 2006]

hj

[. . . wi wj ]σ [ wk wk+1 wk+2 wk+3 . . . ]β

lj rj lk

FORM + + + +

LEMMA + +

CPOS + +

POS + + + + + +

FEATS + +

DEPREL + + + +
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Classifier-Based Parsing

Training Data

◮ Training instances have the form (f(c), t), where

1. f(c) is a feature representation of a configuration c ,
2. t is the correct transition out of c (i.e., o(c) = t).

◮ Given a dependency treebank, we can sample the oracle
function o as follows:

◮ For each sentence x with (gold standard) dependency graph
Gx , we construct a transition sequence C0,m = (c0, c1, . . . , cm)
such that

1. c0 = cs(x),
2. Gcm = Gx ,

◮ For each configuration ci(i < m), we construct a training
instance (f(ci ), ti ), where ti (ci) = ci+1.
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Classifier-Based Parsing

Learning Classifiers

◮ Learning methods:
◮ Support vector machines (SVM)

[Kudo and Matsumoto 2002, Yamada and Matsumoto 2003,
Isozaki et al. 2004, Cheng et al. 2004, Nivre et al. 2006]

◮ Polynomial kernel (d ≥ 2)
◮ Different techniques for multiclass classification
◮ Training efficiency problematic for large data sets

◮ Memory-based learning (MBL)
[Nivre et al. 2004, Nivre and Scholz 2004, Attardi 2006]

◮ k-NN classification
◮ Different distance functions
◮ Parsing efficiency problematic for large data sets

◮ Maximum entropy modeling (MaxEnt)
[Cheng et al. 2005, Attardi 2006]

◮ Extremely efficient parsing
◮ Slightly less accurate
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Pseudo-Projective Parsing

Pseudo-Projective Parsing

◮ Technique for non-projective dependency parsing with a
data-driven projective parser [Nivre and Nilsson 2005].

◮ Four steps:

1. Projectivize dependency graphs in training data, encoding
information about transformations in augmented arc labels.

2. Train projective parser (as usual).
3. Parse new sentences using projective parser (as usual).
4. Deprojectivize output dependency graphs by heuristic

transformations guided by augmented arc labels.
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Pseudo-Projective Parsing

Pseudo-Projective Parsing

◮ Projectivize training data:
◮ Projective head nearest permissible ancestor of real head
◮ Arc label extended with dependency type of real head

root Z nich je jen jedna na kvalitu .
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Summary

Summary – Transition-based Methods

◮ Transition systems

◮ Deterministic classifier-based parsing
◮ Parsing algorithm
◮ Stack-based and list-based transitions systems
◮ Classifier-based parsing

◮ Pseudo-projective parsing
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