
Introduction to Data-Driven
Dependency Parsing

Introductory Course, ESSLLI 2007

Ryan McDonald1 Joakim Nivre2

1Google Inc., New York, USA
E-mail: ryanmcd@google.com

2Uppsala University and Växjö University, Sweden
E-mail: nivre@msi.vxu.se

Introduction to Data-Driven Dependency Parsing 1(29)

Introduction

Overview of the Course

◮ Dependency parsing (Joakim)

◮ Machine learning methods (Ryan)

◮ Transition-based models (Joakim)

◮ Graph-based models (Ryan)

◮ Loose ends (Joakim, Ryan):
◮ Other approaches
◮ Empirical results
◮ Available software

Introduction to Data-Driven Dependency Parsing 2(29)

Introduction

Notation Reminder

◮ Sentence x = w0,w1, . . . ,wn, with w0 = root

◮ L = {l1, . . . , l|L|} set of permissible arc labels

◮ Let G = (V ,A) be a dependency graph for sentence x where:
◮ V = {0, 1, . . . , n} is the vertex set
◮ A is the arc set, i.e., (i , j , k) ∈ A represents a dependency from

wi to wj with label lk ∈ L

◮ By the usual definition, G is a tree

Introduction to Data-Driven Dependency Parsing 3(29)

Introduction

Data-Driven Parsing

◮ Goal: Learn a good predictor of dependency graphs

◮ Input: x

◮ Output: dependency graph/tree G

◮ This lecture:
◮ Parameterize parsing by transitions
◮ Learn to predict transitions given the input and a history
◮ Predict new graphs using deterministic parsing algorithm

◮ Next lecture:
◮ Parameterize parsing by dependency arcs
◮ Learn to predict entire graphs given the input
◮ Predict new graphs using spanning tree algorithms

Introduction to Data-Driven Dependency Parsing 4(29)

Introduction

Lecture 3: Outline

◮ Transition systems

◮ Deterministic classifier-based models
◮ Parsing algorithm
◮ Stack-based and list-based transition systems
◮ Classifier-based parsing

◮ Pseudo-projective parsing

Introduction to Data-Driven Dependency Parsing 5(29)

Transitions Systems

Transition Systems

◮ A transition system for dependency parsing is a quadruple
S = (C ,T , cs ,Ct), where

1. C is a set of configurations, each of which contains a buffer β

of (remaining) nodes and a set A of dependency arcs,
2. T is a set of transitions, each of which is a (partial) function

t : C → C ,
3. cs is an initialization function, mapping a sentence

x = w0, w1, . . . , wn to a configuration with β = [1, . . . , n],
4. Ct ⊆ C is a set of terminal configurations.

◮ Note:
◮ A configuration represents a parser state.
◮ A transition represents a parsing action (parser state update).

Introduction to Data-Driven Dependency Parsing 6(29)

Transitions Systems

Transition Sequences

◮ Let S = (C ,T , cs ,Ct) be a transition system.

◮ A transition sequence for a sentence x = w0,w1, . . . ,wn in S
is a sequence C0,m = (c0, c1, . . . , cm) of configurations, such
that

1. c0 = cs(x),
2. cm ∈ Ct ,
3. for every i (1 ≤ i ≤ m), ci = t(ci−1) for some t ∈ T .

◮ The parse assigned to x by C0,m is the dependency graph
Gcm = ({0, 1, . . . , n},Acm), where Acm is the set of
dependency arcs in cm.

Introduction to Data-Driven Dependency Parsing 7(29)

Parsing Algorithm

Deterministic Parsing

◮ An oracle for a transition system S = (C ,T , cs ,Ct) is a
function o : C → T .

◮ Given a transition system S = (C ,T , cs ,Ct) and an oracle o,
deterministic parsing can be achieved by the following simple
algorithm:

Parse(x = (w0,w1, . . . ,wn))
1 c ← cs(x)
2 while c 6∈ Ct

3 c = [o(c)](c)
4 return Gc

◮ NB: Oracles can be approximated by classifiers (cf. lecture 2).

Introduction to Data-Driven Dependency Parsing 8(29)

Stack-Based Transition Systems

Stack-Based Transition Systems

◮ A stack-based configuration for a sentence x = w0,w1, . . . ,wn

is a triple c = (σ, β,A), where

1. σ is a stack of tokens i ≤ m (for some m ≤ n),
2. β is a buffer of tokens j > m,
3. A is a set of dependency arcs such that G = ({0, 1, . . . , n}, A)

is a dependency graph for x .

◮ A stack-based transition system is a quadruple
S = (C ,T , cs ,Ct), where

1. C is the set of all stack-based configurations,
2. cs(x = w0, w1, . . . wn) = ([0], [1, . . . , n], ∅),
3. T is a set of transitions, each of which is a function t : C → C ,
4. Ct = {c ∈ C |c = (σ, [], A)}.

◮ Notation:
◮ σ|i = stack with top i (| left-associative)
◮ i |β = buffer with next token i (| right-associative)

Introduction to Data-Driven Dependency Parsing 9(29)

Stack-Based Transition Systems

Shift-Reduce Dependency Parsing

◮ Transitions:
◮ Left-Arck :

(σ|i , j |β, A) ⇒ (σ, j |β, A∪{(j , i , k)})

◮ Right-Arck :

(σ|i , j |β, A) ⇒ (σ, i |β, A∪{(i , j , k)})

◮ Shift:

(σ, i |β, A) ⇒ (σ|i , β, A)

◮ Preconditions:
◮ Left-Arck :

¬[i = 0]
¬∃i ′∃k ′[(i ′, i , k ′) ∈ A]

◮ Right-Arck :

¬∃i ′∃k ′[(i ′, j , k ′) ∈ A]

Introduction to Data-Driven Dependency Parsing 10(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ [Economic1 news2 had3 little4 effect5 on6 financial7 markets8 .9]β

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1]σ [news2 had3 little4 effect5 on6 financial7 markets8 .9]β

Shift

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ Economic1 [news2 had3 little4 effect5 on6 financial7 markets8 .9]β

nmod

Left-Arcnmod

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2]σ [had3 little4 effect5 on6 financial7 markets8 .9]β

nmod

Shift

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ Economic1 news2 [had3 little4 effect5 on6 financial7 markets8 .9]β

sbjnmod

Left-Arcsbj

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3]σ [little4 effect5 on6 financial7 markets8 .9]β

sbjnmod

Shift

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4]σ [effect5 on6 financial7 markets8 .9]β

sbjnmod

Shift

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3]σ little4 [effect5 on6 financial7 markets8 .9]β

sbjnmod nmod

Left-Arcnmod

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4 effect5]σ [on6 financial7 markets8 .9]β

sbjnmod nmod

Shift

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4 effect5 on6]σ [financial7 markets8 .9]β

sbjnmod nmod

Shift

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4 effect5 on6 financial7]σ [markets8 .9]β

sbjnmod nmod

Shift

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4 effect5 on6]σ financial7 [markets8 .9]β

sbjnmod nmod nmod

Left-Arcnmod

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3 little4 effect5]σ [on6 financial7 markets8 .9]β

sbjnmod nmod

pc

nmod

Right-Arcpc

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0 Economic1 news2 had3]σ little4 [effect5 on6 financial7 markets8 .9]β

sbjnmod nmod nmod

pc

nmod

Right-Arcnmod

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ Economic1 news2 [had3 little4 effect5 on6 financial7 markets8 .9]β

obj

sbjnmod nmod nmod

pc

nmod

Right-Arcobj

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ Economic1 news2 had3 little4 effect5 on6 financial7 markets8 [.9]β

objpred

sbjnmod nmod nmod

pc

nmod

Right-Arcpred

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[]σ [root0]β Economic1 news2 had3 little4 effect5 on6 financial7 markets8 .9

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Right-Arcp

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Example: Shift-Reduce Parsing

[root0]σ []β Economic1 news2 had3 little4 effect5 on6 financial7 markets8 .9

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Shift

Introduction to Data-Driven Dependency Parsing 11(29)

Stack-Based Transition Systems

Theoretical Results

◮ Complexity:
◮ Deterministic shift-reduce parsing has time and space

complexity O(n), where n is the length of the input sentence.

◮ Correctness:
◮ For every transition sequence C0,m, Gcm is a projective

dependency forest (soundness).
◮ For every projective dependency forest G , there is a transition

sequence C0,m such that Gcm = G (completeness).

◮ Note:
◮ A dependency forest is (here) a dependency graph satisfying

Root, Single-Head, and Acyclicity (but not Connectedness).
◮ A dependency forest G = (V , A) can be transformed into a

dependency tree by adding arcs of the form (0, i , k) (for some
lk ∈ L) for every root i ∈ V (i 6= 0).

Introduction to Data-Driven Dependency Parsing 12(29)

Stack-Based Transition Systems

Variations on Shift-Reduce Parsing

◮ Empty stack initialization:
◮ If we can assume that there is only one node i such that

(0, i , k) ∈ A, then we can reduce ambiguity by starting with an
empty stack (and adding the arc (0, i , k) after termination).

◮ Iterative parsing [Yamada and Matsumoto 2003]:
◮ Same transition system (with empty stack initialization)1

◮ Given a terminal configuration:
◮ (σ, [], A) =⇒ ([], σ, A)
◮ Terminate when A has not been modified in the last iteration.

◮ Modified transition systems:
◮ Arc-eager parsing [Nivre 2003]
◮ Non-projective parsing [Attardi 2006]

1NB: Left-Arc ⇒ Right, Right-Arc ⇒ Left

Introduction to Data-Driven Dependency Parsing 13(29)

Stack-Based Transition Systems

Arc-Eager Parsing

◮ Transitions:
◮ Left-Arck :

(σ|i , j |β, A) ⇒ (σ, j |β, A∪{(j , i , k)})
◮ Right-Arck :

(σ|i , j |β, A) ⇒ (σ|i |j , β, A∪{(i , j , k)})
◮ Reduce:

(σ|i , β, A) ⇒ (σ, β, A)
◮ Shift:

(σ, i |β, A) ⇒ (σ|i , β, A)

◮ Preconditions:
◮ Left-Arck :

¬[i = 0]
¬∃i ′∃k ′[(i ′, i , k ′) ∈ A]

◮ Right-Arck :
¬∃i ′∃k ′[(i ′, j , k ′) ∈ A]

◮ Reduce:
∃i ′∃k ′[(i ′, i , k ′) ∈ A]

Introduction to Data-Driven Dependency Parsing 14(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0]σ [Economic1 news2 had3 little4 effect5 on6 financial7 markets8 .9]β

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1]σ [news2 had3 little4 effect5 on6 financial7 markets8 .9]β

Shift

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0]σ Economic1 [news2 had3 little4 effect5 on6 financial7 markets8 .9]β

nmod

Left-Arcnmod

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2]σ [had3 little4 effect5 on6 financial7 markets8 .9]β

nmod

Shift

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0]σ Economic1 news2 [had3 little4 effect5 on6 financial7 markets8 .9]β

sbjnmod

Left-Arcsbj

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3]σ [little4 effect5 on6 financial7 markets8 .9]β

pred

sbjnmod

Right-Arcpred

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4]σ [effect5 on6 financial7 markets8 .9]β

pred

sbjnmod

Shift

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3]σ little4 [effect5 on6 financial7 markets8 .9]β

pred

sbjnmod nmod

Left-Arcnmod

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5]σ [on6 financial7 markets8 .9]β

objpred

sbjnmod nmod

Right-Arcobj

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6]σ [financial7 markets8 .9]β

objpred

sbjnmod nmod nmod

Right-Arcnmod

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6 financial7]σ [markets8 .9]β

objpred

sbjnmod nmod nmod

Shift

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6]σ financial7 [markets8 .9]β

objpred

sbjnmod nmod nmod nmod

Left-Arcnmod

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6 financial7 markets8]σ [.9]β

objpred

sbjnmod nmod nmod

pc

nmod

Right-Arcpc

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6]σ financial7 markets8 [.9]β

objpred

sbjnmod nmod nmod

pc

nmod

Reduce

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5]σ on6 financial7 markets8 [.9]β

objpred

sbjnmod nmod nmod

pc

nmod

Reduce

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3]σ little4 effect5 on6 financial7 markets8 [.9]β

objpred

sbjnmod nmod nmod

pc

nmod

Reduce

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0]σ Economic1 news2 had3 little4 effect5 on6 financial7 markets8 [.9]β

objpred

sbjnmod nmod nmod

pc

nmod

Reduce

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Example: Arc-Eager Parsing

[root0 Economic1 news2 had3 little4 effect5 on6 financial7 markets8 .9]σ []β

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Right-Arcp

Introduction to Data-Driven Dependency Parsing 15(29)

Stack-Based Transition Systems

Non-Projective Parsing

◮ New transitions:
◮ NP-Left-Arck :

(σ|i |i ′, j |β, A) ⇒ (σ|i ′, j |β, A∪{(j , i , k)})

◮ NP-Right-Arck:

(σ|i |i ′, j |β, A) ⇒ (σ|i , i ′|β, A∪{(i , j , k)})

◮ Handles most naturally occurring non-projective dependency
relations (94% in the Prague Dependency Treebank).

(“Only one of them concerns quality.”)

root0 Z1

(Out-of

� �

?

AuxP

nich2

them

� �

?

Atr

je3

is

� �

?

Pred

jen4

only

� �

?

AuxZ

jedna5

one-fem-sg

� �

?

Sb

na6

to

� �

?

AuxP

kvalitu7
quality

?

� �
Adv

.8

.)

� �

?

AuxK

◮ More expressive extensions are possible [Attardi 2006].

Introduction to Data-Driven Dependency Parsing 16(29)

Stack-Based Transition Systems

Comparing Algorithms

◮ Expressivity:
◮ Arc-standard and arc-eager shift-reduce parsing is limited to

projective depedendency graphs.
◮ Simple extensions can handle a subset of non-projective

dependency graphs.

◮ Complexity:
◮ Space complexity is O(n) for all deterministic parsers (even

with simple extensions).
◮ Time complexity is O(n) for single-pass parsers, O(n2) for

iterative parsers.

◮ More complex extensions to handle non-projective dependency
graphs will affect time complexity.

Introduction to Data-Driven Dependency Parsing 17(29)

List-Based Transition Systems

List-Based Transition Systems

◮ A list-based configuration for a sentence x = w0,w1, . . . ,wn is
a quadruple c = (λ1, λ2, β,A), where

1. λ1 is a list of tokens i1 ≤ m1 (for some m1 ≤ n),
2. λ2 is a list of tokens i2 ≤ m2 (for some m2, m1 < m2 ≤ n),
3. β is a buffer of tokens j > m2,
4. A is a set of dependency arcs such that G = ({0, 1, . . . , n), A)

is a dependency graph for x .
◮ A list-based transition system is a quadruple

S = (C ,T , cs ,Ct), where
1. C is the set of all list-based configurations,
2. cs(x = w0, w1, . . . wn) = ([0], [], [1, . . . , n], ∅),
3. T is a set of transitions, each of which is a function t : C → C ,
4. Ct = {c ∈ C |c = (λ1, λ2, [], A)}.

◮ Notation:
◮ λ1|i = list with head i and tail λ1 (| left-associative)
◮ i |λ2 = i and tail λ2 (| right-associative)

Introduction to Data-Driven Dependency Parsing 18(29)

List-Based Transition Systems

Non-Projective Parsing

◮ Transitions:
◮ Left-Arck :

(λ1|i , λ2, j |β, A) ⇒ (λ1, i |λ2, j |β, A∪{(j , i , k)})
◮ Right-Arck :

(λ1|i , λ2, j |β, A) ⇒ (λ1, i |λ2, j |β, A∪{(i , j , k)})
◮ No-Arc:

(λ1|i , λ2, β, A) ⇒ (λ1, i |λ2, β, A)
◮ Shift:

(λ1, λ2, i |β, A) ⇒ (λ1.λ2|i , [], β, A)

◮ Preconditions:
◮ Left-Arc:

¬[i = 0]
¬∃i ′∃k ′[(i ′, k ′, i) ∈ A]
¬[i →∗ j]A

◮ Right-Arc:
¬∃i ′∃k ′[(i ′, k ′, j) ∈ A]
¬[j →∗ i]A

Introduction to Data-Driven Dependency Parsing 19(29)

List-Based Transition Systems

Projective Parsing

◮ Transitions:
◮ Left-Arck :

(λ1|i , λ2, j |β, A) ⇒ (λ1, λ2, j |β, A∪{(j , i , k)})
◮ Right-Arck :

(λ1|i , λ2, j |β, A) ⇒ (λ1|i |j , [], β, A∪{(i , k , j)})
◮ No-Arc:

(λ1|i , λ2, β, A) ⇒ (λ1, i |λ2, β, A)
◮ Shift:

(λ1, λ2, i |β, A) ⇒ (λ1.λ2|i , [], β, A)

◮ Preconditions:
◮ Left-Arc:

¬[i = 0]
¬∃i ′∃k ′[(i ′, k ′, i) ∈ A]

◮ Right-Arc:
¬∃i ′∃k ′[(i ′, k ′, j) ∈ A]

◮ No-Arc:
∃i ′∃k[(i ′, k , i) ∈ A]

Introduction to Data-Driven Dependency Parsing 20(29)

List-Based Transition Systems

Theoretical Results

◮ Complexity:
◮ Deterministic list-based parsing has time complexity O(n2) and

space complexity O(n), where n is the length of the input
sentence.

◮ Correctness:
◮ For every transition sequence C0,m, Gcm is a (projective)

dependency forest (soundness).
◮ For every (projective) dependency forest G , there is a

transition sequence C0,m such that Gcm = G (completeness).

Introduction to Data-Driven Dependency Parsing 21(29)

Classifier-Based Parsing

Classifier-Based Parsing

◮ Data-driven deterministic parsing:
◮ Deterministic parsing requires an oracle.
◮ An oracle can be approximated by a classifier.
◮ A classifier can be trained using treebank data.

◮ Learning problem:
◮ Approximate a function from configurations (represented by

feature vectors) to transitions, given a training set of (gold
standard) transition sequences.

◮ Three issues:
◮ How do we represent configurations by feature vectors?
◮ How do we derive training data from treebanks?
◮ How do we learn classifiers?

Introduction to Data-Driven Dependency Parsing 22(29)

Classifier-Based Parsing

Feature Representations

◮ A feature representation f(c) of a configuration c is a vector
of simple features fi(c).

◮ Typical features are defined in terms of attributes of nodes in
the dependency graph.

◮ Nodes:
◮ Target nodes (top of σ, head of λ1, λ2, β)
◮ Linear context (neighbors in σ, λ1, λ2, or β)
◮ Structural context (parents, children, siblings given A)

◮ Attributes:
◮ Word form (and/or lemma)
◮ Part-of-speech (and morpho-syntactic features)
◮ Dependency type (if labeled)
◮ Distance (between target tokens)

Introduction to Data-Driven Dependency Parsing 23(29)

Classifier-Based Parsing

A Typical Model [Nivre et al. 2006]

hj

[. . . wi wj]σ [wk wk+1 wk+2 wk+3 . . .]β

lj rj lk

FORM + + + +

LEMMA + +

CPOS + +

POS + + + + + +

FEATS + +

DEPREL + + + +

Introduction to Data-Driven Dependency Parsing 24(29)

Classifier-Based Parsing

Training Data

◮ Training instances have the form (f(c), t), where

1. f(c) is a feature representation of a configuration c ,
2. t is the correct transition out of c (i.e., o(c) = t).

◮ Given a dependency treebank, we can sample the oracle
function o as follows:

◮ For each sentence x with (gold standard) dependency graph
Gx , we construct a transition sequence C0,m = (c0, c1, . . . , cm)
such that

1. c0 = cs(x),
2. Gcm = Gx ,

◮ For each configuration ci(i < m), we construct a training
instance (f(ci), ti), where ti (ci) = ci+1.

Introduction to Data-Driven Dependency Parsing 25(29)

Classifier-Based Parsing

Learning Classifiers

◮ Learning methods:
◮ Support vector machines (SVM)

[Kudo and Matsumoto 2002, Yamada and Matsumoto 2003,
Isozaki et al. 2004, Cheng et al. 2004, Nivre et al. 2006]

◮ Polynomial kernel (d ≥ 2)
◮ Different techniques for multiclass classification
◮ Training efficiency problematic for large data sets

◮ Memory-based learning (MBL)
[Nivre et al. 2004, Nivre and Scholz 2004, Attardi 2006]

◮ k-NN classification
◮ Different distance functions
◮ Parsing efficiency problematic for large data sets

◮ Maximum entropy modeling (MaxEnt)
[Cheng et al. 2005, Attardi 2006]

◮ Extremely efficient parsing
◮ Slightly less accurate

Introduction to Data-Driven Dependency Parsing 26(29)

Pseudo-Projective Parsing

Pseudo-Projective Parsing

◮ Technique for non-projective dependency parsing with a
data-driven projective parser [Nivre and Nilsson 2005].

◮ Four steps:

1. Projectivize dependency graphs in training data, encoding
information about transformations in augmented arc labels.

2. Train projective parser (as usual).
3. Parse new sentences using projective parser (as usual).
4. Deprojectivize output dependency graphs by heuristic

transformations guided by augmented arc labels.

Introduction to Data-Driven Dependency Parsing 27(29)

Pseudo-Projective Parsing

Pseudo-Projective Parsing

◮ Projectivize training data:
◮ Projective head nearest permissible ancestor of real head
◮ Arc label extended with dependency type of real head

root Z nich je jen jedna na kvalitu .

(out-of) (them) (is) (only) (one) (to) (quality)

Pred

AuxK

Atr

AuxP

Sb

AuxZ

AuxP

Adv

Introduction to Data-Driven Dependency Parsing 28(29)

Pseudo-Projective Parsing

Pseudo-Projective Parsing

◮ Projectivize training data:
◮ Projective head nearest permissible ancestor of real head
◮ Arc label extended with dependency type of real head

root Z nich je jen jedna na kvalitu .

(out-of) (them) (is) (only) (one) (to) (quality)

Pred

AuxK

Atr

AuxP

Sb

AuxZ

AuxP

AuxP↑Sb

Adv

Introduction to Data-Driven Dependency Parsing 28(29)

Pseudo-Projective Parsing

Pseudo-Projective Parsing

◮ Deprojectivize parser output:
◮ Top-down, breadth-first search for real head
◮ Search constrained by extended arc label

root Z nich je jen jedna na kvalitu .

(out-of) (them) (is) (only) (one) (to) (quality)

Pred

AuxK

Atr

AuxP

Sb

AuxZ

AuxP↑Sb

Adv

Introduction to Data-Driven Dependency Parsing 28(29)

Pseudo-Projective Parsing

Pseudo-Projective Parsing

◮ Deprojectivize parser output:
◮ Top-down, breadth-first search for real head
◮ Search constrained by extended arc label

root Z nich je jen jedna na kvalitu .

(out-of) (them) (is) (only) (one) (to) (quality)

Pred

AuxK

Atr

AuxP

Sb

AuxZ

AuxP

AuxP↑Sb

Adv

Introduction to Data-Driven Dependency Parsing 28(29)

Summary

Summary – Transition-based Methods

◮ Transition systems

◮ Deterministic classifier-based parsing
◮ Parsing algorithm
◮ Stack-based and list-based transitions systems
◮ Classifier-based parsing

◮ Pseudo-projective parsing

Introduction to Data-Driven Dependency Parsing 29(29)

References and Further Reading

References and Further Reading

◮ Giuseppe Attardi. 2006.
Experiments with a multilanguage non-projective dependency parser. In
Proceedings of the 10th Conference on Computational Natural Language Learning
(CoNLL), pages 166–170.

◮ Yuchang Cheng, Masayuki Asahara, and Yuji Matsumoto. 2004.
Deterministic dependency structure analyzer for Chinese. In Proceedings of the
First International Joint Conference on Natural Language Processing (IJCNLP),
pages 500–508.

◮ Yuchang Cheng, Masayuki Asahara, and Yuji Matsumoto. 2005.
Machine learning-based dependency analyzer for Chinese. In Proceedings of
International Conference on Chinese Computing (ICCC), pages 66–73.

◮ Hideki Isozaki, Hideto Kazawa, and Tsutomu Hirao. 2004.
A deterministic word dependency analyzer enhanced with preference learning. In
Proceedings of the 20th International Conference on Computational Linguistics
(COLING), pages 275–281.

◮ Taku Kudo and Yuji Matsumoto. 2002.
Japanese dependency analysis using cascaded chunking. In Proceedings of the
Sixth Workshop on Computational Language Learning (CoNLL), pages 63–69.

◮ Joakim Nivre and Jens Nilsson. 2005.

Introduction to Data-Driven Dependency Parsing 29(29)

References and Further Reading

Pseudo-projective dependency parsing. In Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics (ACL), pages 99–106.

◮ Joakim Nivre and Mario Scholz. 2004.
Deterministic dependency parsing of English text. In Proceedings of the 20th
International Conference on Computational Linguistics (COLING), pages 64–70.

◮ Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Hwee Tou Ng and Ellen Riloff, editors,
Proceedings of the 8th Conference on Computational Natural Language Learning
(CoNLL), pages 49–56.

◮ Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen Eryiugit, and Svetoslav Marinov.
2006.
Labeled pseudo-projective dependency parsing with support vector machines. In
Proceedings of the Tenth Conference on Computational Natural Language
Learning (CoNLL), pages 221–225.

◮ Joakim Nivre. 2003.
An efficient algorithm for projective dependency parsing. In Gertjan Van Noord,
editor, Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT), pages 149–160.

◮ Hiroyasu Yamada and Yuji Matsumoto. 2003.

Introduction to Data-Driven Dependency Parsing 29(29)

References and Further Reading

Statistical dependency analysis with support vector machines. In Gertjan
Van Noord, editor, Proceedings of the 8th International Workshop on Parsing
Technologies (IWPT), pages 195–206.

Introduction to Data-Driven Dependency Parsing 29(29)

	Introduction
	Transitions Systems
	Parsing Algorithm
	Stack-Based Transition Systems
	List-Based Transition Systems
	Classifier-Based Parsing
	Pseudo-Projective Parsing
	Summary
	References and Further Reading

