
Dependency Parsing

Synthesis Lectures on
Human Language

Technologies

Editor
Graeme Hirst, University of Toronto

Synthesis Lectures on Human LanguageTechnologies publishes monographs on topics relating to natural
language processing, computational linguistics, information retrieval, and spoken language understanding.
Emphasis is placed on important new techniques, on new applications, and on topics that combine two
or more HLT subfields.

Dependency Parsing
Sandra Kübler, Ryan McDonald, and Joakim Nivre
2009

Statistical Language Models for Information Retrieval
ChengXiang Zhai
2009

Copyright © 2009 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Dependency Parsing

Sandra Kübler, Ryan McDonald, and Joakim Nivre

www.morganclaypool.com

ISBN: 9781598295962 paperback
ISBN: 9781598295979 ebook

DOI 10.2200/S00169ED1V01Y200901HLT002

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON HUMAN LANGUAGE TECHNOLOGIES

Lecture #2
Series Editor: Graeme Hirst, University of Toronto

Series ISSN
Synthesis Lectures on Human Language Technologies
ISSN pending.

Dependency Parsing

Sandra Kübler
Department of Linguistics, Indiana University

Ryan McDonald
Google Research

Joakim Nivre
Department of Linguistics and Philology, Uppsala University
School of Mathematics and System Engineering, Växjö University

SYNTHESIS LECTURES ON HUMAN LANGUAGE TECHNOLOGIES #2

CM& cLaypoolMorgan publishers&

ABSTRACT
Dependency-based methods for syntactic parsing have become increasingly popular in natural lan-
guage processing in recent years. This book gives a thorough introduction to the methods that are
most widely used today. After an introduction to dependency grammar and dependency parsing,
followed by a formal characterization of the dependency parsing problem, the book surveys the
three major classes of parsing models that are in current use: transition-based, graph-based, and
grammar-based models. It continues with a chapter on evaluation and one on the comparison of dif-
ferent methods, and it closes with a few words on current trends and future prospects of dependency
parsing. The book presupposes a knowledge of basic concepts in linguistics and computer science,
as well as some knowledge of parsing methods for constituency-based representations.

KEYWORDS
parsing, syntax, dependency parsing, dependency grammar

vii

Contents
SYNTHESIS LECTURES ON HUMAN LANGUAGE TECHNOLOGIES iii

Contents . vii

Preface . xi

1 Introduction .1

1.1 Dependency Grammar . 1

1.2 Dependency Parsing . 6

1.3 Summary and Further Reading . 9

2 Dependency Parsing . 11

2.1 Dependency Graphs and Trees .11

2.1.1 Properties of Dependency Trees 13

2.1.2 Projective Dependency Trees 16

2.2 Formal Definition of Dependency Parsing . 18

2.3 Summary and Further Reading . 19

3 Transition-Based Parsing . 21

3.1 Transition Systems .21

3.2 Parsing Algorithm . 25

3.3 Classifier-Based Parsing . 27

3.3.1 Feature Representations 28

3.3.2 Training Data 31

3.3.3 Classifiers 33

3.4 Varieties of Transition-Based Parsing . 34

3.4.1 Changing the Transition System 34

3.4.2 Changing the Parsing Algorithm 36

viii CONTENTS

3.5 Pseudo-Projective Parsing . 37

3.6 Summary and Further Reading . 38

4 Graph-Based Parsing . 41

4.1 Arc-Factored Models . 42

4.2 Arc-Factored Parsing Algorithms . 43

4.2.1 Reducing Labeled to Unlabeled Parsing 45

4.2.2 Non-Projective Parsing Algorithms 46

4.2.3 Projective Parsing Algorithms 49

4.3 Learning Arc-Factored Models . 54

4.3.1 Parameter and Feature Representations 54

4.3.2 Training Data 55

4.3.3 Learning the Parameters 56

4.4 Beyond Arc-Factored Models .56

4.5 Summary and Further Reading . 61

5 Grammar-Based Parsing . 63

5.1 Context-Free Dependency Grammar . 64

5.1.1 Parsing with Bilexical Grammars 65

5.2 Constraint Dependency Grammar . 69

5.2.1 Weighted Constraint Dependency Grammar 71

5.2.2 Transformation-Based Constraint Dependency Parsing 72

5.3 Summary and Further Reading . 75

6 Evaluation . 79

6.1 Evaluation Metrics . 79

6.2 Dependencies for Cross-Framework Parser Evaluation . 80

Converting Constituent Treebanks into Dependency Formats 81

The CoNLL Shared Tasks on Dependency Parsing . 82

6.5 Summary and Further Reading . 86

CONTENTS ix

7 Comparison . 87

7.1 Comparing Transition-Based and Graph-Based Models . 87

7.2 Comparing Grammar-Based and Data-Driven Models .90

7.3 Summary and Further Reading . 93

8 Final Thoughts . 95

A Resources . 97

A.1 Parsers . 97

A.2 Treebanks .98

A.3 Dependency Parsing Wiki . 99

Bibliography . 101

Author Biographies . 115

Preface
Dependency-based methods for syntactic parsing have become increasingly popular in natural lan-
guage processing in recent years. One of the reasons for their success is that they have been shown
to work reliably for a wide range of typologically different languages. The increased interest in
dependency-based parsing has led to investigations into a range of different parsing algorithms.

The aim of this book is to give readers new to this field an introduction to the parsing
algorithms used in dependency parsing.The aim is not to propose new methods or new findings nor
to promote a single algorithm but rather to give an overview of existing algorithms and a comparison
of their major similarities and differences. Additionally, we will touch upon matters of evaluation
and data representation.

This book is aimed at graduate students and researchers in computer science, linguistics,
and computational linguistics. It expects familiarity with basic concepts in linguistics and computer
science, as well as some knowledge of parsing methods for constituency-based representations.Thus,
we expect the reader to be familiar with basic chart parsing algorithms such as the Cocke-Kasami-
Younger algorithm or Earley’s algorithm. Additionally, we expect the reader to be familiar with the
basic concepts of probability theory.

It is helpful, but not necessary, for the reader to be familiar with concepts from machine learn-
ing. The book concentrates on supervised approaches to dependency parsing, which rely on a range
of different learning approaches: memory-based learning, support vector machines, and perceptron
learning, to name just a few. However, these approaches are not central to the understanding of the
dependency parsing algorithms.

The book is partly based on material from two courses: The ACL/COLING 2006 tutorial on
Dependency Parsing, presented by Sandra and Joakim, and the ESSLLI 2007 introductory course In-
troduction to Data-Driven Dependency Parsing, given by Ryan and Joakim. Other material is derived
from earlier publications, and we are grateful to the Association for Computational Linguistics for
giving us permission to reuse material previously published in various conference proceedings. We
also want to thank our co-authors in those publications: Atanas Chanev, Koby Crammer, Gülşen
Eryiğit, Jan Hajič, Johan Hall, Kevin Lerman, Svetoslav Marinov, Erwin Marsi, Jens Nilsson, Fer-
nando Pereira, Kiril Ribarov, Sebastian Riedel, Giorgio Satta, Mario Scholz, and Deniz Yuret. In
addition, we have drawn on our experience from teaching dependency parsing in courses on com-
putational linguistics and parsing, and we are grateful to all the students who attended these classes,
and whose questions and comments helped shape the material presented here.

We owe a special debt to the organizers of the 2006 CoNLL Shared Task, Sabine Buchholz,
Amit Dubey, Yuwal Krymolowski, and Erwin Marsi, who set the stage for many of the recent
developments in dependency parsing by creating a common platform for research and evaluation.

xii PREFACE

Finally, we want to thank Gerald Penn, Marco Kuhlmann, and Liu Haitao, who read the first
complete draft of the book and suggested numerous improvements. All remaining errors, however,
are our own responsibility. We hope you enjoy the book.

Sandra Kübler, Ryan McDonald, and Joakim Nivre
Bloomington, New York City, and Uppsala
December 2008

1

C H A P T E R 1

Introduction
Dependency parsing is an approach to automatic syntactic analysis of natural language inspired by
the theoretical linguistic tradition of dependency grammar. After playing a rather marginal role in
natural language processing for many years, dependency parsing has recently attracted considerable
interest from researchers and developers in the field. One reason for the increasing popularity is
the fact that dependency-based syntactic representations seem to be useful in many applications of
language technology, such as machine translation and information extraction, thanks to their trans-
parent encoding of predicate-argument structure. Another reason is the perception that dependency
grammar is better suited than phrase structure grammar for languages with free or flexible word
order, making it possible to analyze typologically diverse languages within a common framework.
But perhaps the most important reason is that this approach has led to the development of accurate
syntactic parsers for a number of languages, particularly in combination with machine learning from
syntactically annotated corpora, or treebanks. It is the parsing methods used by these systems that
constitute the topic of this book.

It is important to note from the outset that this is a book about dependency parsing, not
about dependency grammar, and that we will in fact have very little to say about the way in which
dependency grammar can be used to analyze the syntax of a given natural language. We will simply
assume that such an analysis exists and that we want to build a parser that can implement it to
automatically analyze new sentences. In this introductory chapter, however, we will start by giving a
brief introduction to dependency grammar, focusing on basic notions rather than details of linguistic
analysis. With this background, we will then define the task of dependency parsing and introduce
the most important methods that are used in the field, methods that will be covered in depth in
later chapters. We conclude, as in every chapter, with a summary and some suggestions for further
reading.

1.1 DEPENDENCY GRAMMAR

Dependency grammar is rooted in a long tradition, possibly going back all the way to Pān. ini’s
grammar of Sanskrit several centuries before the Common Era, and has largely developed as a
form for syntactic representation used by traditional grammarians, in particular in Europe, and
especially for Classical and Slavic languages. The starting point of the modern theoretical tradition
of dependency grammar is usually taken to be the work of the French linguist Lucien Tesnière,
published posthumously in the late 1950s. Since then, a number of different dependency grammar
frameworks have been proposed, of which the most well-known are probably the Prague School’s
Functional Generative Description, Mel’čuk’s Meaning-Text Theory, and Hudson’s Word Grammar.

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Dependency structure for an English sentence.

The basic assumption underlying all varieties of dependency grammar is the idea that syntactic
structure essentially consists of words linked by binary, asymmetrical relations called dependency
relations (or dependencies for short). A dependency relation holds between a syntactically subordinate
word, called the dependent, and another word on which it depends, called the head.1 This is illustrated
in figure 1.1, which shows a dependency structure for a simple English sentence, where dependency
relations are represented by arrows pointing from the head to the dependent.2 Moreover, each arrow
has a label, indicating the dependency type. For example, the noun news is a dependent of the verb
had with the dependency type subject (SBJ). By contrast, the noun effect is a dependent of type object
(OBJ) with the same head verb had. Note also that the noun news is itself a syntactic head in relation
to the word Economic, which stands in the attribute (ATT) relation to its head noun.

One peculiarity of the dependency structure in figure 1.1 is that we have inserted an artificial
word root before the first word of the sentence. This is a mere technicality, which simplifies both
formal definitions and computational implementations. In particular, we can normally assume that
every real word of the sentence should have a syntactic head. Thus, instead of saying that the verb
had lacks a syntactic head, we can say that it is a dependent of the artificial word root. In chapter 2,
we will define dependency structures formally as labeled directed graphs, where nodes correspond to
words (including root) and labeled arcs correspond to typed dependency relations.

The information encoded in a dependency structure representation is different from the infor-
mation captured in a phrase structure representation, which is the most widely used type of syntactic
representation in both theoretical and computational linguistics. This can be seen by comparing the
dependency structure in figure 1.1 to a typical phrase structure representation for the same sentence,
shown in figure 1.2. While the dependency structure represents head-dependent relations between
words, classified by functional categories such as subject (SBJ) and object (OBJ), the phrase structure
represents the grouping of words into phrases, classified by structural categories such as noun phrase
(NP) and verb phrase (VP).

1Other terms that are found in the literature are modifier or child, instead of dependent, and governor, regent or parent, instead of
head. Note that, although we will not use the noun modifier, we will use the verb modify when convenient and say that a dependent
modifies its head.

2This is the notational convention that we will adopt throughout the book, but the reader should be warned that there is a competing
tradition in the literature on dependency grammar according to which arrows point from the dependent to the head.

1.1. DEPENDENCY GRAMMAR 3

Figure 1.2: Phrase structure for an English sentence.

However, it is important to bear in mind that these differences only concern what is explicitly
encoded in the respective representations. For example, phrases can be distinguished in a dependency
structure by letting each head word represent a phrase consisting of the word itself and all the words
that are dependent on it (possibly in several steps). Conversely, functional relations like subject and
object can be identified in a phrase structure in terms of structural configurations (e.g., “NP under
S” and “NP under VP”). Nevertheless, practical experience has shown that it is a non-trivial task
to perform an automatic conversion from one type of representation to the other (cf. section 6.3).
It is also worth noting that many syntactic theories make use of hybrid representations, combining
elements of dependency structure with elements of phrase structure. Hence, to describe dependency
grammar and phrase structure grammar as two opposite and mutually exclusive approaches to natural
language syntax is at best an over-simplification.

If we assume that dependency structure captures an essential element of natural language
syntax, then we need some criteria for establishing dependency relations, and for distinguishing
the head and the dependent in these relations. Such criteria have been discussed not only in the
dependency grammar tradition, but also within other frameworks where the notion of syntactic head
plays an important role, including many theories based on phrase structure. Here is a list of some
of the more common criteria that have been proposed for identifying a syntactic relation between a
head H and a dependent D in a linguistic construction C:3

1. H determines the syntactic category of C and can often replace C.

2. H determines the semantic category of C;D gives semantic specification.

3. H is obligatory;D may be optional.

3The term construction is used here in a non-technical sense to refer to any structural complex of linguistic expressions.

4 CHAPTER 1. INTRODUCTION

4. H selects D and determines whether D is obligatory or optional.

5. The form of D depends on H (agreement or government).

6. The linear position of D is specified with reference to H .

It is clear that this list contains a mix of different criteria, some syntactic and some semantic, and one
may ask whether there is a single coherent notion of dependency corresponding to all the different
criteria. Some theorists therefore posit the existence of several layers of dependency structure, such
as morphology, syntax and semantics, or surface syntax and deep syntax. Others have pointed out
the need to have different criteria for different kinds of syntactic constructions, in particular for
endocentric and exocentric constructions.

In figure 1.1, the attribute relation (ATT) holding between the noun markets and the adjective
financial is an endocentric construction, where the head can replace the whole without disrupting
the syntactic structure:

Economic news had little effect on [financial] markets.

Endocentric constructions may satisfy all of the criteria listed above, although number 4 is usually
considered less relevant, since dependents in endocentric constructions are taken to be optional and
not selected by their heads.By contrast, the prepositional complement relation (PC) holding between
the preposition on and the noun markets is an exocentric construction, where the head cannot readily
replace the whole:

Economic news had little effect on [markets].

Exocentric constructions, by their definition, fail on criterion number 1, at least with respect to sub-
stitutability of the head for the whole, but may satisfy the remaining criteria. Considering the rest
of the relations exemplified in figure 1.1, the subject and object relations (SBJ, OBJ) are clearly exo-
centric, and the attribute relation from the noun news to the adjective Economic clearly endocentric,
while the remaining attribute relations (effect→ little, effect→ on) have a less clear status.

The distinction between endocentric and exocentric constructions is also related to the dis-
tinction between head-complement and head-modifier (or head-adjunct) relations found in many con-
temporary syntactic theories, since head-complement relations are exocentric while head-modifier
relations are endocentric. The distinction between complements and modifiers is often defined in
terms of valency, which is a central notion in the theoretical tradition of dependency grammar.
Although the exact characterization of this notion differs from one theoretical framework to the
other, valency is usually related to the semantic predicate-argument structure associated with certain
classes of lexemes, in particular verbs but sometimes also nouns and adjectives. The idea is that the
verb imposes requirements on its syntactic dependents that reflect its interpretation as a semantic
predicate. Dependents that correspond to arguments of the predicate can be obligatory or optional
in surface syntax but can only occur once with each predicate. By contrast, dependents that do not
correspond to arguments can have more than one occurrence with a single predicate and tend to be

1.1. DEPENDENCY GRAMMAR 5

Figure 1.3: Two analyses of coordination in dependency grammar.

optional. The valency frame of the verb is normally taken to include argument dependents, but some
theories also allow obligatory non-arguments to be included. Returning to figure 1.1, the subject
and the object would normally be treated as valency-bound dependents of the verb had, while the
adjectival modifiers of the nouns news and markets would be considered valency-free. The preposi-
tional modification of the noun effect may or may not be treated as valency-bound, depending on
whether the entity undergoing the effect is supposed to be an argument of the noun effect or not.
Another term that is sometimes used in connection with valency constraints is arity, which primarily
refers to the number of arguments that a predicate takes (without distinguishing the types of these
arguments).

While most head-complement and head-modifier structures have a straightforward analysis
in dependency grammar, there are also constructions that have a more unclear status. This group
includes constructions that involve grammatical function words, such as articles, complementizers
and auxiliary verbs, but also structures involving prepositional phrases. For these constructions, there
is no general consensus in the tradition of dependency grammar as to whether they should be analyzed
as dependency relations at all and, if so, what should be regarded as the head and what should be
regarded as the dependent. For example, some theories regard auxiliary verbs as heads taking lexical
verbs as dependents; other theories make the opposite assumption; and yet other theories assume
that verb chains are connected by relations that are not dependencies in the usual sense.

Another kind of construction that is problematic for dependency grammar (as for most the-
oretical traditions) is coordination. According to the structuralist tradition, coordination is an en-
docentric construction, since it contains not only one but several heads that can replace the whole
construction syntactically. However, this raises the question of whether coordination can be analyzed
in terms of binary relations holding between a head and a dependent. Consider the following simple
examples:

They operate ships and banks.
She bought and ate an apple.

In the first example, it seems clear that the phrase ships and banks functions as a direct object of the
verb operate, but it is not immediately clear how this phrase can be given an internal analysis that is
compatible with the basic assumptions of dependency grammar, since the two nouns ships and banks
seem to be equally good candidates for being heads. Similarly, in the second example, the noun apple

6 CHAPTER 1. INTRODUCTION

is the object of the coordinated verb group bought and ate, where in some sense both verbs function
as the head of the noun. The most popular treatments of coordination in dependency grammar are
illustrated for the first example in figure 1.3, where the analysis to the left treats the conjunction as
the head, an analysis that may be motivated on semantic grounds, while the analysis on the right
treats the conjunction as the head only of the second conjunct and analyzes the conjunction as a
dependent of the first conjunct. The arguments for the latter analysis are essentially the same as the
arguments for an asymmetric right-branching analysis in phrase structure grammar.

To sum up, the theoretical tradition of dependency grammar is united by the assumption that
syntactic structure essentially consists of dependency relations between words. Moreover, there is
a core of syntactic constructions for which the analysis given by different frameworks agree in all
important respects, notably predicate-argument and head-modifier constructions. However, there
are also constructions for which there is no clear consensus, such as verb groups and coordination.
Finally, it is worth pointing out that the inventory of dependency types used to classify dependency
relations vary from one framework to the other. Besides traditional grammatical functions (such
as predicate, subject, and object), semantic roles (such as agent, patient, and goal) are commonly
used, especially in representations of deep syntax and semantics. Another dimension of variation
is the number of representational levels, or strata, assumed in different theories. Although we will
concentrate in this book on mono-stratal representations, using a single dependency structure for
syntactic analysis, many theoretical frameworks make use of multi-stratal representations, often with
different levels for syntax and semantics.

1.2 DEPENDENCY PARSING

Having introduced the basic notions of dependency grammar, we will now turn to the problem
of dependency parsing, that is, the task of automatically analyzing the dependency structure of a
given input sentence. Throughout this book we will consider a number of different methods for
solving this problem, some based on inductive machine learning from large sets of syntactically
annotated sentences, others based on formal grammars defining permissible dependency structures.
Common to all of these methods is that they do not make any specific assumptions about the kind
of dependency types used, be they grammatical functions or semantic roles, nor about the specific
analysis of different linguistic constructions, such as verb groups or coordination.

All that is assumed is that the task of the parser is to produce a labeled dependency structure
of the kind depicted in figure 1.1, where the words of the sentence (including the artificial word
root) are connected by typed dependency relations. This will be made more precise in chapter 2,
where we define dependency structures as labeled directed graphs – called dependency graphs – and
discuss a number of formal properties of these structures. But for the time being we can define the
parsing problem as that of mapping an input sentence S, consisting of words w0w1 . . . wn (where
w0 = root), to its dependency graph G. In the remainder of this chapter, we will give an overview
of the different approaches to this problem that are covered in the book.

1.2. DEPENDENCY PARSING 7

Broadly speaking, these approaches can be divided into two classes, which we will call data-
driven and grammar-based, respectively. An approach is data-driven if it makes essential use of
machine learning from linguistic data in order to parse new sentences. An approach is grammar-based
if it relies on a formal grammar, defining a formal language, so that it makes sense to ask whether a
given input sentence is in the language defined by the grammar or not. It is important to note that
these categorizations are orthogonal, since it is possible for a parsing method to make essential use
of machine learning and use a formal grammar, hence to be both data-driven and grammar-based.
However, most of the methods that we cover fall into one of these classes only.

The major part of the book, chapters 3–4 to be exact, is devoted to data-driven methods for
dependency parsing, which have attracted the most attention in recent years. We focus on supervised
methods, that is, methods presupposing that the sentences used as input to machine learning have
been annotated with their correct dependency structures. In supervised dependency parsing, there
are two different problems that need to be solved computationally. The first is the learning problem,
which is the task of learning a parsing model from a representative sample of sentences and their
dependency structures. The second is the parsing problem, which is the task of applying the learned
model to the analysis of a new sentence.4 We can represent this as follows:

• Learning: Given a training set D of sentences (annotated with dependency graphs), induce a
parsing model M that can be used to parse new sentences.

• Parsing: Given a parsing modelM and a sentence S, derive the optimal dependency graphG
for S according to M .

Data-driven approaches differ in the type of parsing model adopted, the algorithms used to learn
the model from data, and the algorithms used to parse new sentences with the model. In this book,
we focus on two classes of data-driven methods, which we call transition-based and graph-based,
respectively. These classes contain most of the methods for data-driven dependency parsing that
have been proposed in recent years.

Transition-based methods start by defining a transition system, or state machine, for mapping
a sentence to its dependency graph. The learning problem is to induce a model for predicting the
next state transition, given the transition history, and the parsing problem is to construct the optimal
transition sequence for the input sentence, given the induced model.This is sometimes referred to as
shift-reduce dependency parsing, since the overall approach is inspired by deterministic shift-reduce
parsing for context-free grammars. Transition-based approaches are treated in chapter 3.

Graph-based methods instead define a space of candidate dependency graphs for a sentence.
The learning problem is to induce a model for assigning scores to the candidate dependency graphs
for a sentence, and the parsing problem is to find the highest-scoring dependency graph for the input
sentence, given the induced model. This is often called maximum spanning tree parsing, since the
problem of finding the highest-scoring dependency graph is equivalent, under certain assumptions,

4The parsing problem is sometimes referred to as the inference problem or decoding problem, which are the general terms used in
machine learning for the application of a learned model to new data.

8 CHAPTER 1. INTRODUCTION

to the problem of finding a maximum spanning tree in a dense graph. Graph-based approaches are
treated in chapter 4.

Most data-driven approaches,whether transition-based or graph-based, assume that any input
string is a valid sentence and that the task of the parser is to return the most plausible dependency
structure for the input, no matter how unlikely it may be. Grammar-based approaches, by contrast,
make use of a formal grammar that only accepts a subset of all possible input strings. Given our
previous characterization of the parsing problem, we may say that this formal grammar is an essential
component of the modelM used to parse new sentences. However, the grammar itself may be hand-
crafted or learned from linguistic data, which means that a grammar-based model may or may not
be data-driven as well. In chapter 5, we discuss selected grammar-based methods for dependency
parsing, dividing them into two classes, which we call context-free and constraint-based, respectively.

Context-free dependency parsing exploits a mapping from dependency structures to context-
free phrase structure representations and reuses parsing algorithms originally developed for context-
free grammar.This includes chart parsing algorithms, which are also used in graph-based parsing, as
well as shift-reduce type algorithms,which are closely related to the methods used in transition-based
parsing.

Constraint-based dependency parsing views parsing as a constraint satisfaction problem. A
grammar is defined as a set of constraints on well-formed dependency graphs, and the parsing
problem amounts to finding a dependency graph for a sentence that satisfies all the constraints of
the grammar. Some approaches allow soft, weighted constraints and score dependency graphs by a
combination of the weights of constraints violated by that graph. Parsing then becomes the problem
of finding the dependency graph for a sentence that has the best score, which is essentially the same
formulation as in graph-based parsing.

We can sum up our coverage of dependency parsing methods as follows:

• Data-driven dependency parsing

– Transition-based dependency parsing (chapter 3)

– Graph-based dependency parsing (chapter 4)

• Grammar-based parsing (chapter 5)

– Context-free dependency parsing

– Constraint-based dependency parsing

In chapter 6, we discuss issues concerning evaluation, both the evaluation of dependency parsers and
the use of dependencies as a basis for cross-framework evaluation, and in chapter 7, we compare the
approaches treated in earlier chapters, pointing out similarities and differences between methods, as
well as complementary strengths and weaknesses. We conclude the book with some reflections on
current trends and future prospects of dependency parsing in chapter 8.

1.3. SUMMARY AND FURTHER READING 9

1.3 SUMMARY AND FURTHER READING

In this chapter, we have introduced the basic notions of dependency grammar, compared dependency
structure to phrase structure, and discussed criteria for identifying dependency relations and syntactic
heads.There are several textbooks that give a general introduction to dependency grammar but most
of them in other languages than English, for example,Tarvainen (1982) and Weber (1997) in German
and Nikula (1986) in Swedish. For a basic introduction in English we refer to the opening chapter
of Mel’čuk (1988). Open issues in dependency grammar, and their treatment in different theories,
are discussed in chapter 3 of Nivre (2006b).

Tesnière’s seminal work was published posthumously as Tesnière (1959). (The French
text has been translated into German and Russian but not into English.) Other influen-
tial theories in the dependency grammar tradition include Functional Generative Descrip-
tion (Sgall et al., 1986); Meaning-Text Theory (Mel’čuk, 1988; Milicevic, 2006); Word Gram-
mar (Hudson, 1984, 1990, 2007); Dependency Unification Grammar (Hellwig, 1986, 2003); and
Lexicase (Starosta, 1988). Constraint-based theories of dependency grammar have a strong tradi-
tion, represented by Constraint Dependency Grammar, originally proposed by Maruyama (1990)
and further developed by Harper and Helzerman (1995) and Menzel and Schröder (1998) into
Weighted Constraint Dependency Grammar (Schröder, 2002); Functional Dependency Gram-
mar (Tapanainen and Järvinen, 1997; Järvinen and Tapanainen, 1998), largely developed from Con-
straint Grammar (Karlsson, 1990; Karlsson et al., 1995); and finally Topological Dependency
Grammar (Duchier and Debusmann, 2001), later evolved into Extensible Dependency Gram-
mar (Debusmann et al., 2004).

In the second half of the chapter, we have given an informal introduction to dependency
parsing and presented an overview of the most important approaches in this field, both data-driven
and grammar-based. A more thorough discussion of different approaches can be found in chapter
3 of Nivre (2006b). Grammar-based dependency parsing originates with the work on context-
free dependency parsing by Gaifman and Hays in the 1960s (Hays, 1964; Gaifman, 1965), and the
constraint-based approach was first proposed by Maruyama (1990).Data-driven dependency parsing
was pioneered by Eisner (1996b),using graph-based methods, and the transition-based approach was
first explored by Matsumoto and colleagues (Kudo and Matsumoto, 2002; Yamada and Matsumoto,
2003). The terms graph-based and transition-based to characterize the two classes of data-driven
methods were first used by McDonald and Nivre (2007), but essentially the same distinction was
proposed earlier by Buchholz and Marsi (2006), using the terms all pairs and stepwise.

Although we concentrate in this book on supervised methods for data-driven parsing, there is
also a considerable body of work on unsupervised parsing, which does not require annotated training
data, although the results are so far vastly inferior to supervised approaches in terms of parsing
accuracy. The interested reader is referred to Yuret (1998), Klein (2005), and Smith (2006).

Dependency parsing has recently been used in a number of different applications of natural lan-
guage processing. Relevant examples include language modeling (Chelba et al., 1997), information
extraction (Culotta and Sorensen, 2004), machine translation (Ding and Palmer, 2004; Quirk et al.,

10 CHAPTER 1. INTRODUCTION

2005), textual entailment (Haghighi et al., 2005), lexical ontology induction (Snow et al., 2005), and
question answering (Wang et al., 2007).

11

C H A P T E R 2

Dependency Parsing
In this chapter we formally introduce dependency graphs and dependency parsing, as well as the
primary notation used throughout the rest of the book.

2.1 DEPENDENCY GRAPHS AND TREES
As mentioned in the previous chapter, dependency graphs are syntactic structures over sentences.

Definition 2.1. A sentence is a sequence of tokens denoted by:

S = w0w1 . . . wn

We assume that the tokenization of a sentence is fixed and known at parsing time. That is to say
that dependency parsers will always operate on a pre-tokenized input and are not responsible for
producing the correct tokenization of an arbitrary string. Furthermore, w0 = root is an artificial
root token inserted at the beginning of the sentence and does not modify any other token in the
sentence. Each tokenwi typically represents a word and we will use word and token interchangeably.
However, the precise definition of wi is often language dependent and a token can be a morpheme
or a punctuation marker. In particular, it is not uncommon in highly inflected languages to tokenize
a sentence aggressively so that wi can be either a lemma or the affix of a word.

For simplicity we assume that a sentence is a sequence of unique tokens/words. Consider the
sentence:

Mary saw John and Fred saw Susan.

This sentence contains two different instances of the word saw and we assume each to be distinct
from the other. It is straight-forward to ensure this by simply storing an index referencing the position
of every word in the sequence. We assume such indices exist, even though we do not explicitly mark
their presence.

Definition 2.2. Let R = {r1, . . . , rm} be a finite set of possible dependency relation types that can
hold between any two words in a sentence. A relation type r ∈ R is additionally called an arc label.

For example, the dependency relation between the words had and effect in figure 1.1 is labeled with
the type r = OBJ. As stated earlier, we make no specific assumptions about the nature of R except
that it contains a fixed inventory of dependency types.

12 CHAPTER 2. DEPENDENCY PARSING

With these two definitions in hand, we can now define dependency graphs.

Definition 2.3. A dependency graphG = (V ,A) is a labeled directed graph (digraph) in the standard
graph-theoretic sense and consists of nodes,V , and arcs,A, such that for sentence S = w0w1 . . . wn

and label set R the following holds:

1. V ⊆ {w0, w1, . . . , wn}
2. A ⊆ V × R × V
3. if (wi, r, wj) ∈ A then (wi, r ′, wj) /∈ A for all r ′ �= r

The arc set A represents the labeled dependency relations of the particular analysis G. Specifically,
an arc (wi, r, wj) ∈ A represents a dependency relation from headwi to dependentwj labeled with
relation type r . A dependency graph G is thus a set of labeled dependency relations between the
words of S.

Nodes in the graph correspond directly to words in the sentence and we will use the terms
node and word interchangeably. A standard node set is the spanning node set that contains all the
words of the sentence, which we sometimes denote by VS = {w0, w1, . . . , wn}.

Without the third restriction, dependency graphs would be multi-digraphs as they would allow
more than one possible arc between each pair of nodes, i.e., one arc per label in R. This definition
of dependency graphs is specific to mono-stratal theories of syntactic dependencies, where the
entire dependency analysis is relative to a single graph over the words of the sentence. In contrast,
multi-stratal theories like Functional Generative Description, Meaning-Text Theory or Topological
Dependency Grammar assume that the true dependency analysis consists of multiple dependency
graphs, each typically representing one layer of the analysis such as the morphological, syntactic, or
semantic dependency analysis.

To illustrate this definition, consider the dependency graph in figure 1.1, which is represented
by:

1. G = (V ,A)
2. V = VS = {root, Economic, news, had, little, effect, on, financial, markets, .}

3. A = {(root, PRED, had), (had, SBJ, news), (had, OBJ, effect),(had, PU, .),
(news, ATT, Economic), (effect, ATT, little), (effect, ATT, on), (on, PC, markets),
(markets, ATT, financial)}

As discussed in the first chapter, the nature of a dependency (wi, r, wj) is not always straight-forward
to define and differs across linguistic theories. For the remainder of this book we assume that it is
fixed, being either specified by a formal grammar or implicit in a labeled corpus of dependency
graphs.

2.1. DEPENDENCY GRAPHS AND TREES 13

Finally, having defined sentences, dependency relation types and dependency graphs, we can
now proceed to a central definition,

Definition 2.4. A well-formed dependency graph G = (V ,A) for an input sentence S and depen-
dency relation set R is any dependency graph that is a directed tree originating out of nodew0 and has
the spanning node set V = VS . We call such dependency graphs dependency trees.

Notation 2.5. For an input sentence S and a dependency relation set R, denote the space of all
well-formed dependency graphs as GS .

The dependency graphs in figures 1.1 and 1.3 are both trees. For the remainder of the book we only
consider parsing systems that produce dependency trees, that is, parsing systems that produce a tree
from the set GS for a sentence S.

The restriction of well-formed dependency graphs to dependency trees may seem rather strong
at first given the flexibility of language. However, most mono-stratal dependency theories make this
assumption (a notable exception being Hudson’s Word Grammar) as do most multi-stratal theories
for each individual layer of the analysis. In the next section we break down the various properties of
dependency trees and examine each from a linguistic or computational point of view. Many of these
properties are generally agreed upon across different dependency theories and will help to motivate
the restriction of well-formed dependency graphs to trees.

2.1.1 PROPERTIES OF DEPENDENCY TREES
First, we will define a few notational conventions that will assist in our analysis of dependency trees.

Notation 2.6. The notation wi → wj indicates the unlabeled dependency relation (or dependency
relation for short) in a tree G = (V ,A). That is, wi → wj if and only if (wi, r, wj) ∈ A for some
r ∈ R.

Notation 2.7. The notation wi →∗ wj indicates the reflexive transitive closure of the dependency
relation in a tree G = (V ,A). That is,wi →∗ wj if and only if i = j (reflexive) or both wi →∗ wi′
and wi′ → wj hold (for some wi′ ∈ V).

Notation 2.8. The notation wi ↔ wj indicates the undirected dependency relation in a tree G =
(V ,A). That is,wi ↔ wj if and only if either wi → wj or wj → wi .

Notation 2.9. The notation wi ↔∗ wj indicates the reflexive transitive closure of the undirected
dependency relation in a tree G = (V ,A). That is, wi ↔∗ wj if and only if i = j (reflexive) or both
wi ↔∗ wi′ and wi′ ↔ wj hold (for some wi′ ∈ V).

14 CHAPTER 2. DEPENDENCY PARSING

With this notation in hand, we can now examine a set of dependency tree properties that are always
true. These properties are true of any directed tree, but we examine them from the perspective of
their linguistic motivation.

Property 2.10. A dependency tree G = (V ,A) always satisfies the root property, which states that
there does not exist wi ∈ V such that wi → w0.

Property 2.10 holds from the definition of dependency trees as rooted directed trees originating out
of w0. This property is artificial since we have already indicated the presence of the word root and
defined its unique nature in the definition of dependency trees. The addition of an artificial root
node may seem spurious, but as we discuss subsequent properties below, it will become clear that
the artificial root provides us with both linguistic and algorithmic generalization ability.

Property 2.11. A dependency treeG = (V ,A) always satisfies the spanning property over the words
of the sentence, which states that V = VS .

Property 2.11 is also explicitly stated in the definition of dependency trees and therefore must hold
for all dependency trees. The spanning property is widely accepted in dependency theories since a
word in a sentence almost always has some relevance to the dependency analysis and in particular the
syntactic analysis of the sentence. This property is sometimes relaxed for punctuation, for example
words like periods or other sentence boundary markers that play no role in the dependency analysis
of the sentence.The property may be further relaxed for additional punctuation such as hyphens and
brackets – as well as some comma usage – that implicitly participate in the analysis by providing cues
for the intended reading but again play no explicit role in the analysis. When considering semantic
dependencies the spanning property is less universal as many words simply facilitate the reader’s
understanding of the true semantic interpretation and do not actually have an explicit semantic
function.

In practice it is irrelevant if linguistic theories agree on whether a dependency analysis should
be spanning over all the words in the sentence. This is because the artificial root node allows one
to be theory general with respect to the spanning property as we can simply create an arc from the
root word to all wi ∈ V that do not participate in the analysis. The result is always a dependency
tree where the spanning property holds.

Property 2.12. A dependency treeG = (V ,A) satisfies the connectedness property, which states that
for all wi,wj ∈ V it is the case that wi ↔∗ wj . That is, there is a path connecting every two words
in a dependency tree when the direction of the arc (dependency relation) is ignored. This notion of
connectedness is equivalent to a weakly connected directed graph from graph theory.

Property 2.12 holds due to the fact that all nodes in a directed tree are weakly connected through
the root. The connectedness property simply states that all words in the sentence interact with
one another in the dependency analysis, even if at a distance or through intermediate words. This

2.1. DEPENDENCY GRAPHS AND TREES 15

property is not universally accepted, as a sentence may be fragmented into a number of disjoint
units. However, we can again use the artificial root word and make this property universal by simply
creating a dependency relation from the root to some word in each of the dependency fragments.
Thus, the artificial root word again allows one to be theory-neutral, this time with respect to depen-
dency analysis connectedness. Furthermore, we also gain a computational generalization through
the artificial root node. As we will see in Chapter 3, some dependency parsing algorithms do not
actually produce a single dependency tree but rather a set of disjoint dependency trees, commonly
called a dependency forest. These algorithms can be trivially modified to return a dependency tree by
adding a dependency arc from the artificial root word to the root of each disjoint tree.

Property 2.13. A dependency tree G = (V ,A) satisfies the single-head property, which states that
for all wi,wj ∈ V , if wi → wj then there does not exist wi′ ∈ V such that i′ �= i and wi′ → wj .
That is, each word in a dependency tree is the dependent of at most one head.

Property 2.13 holds due to the fact that a directed tree is specifically characterized by each node
having a single incoming arc. The single-head property is not universal in dependency theories.
The example from chapter 1 – She bought and ate an apple – is an instance where one might wish
to break the single-head property. In particular, she and apple can be viewed as dependents of both
verbs in the coordinated verb phrase and as a result should participate as the dependent in multiple
dependency arcs in the tree. However, many formalisms simply posit that she and apple modify the
head of the coordinate phrase (whether it is the conjunction or one of the verbs) and assume that
this dependency is propagated to all the conjuncts.

Property 2.14. A dependency treeG = (V ,A) satisfies the acyclicity property, which states that for
all wi,wj ∈ A, if wi → wj , then it is not the case that wj →∗ wi . That is, a dependency tree does
not contains cycles.

The acyclicity property also makes sense linguistically as any dependency tree not satisfying this
property would imply that a word implicitly is dependent upon itself.

Property 2.15. A dependency tree G = (V ,A) satisfies the arc size property, which states that
|A| = |V | − 1.

Property 2.15 falls out of the unique root and single-head properties. We listed this property as it
can simplify both algorithm construction and analysis.

16 CHAPTER 2. DEPENDENCY PARSING

2.1.2 PROJECTIVE DEPENDENCY TREES
Up to this point we have presented properties that hold for all dependency trees. However, many
computational systems restrict the class of well-formed dependency graphs even further. The most
common restriction is to the set of projective dependency trees, which we examine here.

Definition 2.16. An arc (wi, r, wj) ∈ A in a dependency tree G = (V ,A) is projective if and only
if wi →∗ wk for all i < k < j when i < j , or j < k < i when j < i.

That is to say, an arc in a tree is projective if there is a directed path from the head word wi to all
the words between the two endpoints of the arc.

Definition 2.17. A dependency tree G = (V ,A) is a projective dependency tree if (1) it is a depen-
dency tree (definition 2.4), and (2) all (wi, r, wj) ∈ A are projective.

A similar definition exists for non-projective dependency trees.

Definition 2.18. A dependency tree G = (V ,A) is a non-projective dependency tree if (1) it is a
dependency tree (definition 2.4), and (2) it is not projective.

The trees in figures 1.1 and 1.3 are both projective dependency trees. Linguistically, projectivity is
too rigid a restriction. Consider the sentence in figure 2.1. The dependency tree for this sentence is
non-projective since the prepositional phrase on the issue that modifies the noun hearing is separated
sequentially from its head by the main verb group. As a result, the dependency (hearing, PP, on)
does not satisfy the projective arc definition, requiring a non-projective analysis to account for the
syntactic validity of this sentence.

In English, non-projective constructions occur with little frequency relative to other languages
that are highly inflected and, as a result, have less constraints on word order. In particular, sentences
in languages like Czech, Dutch and Turkish frequently require non-projective dependency trees to
correctly analyze a significant fraction of sentences.As a result,most linguistic theories of dependency
parsing do not presume that dependency trees are projective. Thus, throughout most of this book
we will not assume that dependency trees are projective and make it clear when we are referring to
the set of all dependency trees, or the subset of projective dependency trees.

Notation 2.19. For an input sentence S and a dependency relation set R, denote the space of all
projective dependency trees as GpS .

Even though they are too restrictive, projective dependency trees have certain properties of interest,
primarily from a computational perspective.

Property 2.20. A projective dependency treeG = (V ,A) satisfies the planar property, which states
that it is possible to graphically configure all the arcs of the tree in the space above the sentence
without any arcs crossing.

2.1. DEPENDENCY GRAPHS AND TREES 17

Figure 2.1: Non-projective dependency tree for an English sentence.

Figure 2.2: Projective dependency tree drawn in the standard way (left) and as a nested tree (right).

The left tree in figure 2.2 displays a projective tree drawn without arc crossings, whereas the tree in
figure 2.1 shows a non-projective tree where it is impossible to configure the arcs so that none cross.
The inverse of this property is true as well: all dependency trees that can be drawn so that no arcs
cross are projective dependency trees. This direction of the equivalence specifically relies on the fact
that the left-most word in the sentence is the root of the tree. Consider the case where S = w0w1w2

with arcs w0 → w2 and w1 → w0 in a dependency tree G, i.e., w1 is the root. Such a tree can be
drawn with no arcs crossing, but is not projective.

Property 2.21. A projective dependency tree G = (V ,A) satisfies the nested property, which states
that for all nodes wi ∈ V , the set of words {wj |wi →∗ wj } is a contiguous subsequence of the
sentence S.

The set {wj |wi →∗ wj } is often called the yield of wi in G. Figure 2.2 illustrates both a projective
dependency tree and its nested depiction. Proving that all projective dependency trees are nested
trees is straight-forward. If we assume that the yield of wi is not contiguous, that means that there
is some nodewj between the end-points of the yield such thatwi →∗ wj does not hold. If we trace
dependency arcs back from wj we will eventually reach a node wk between the end-points of the

18 CHAPTER 2. DEPENDENCY PARSING

yield of wi such that wk′ → wk is in the tree but wk′ is not between the end-points of the yield of
wi . But such an arc would necessarily cross at least one other arc and thus the tree could not have
been projective in the first place.

The nested tree property is the primary reason that many computational dependency parsing
systems have focused on producing trees that are projective as it has been shown that certain depen-
dency grammars enforcing projectivity are (weakly) equivalent in generative capacity to context-free
grammars, which are well understood computationally from both complexity and formal power
standpoints.

2.2 FORMAL DEFINITION OF DEPENDENCY PARSING

In this section, we aim to make mathematically precise the dependency parsing problem for both
data-driven and grammar-based methods. This will include introducing notation and defining both
the general problems of learning, which is required for data-driven methods, and parsing, which is
required for both data-driven and grammar-based methods.To reiterate a point made in the previous
chapter, data-driven and grammar-based methods are compatible. A grammar-based method can
be data-driven when its parameters are learned from a labeled corpus.

As with our earlier convention, we useG to indicate a dependency tree and G to indicate a set
of dependency trees. Similarly,S = w0w1 . . . wn denotes a sentence and S denotes a set of sentences.
For a given sentence S, we use GS to indicate the space of dependency trees for that sentence, and
we use GpS for the subset of projective dependency trees.

An important function that will be used at various points throughout the book is the feature
function f(x) : X → Y that maps some input x to a feature representation in the space Y . Examples
include mappings from an input sentence S or history of parsing decisions to a set of predictive
symbolic or binary predicates. When Y is a collection of predicates (either symbolic or numeric),
then we often refer to f as the feature vector. Possibly the most common mapping for f is to a high
dimensional real valued feature vector, i.e., Y = R

m. The features used in a parsing system differ by
the parsing scheme and will be discussed in further detail in later chapters.

Let us now proceed with an important definition:

Definition 2.22. A dependency parsing model consists of a set of constraints � that define the space
of permissible dependency structures for a given sentence, a set of parameters λ (possibly null), and
fixed parsing algorithm h. A model is denoted by M = (�,λ, h).

The constraints� are specific to the underlying formalism used by a system.Minimally the constraint
set maps an arbitrary sentence S and dependency type set R to the set of well-formed dependency
graphs GS , in effect restricting the space of dependency graphs to dependency trees. Additionally,�
could encode more complex mechanisms such as context-free grammar or a constraint dependency
grammar that further limit the space of dependency graphs.

2.3. SUMMARY AND FURTHER READING 19

The learning phase of a parser aims to construct the parameter set λ, and it is specific to data-
driven systems. The parameters are learned using a training set D that consists of pairs of sentences
and their corresponding dependency trees:

D = {(Sd,Gd)}|D|d=0

Parameters are typically learned by optimizing some function over D and come from some predefined
class of parameters �. Common optimizations include minimizing training set parsing error or
maximizing conditional probability of trees given sentences for examples in D. The nature of λ and
the optimization depend on the specific learning methods employed. For example, a single parameter
might represent the likelihood of a dependency arc occurring in a dependency tree for a sentence, or
it might represent the likelihood of satisfying some preference in a formal grammar. In the following
chapters, these specifics will be addressed when we examine the major approaches to dependency
parsing. For systems that are not data-driven, λ is either null or uniform rendering it irrelevant.

After a parsing model has defined a set of formal constraints and learned appropriate pa-
rameters, the model must fix a parsing algorithm to solve the parsing problem. That is, given the
constraints, parameters and a new sentence S, how does the system find the single most likely
dependency tree for that sentence:

G = h(S, �,λ)
The function h is a search over the set of well-formed dependency graphs GS for input sentence S
and produces a single tree or null if � defines a grammar in which S is not a member of the defined
language. As we will see in the remaining chapters, h can take many algorithmic forms including
greedy and recursive algorithms as well as those based on chart-parsing techniques. Furthermore, h
can be exact or approximate relative to some objective function.

To give a quick illustration of the notation defined here, we can apply it to the well known case
of a probabilistic context-free grammar (PCFG) for phrase structure parsing – a grammar-based
and data-driven parsing system. In that case, � = (N,�,�, start) is a standard CFG with non-
terminals N , terminals �, production rules �, and start symbol start ∈ N , all of which defines a
space of nested phrase structures.λ is a set of probabilities, one for each production in the grammar.λ
is typically set by maximizing the likelihood of the training set D relative to appropriate consistency
constraints. The fixed parsing algorithm h can then be a number of context-free algorithms such as
CKY (Younger, 1967) or Earley’s algorithm (Earley, 1970).

2.3 SUMMARY AND FURTHER READING
In this chapter, we discussed the formal definition of dependency graphs, as well as a set of properties
of these graphs that are common among many systems (both linguistic and computational). A key
definition is that of a dependency tree, which is any well-formed dependency graph that is a directed
spanning tree originating out of the root word w0. There have been many studies of the structural
properties of dependency graphs and trees that go beyond what is discussed here. Mentioned earlier

20 CHAPTER 2. DEPENDENCY PARSING

was work showing that certain projective dependency grammars are weakly equivalent to context-free
grammars (Hays, 1964; Gaifman, 1965). Structural properties of dependency graphs that have been
studied include: planarity, which is strongly correlated to projectivity (Kuhlmann and Nivre, 2006;
Havelka, 2007); gap-degree, which measures the discontinuity of subgraphs (Bodirsky et al., 2005;
Kuhlmann and Nivre, 2006); well-nestedness, which is a binary property on the overlap between sub-
trees of the graph (Bodirsky et al., 2005; Kuhlmann and Nivre,2006); and arc-degree,which measures
the number of disconnected subgraphs an arc spans in the graph (Nivre,2006a; Kuhlmann and Nivre,
2006). Some interesting facts arise out of these studies. This includes the relation of dependency
graph structural constraints to derivations in tree adjoining grammars (Bodirsky et al., 2005) as well
as empirical statistics on how frequently certain constraints are obeyed in various dependency tree-
banks (Nivre, 2006a; Kuhlmann and Nivre, 2006; Havelka, 2007). In terms of projectivity, Marcus
(1965) proves the equivalence of a variety of projectivity definitions and Havelka (2007) discusses
many of the above properties in relation to the projective constraint.

The final section of this chapter introduced the formal definition of dependency parsing
including the definition of a parsing model and its sub-components: the formal constraints, the
parameters, and the parsing algorithm. These definitions, as well as those given for dependency
trees, form the basis for the next chapters that delve into different parsing formalisms and their
relation to one another.

21

C H A P T E R 3

Transition-Based Parsing
In data-driven dependency parsing, the goal is to learn a good predictor of dependency trees, that
is, a model that can be used to map an input sentence S = w0w1 . . . wn to its correct dependency
tree G. As explained in the previous chapter, such a model has the general form M = (�,λ, h),
where � is a set of constraints that define the space of permissible structures for a given sentence,
λ is a set of parameters, the values of which have to be learned from data, and h is a fixed parsing
algorithm. In this chapter, we are going to look at systems that parameterize a model over the
transitions of an abstract machine for deriving dependency trees, where we learn to predict the next
transition given the input and the parse history, and where we predict new trees using a greedy,
deterministic parsing algorithm – this is what we call transition-based parsing. In chapter 4, we will
instead consider systems that parameterize a model over sub-structures of dependency trees, where
we learn to score entire dependency trees given the input, and where we predict new trees using
exact inference – graph-based parsing. Since most transition-based and graph-based systems do not
make use of a formal grammar at all, � will typically only restrict the possible dependency trees for
a sentence to those that satisfy certain formal constraints, for example, the set of all projective trees
(over a given label set). In chapter 5, by contrast, we will deal with grammar-based systems, where
� constitutes a formal grammar pairing each input sentence with a more restricted (possibly empty)
set of dependency trees.

3.1 TRANSITION SYSTEMS

A transition system is an abstract machine, consisting of a set of configurations (or states) and transitions
between configurations. One of the simplest examples is a finite state automaton, which consists of
a finite set of atomic states and transitions defined on states and input symbols, and which accepts
an input string if there is a sequence of valid transitions from a designated initial state to one of
several terminal states. By contrast, the transition systems used for dependency parsing have complex
configurations with internal structure, instead of atomic states, and transitions that correspond to
steps in the derivation of a dependency tree. The idea is that a sequence of valid transitions, starting
in the initial configuration for a given sentence and ending in one of several terminal configurations,
defines a valid dependency tree for the input sentence. In this way, the transition system determines
the constraint set� in the parsing model, since it implicitly defines the set of permissible dependency
trees for a given sentence, but it also determines the parameter set λ that have to be learned from
data, as we shall see later on. For most of this chapter, we will concentrate on a simple stack-based
transition system, which implements a form of shift-reduce parsing and exemplifies the most widely

22 CHAPTER 3. TRANSITION-BASED PARSING

used approach in transition-based dependency parsing. In section 3.4, we will briefly discuss some
of the alternative systems that have been proposed.

We start by defining configurations as triples consisting of a stack, an input buffer, and a set
of dependency arcs.

Definition 3.1. Given a set R of dependency types, a configuration for a sentence S = w0w1 . . . wn

is a triple c = (σ, β,A), where

1. σ is a stack of words wi ∈ VS ,

2. β is a buffer of words wi ∈ VS ,

3. A is a set of dependency arcs (wi, r, wj) ∈ VS × R × VS .

The idea is that a configuration represents a partial analysis of the input sentence, where the words
on the stack σ are partially processed words, the words in the buffer β are the remaining input words,
and the arc set A represents a partially built dependency tree. For example, if the input sentence is

Economic news had little effect on financial markets.

then the following is a valid configuration, where the stack contains the words root and news (with
the latter on top), the buffer contains all the remaining words except Economic, and the arc set
contains a single arc connecting the head news to the dependent Economic with the label ATT:

([root, news]σ , [had, little, effect, on, financial, markets, .]β , {(news, ATT, Economic)}A)

Note that we represent both the stack and the buffer as simple lists, with elements enclosed in square
brackets (and subscripts σ and β when needed), although the stack has its head (or top) to the right
for reasons of perspicuity. When convenient, we use the notation σ |wi to represent the stack which
results from pushing wi onto the stack σ , and we use wi |β to represent a buffer with head wi and
tail β.1

Definition 3.2. For any sentence S = w0w1 . . . wn,

1. the initial configuration c0(S) is ([w0]σ , [w1, . . . , wn]β , ∅),
2. a terminal configuration is a configuration of the form (σ , []β ,A) for any σ and A.

Thus, we initialize the system to a configuration with w0 = root on the stack, all the remaining
words in the buffer, and an empty arc set; and we terminate in any configuration that has an empty
buffer (regardless of the state of the stack and the arc set).

1The operator | is taken to be left-associative for the stack and right-associative for the buffer.

3.1. TRANSITION SYSTEMS 23

Transition Precondition

Left-Arcr (σ |wi,wj |β,A)⇒ (σ,wj |β,A∪{(wj , r, wi)}) i �= 0

Right-Arcr (σ |wi,wj |β,A)⇒ (σ,wi |β,A∪{(wi, r, wj)})
Shift (σ,wi |β,A)⇒ (σ |wi, β,A)

Figure 3.1: Transitions for shift-reduce dependency parsing.

Having defined the set of configurations, including a unique initial configuration and a set of
terminal configurations for any sentence, we now define transitions between configurations. Formally
speaking, a transition is a partial function from configurations to configurations, i.e., a transition
maps a given configuration to a new configuration but may be undefined for certain configurations.
Conceptually, a transition corresponds to a basic parsing action that adds an arc to the dependency
tree or modifies the stack or the buffer. The transitions needed for shift-reduce dependency parsing
are defined in figure 3.1 and contain three types of transitions:

1. Transitions Left-Arcr (for any dependency label r) add a dependency arc (wj , r, wi) to the
arc set A, where wi is the word on top of the stack and wj is the first word in the buffer. In
addition, they pop the stack. They have as precondition that both the stack and the buffer are
non-empty and that wi �= root.2

2. Transitions Right-Arcr (for any dependency label r) add a dependency arc (wi, r, wj) to the
arc set A, where wi is the word on top of the stack and wj is the first word in the buffer. In
addition, they pop the stack and replace wj by wi at the head of buffer.3 They have as their
only precondition that both the stack and the buffer are non-empty.

3. The transition Shift removes the first wordwi in the buffer and pushes it on top of the stack.
It has as its only precondition that the buffer is non-empty.

We use the symbol T to refer to the set of permissible transitions in a given transition system.
As noted above, transitions correspond to elementary parsing actions. In order to define complete
parses, we introduce the notion of a transition sequence.

Definition 3.3. A transition sequence for a sentence S = w0w1 . . . wn is a sequence of configurations
C0,m = (c0, c1, . . . , cm) such that
2The latter precondition guarantees that the dependency graph defined by the arc set always satisfies the root property.
3This may seem counterintuitive, given that the buffer is meant to contain words that have not yet been processed, but it is necessary
in order to allow wj to attach to a head on its left.

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root,Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news,ATT,Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect,ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial,markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets,ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on,PC,markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect,ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had,OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had,PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root,PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS,Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

3.2. PARSING ALGORITHM 25

Every transition sequence in this system defines a dependency graph with the spanning, root,
and single-head properties, but not necessarily with the connectedness property. This means that
not every transition sequence defines a dependency tree, as defined in chapter 2. To take a trivial
example, a transition sequence for a sentence S consisting only of Shift transitions defines the
graph G = (VS,∅), which is not connected but which satisfies all the other properties. However,
since any transition sequence defines an acyclic dependency graph G, it is trivial to convert G into
a dependency tree G′ by adding arcs of the form (root, r, wi) (with some dependency label r) for
every wi that is a root in G. As noted in section 2.1.1, a dependency graph G that satisfies the
spanning, root, single-head, and acyclic properties is equivalent to a set of dependency trees and is
often called a dependency forest.

Another important property of the system is that every transition sequence defines a projective
dependency forest,4 which is advantageous from the point of view of efficiency but overly restrictive
from the point of view of representational adequacy. In sections 3.4 and 3.5, we will see how this
limitation can be overcome, either by modifying the transition system or by complementing it with
pre- and post-processing.

Given that every transition sequence defines a projective dependency forest, which can be
turned into a dependency tree, we say that the system is sound with respect to the set of projective
dependency trees. A natural question is whether the system is also complete with respect to this class
of dependency trees, that is, whether every projective dependency tree is defined by some transition
sequence. The answer to this question is affirmative, although we will not prove it here.5 In terms
of our parsing model M = (�,λ, h), we can therefore say that the transition system described in
this section corresponds to a set of constraints � characterizing the set GpS of projective dependency
trees for a given sentence S (relative to a set of arc labels R).

3.2 PARSING ALGORITHM
The transition system defined in section 3.1 is nondeterministic in the sense that there is usually
more than one transition that is valid for any non-terminal configuration.6 Thus, in order to perform
deterministic parsing, we need a mechanism to determine for any non-terminal configuration c, what
is the correct transition out of c. Let us assume for the time being that we are given an oracle, that
is, a function o from configurations to transitions such that o(c) = t if and only if t is the correct
transition out of c. Given such an oracle, deterministic parsing can be achieved by the very simple
algorithm in figure 3.3.

We start in the initial configuration c0(S) and, as long as we have not reached a terminal
configuration, we use the oracle to find the optimal transition t = o(c) and apply it to our current
configuration to reach the next configuration t (c). Once we reach a terminal configuration, we
simply return the dependency tree defined by our current arc set. Note that, while finding the
4A dependency forest is projective if and only if all component trees are projective.
5The interested reader is referred to Nivre (2008) for proofs of soundness and completeness for this and several other transition
systems for dependency parsing.

6The notable exception is a configuration with an empty stack, where only Shift is possible.

26 CHAPTER 3. TRANSITION-BASED PARSING

h(S, �, o)
1 c← c0(S)

2 while c is not terminal
3 t ← o(c)

4 c← t (c)

5 return Gc

Figure 3.3: Deterministic, transition-based parsing with an oracle.

optimal transition t = o(c) is a hard problem, which we have to tackle using machine learning,
computing the next configuration t (c) is a purely mechanical operation.

It is easy to show that, as long as there is at least one valid transition for every non-terminal
configuration, such a parser will construct exactly one transition sequence C0,m for a sentence S and
return the dependency tree defined by the terminal configuration cm, i.e.,Gcm = (VS,Acm). To see
that there is always at least one valid transition out of a non-terminal configuration, we only have
to note that such a configuration must have a non-empty buffer (otherwise it would be terminal),
which means that at least Shift is a valid transition.

The time complexity of the deterministic, transition-based parsing algorithm is O(n), where
n is the number of words in the input sentence S, provided that the oracle and transition functions
can be computed in constant time. This holds since the worst-case running time is bounded by
the maximum number of transitions in a transition sequence C0,m for a sentence S = w0w1 . . . wn.
Since a Shift transition decreases the length of the buffer by 1, no other transition increases the
length of the buffer, and any configuration with an empty buffer is terminal, the number of Shift
transitions in C0,m is bounded by n. Moreover, since both Left-Arcr and Right-Arcr decrease
the height of the stack by 1, only Shift increases the height of the stack by 1, and the initial height
of the stack is 1, the combined number of instances of Left-Arcr and Right-Arcr in C0,m is also
bounded by n. Hence, the worst-case time complexity is O(n).

So far, we have seen how transition-based parsing can be performed in linear time if restricted
to projective dependency trees, and provided that we have a constant-time oracle that predicts the
correct transition out of any non-terminal configuration. Of course, oracles are hard to come by
in real life, so in order to build practical parsing systems, we need to find some other mechanism
that we can use to approximate the oracle well enough to make accurate parsing feasible. There
are many conceivable ways of approximating oracles, including the use of formal grammars and
disambiguation heuristics. However, the most successful strategy to date has been to take a data-
driven approach, approximating oracles by classifiers trained on treebank data. This leads to the
notion of classifier-based parsing, which is an essential component of transition-based dependency
parsing.

3.3. CLASSIFIER-BASED PARSING 27

h(S, �,λ)
1 c← c0(S)

2 while c is not terminal
3 t ← λc

4 c← t (c)

5 return Gc

Figure 3.4: Deterministic, transition-based parsing with a classifier.

3.3 CLASSIFIER-BASED PARSING
Let us step back for a moment to our general characterization of a data-driven parsing model as
M = (�,λ, h), where � is a set of constraints on dependency graphs, λ is a set of model parameters
and h is a fixed parsing algorithm. In the previous two sections, we have shown how we can define the
parsing algorithm h as deterministic best-first search in a transition system (although other search
strategies are possible, as we shall see later on).The transition system determines the set of constraints
�, but it also defines the model parameters λ that need to be learned from data, since we need to be
able to predict the oracle transition o(c) for every possible configuration c (for any input sentence S).
We use the notation λc ∈ λ to denote the transition predicted for c according to model parameters
λ, and we can think of λ as a huge table containing the predicted transition λc for every possible
configuration c. In practice, λ is normally a compact representation of a function for computing λc
given c, but the details of this representation need not concern us now. Given a learned model, we
can perform deterministic, transition-based parsing using the algorithm in figure 3.4, where we have
simply replaced the oracle function o by the learned parameters λ (and the function value o(c) by
the specific parameter value λc).

However, in order to make the learning problem tractable by standard machine learning
techniques, we need to introduce an abstraction over the infinite set of possible configurations. This
is what is achieved by the feature function f(x) : X → Y (cf. section 2.2). In our case, the domain X
is the set C of possible configurations (for any sentence S) and the range Y is a product ofm feature
value sets, which means that the feature function f(c) : C → Y maps every configuration to an m-
dimensional feature vector. Given this representation, we then want to learn a classifier g : Y → T ,
where T is the set of possible transitions, such that g(f(c)) = o(c) for any configuration c. In other
words, given a training set of gold standard dependency trees from a treebank, we want to learn a
classifier that predicts the oracle transition o(c) for any configuration c, given as input the feature
representation f(c). This gives rise to three basic questions:

• How do we represent configurations by feature vectors?

• How do we derive training data from treebanks?

• How do we train classifiers?

28 CHAPTER 3. TRANSITION-BASED PARSING

We will deal with each of these questions in turn, starting with feature representations in section 3.3.1,
continuing with the derivation of training data in section 3.3.2, and finishing off with the training
of classifiers in section 3.3.3.

3.3.1 FEATURE REPRESENTATIONS
A feature representation f(c) of a configuration c is anm-dimensional vector of simple features fi (c)
(for 1 ≤ i ≤ m). In the general case, these simple features can be defined by arbitrary attributes of a
configuration, which may be either categorical or numerical. For example, “the part of speech of the
word on top of the stack” is a categorical feature, with values taken from a particular part-of-speech
tagset (e.g., NN for noun, VB for verb, etc.). By contrast, “the number of dependents previously
attached to the word on top of the stack” is a numerical feature, with values taken from the set
{0, 1, 2, …}. The choice of feature representations is partly dependent on the choice of learning
algorithm, since some algorithms impose special restrictions on the form that feature values may
take, for example, that all features must be numerical. However, in the interest of generality, we will
ignore this complication for the time being and assume that features can be of either type. This is
unproblematic since it is always possible to convert categorical features to numerical features, and it
will greatly simplify the discussion of feature representations for transition-based parsing.

The most important features in transition-based parsing are defined by attributes of words,
or tree nodes, identified by their position in the configuration. It is often convenient to think of
these features as defined by two simpler functions, an address function identifying a particular word
in a configuration (e.g., the word on top of the stack) and an attribute function selecting a specific
attribute of this word (e.g., its part of speech). We call these features configurational word features
and define them as follows.

Definition 3.4. Given an input sentence S = w0w1 . . . wn with node set VS , a function (v ◦ a)(c) :
C → Y composed of

1. an address function a(c) : C → VS ,

2. an attribute function v(w) : VS → Y .

is a configurational word feature.

An address function can in turn be composed of simpler functions, which operate on different
components of the input configuration c. For example:

• Functions that extract the kth word (from the top) of the stack or the kth word (from the
head) of the buffer.

• Functions that map a word w to its parent, leftmost child, rightmost child, leftmost sibling,
or rightmost sibling in the dependency graph defined by c.

3.3. CLASSIFIER-BASED PARSING 29

Table 3.1: Feature model for transition-based
parsing.

fi Address Attribute
1 STK[0] FORM
2 BUF[0] FORM
3 BUF[1] FORM
4 LDEP(STK[0]) DEPREL
5 RDEP(STK[0]) DEPREL
6 LDEP(BUF[0]) DEPREL
7 RDEP(BUF[0]) DEPREL

By defining such functions, we can construct arbitrarily complex address functions that extract, e.g.,
“the rightmost sibling of the leftmost child of the parent of the word on top of the stack” although
the address functions used in practice typically combine at most three such functions. It is worth
noting that most address functions are partial, which means that they may fail to return a word. For
example, a function that is supposed to return the leftmost child of the word on top of the stack is
undefined if the stack is empty or if the word on top of the stack does not have any children. In
this case, any feature defined with this address function will also be undefined (or have a special null
value).

The typical attribute functions refer to some linguistic property of words, which may be given
as input to the parser or computed as part of the parsing process. We can exemplify this with the
word markets from the sentence in figure 1.1:

• Identity of wi = markets

• Identity of lemma of wi = market

• Identity of part-of-speech tag for wi = NNS

• Identity of dependency label for wi = PC

The first three attributes are static in the sense that they are constant, if available at all, in every
configuration for a given sentence.That is, if the input sentence has been lemmatized and tagged for
parts of speech in preprocessing, then the values of these features are available for all words of the
sentence, and their values do not change during parsing. By contrast, the dependency label attribute
is dynamic in the sense that it is available only after the relevant dependency arc has been added to
the arc set.Thus, in the transition sequence in figure 3.2, the dependency label for the word markets is
undefined in the first twelve configurations, but has the value PC in all the remaining configurations.
Hence, such attributes can be used to define features of the transition history and the partially built
dependency tree, which turns out to be one of the major advantages of the transition-based approach.

30 CHAPTER 3. TRANSITION-BASED PARSING

f(c0) = (root Economic news null null null null)
f(c1) = (Economic news had null null null null)
f(c2) = (root news had null null ATT null)
f(c3) = (news had little ATT null null null)
f(c4) = (root had little null null SBJ null)
f(c5) = (had little effect SBJ null null null)
f(c6) = (little effect on null null null null)
f(c7) = (had effect on SBJ null ATT null)
f(c8) = (effect on financial ATT null null null)
f(c9) = (on financial markets null null null null)

f(c10) = (financial markets . null null null null)
f(c11) = (on markets . null null ATT null)
f(c12) = (effect on . ATT null null ATT)
f(c13) = (had effect . SBJ null ATT ATT)
f(c14) = (root had . null null SBJ OBJ)
f(c15) = (had . null SBJ OBJ null null)
f(c16) = (root had null null null SBJ PU)
f(c17) = (null root null null null null PRED)
f(c18) = (root null null null PRED null null)

Figure 3.5: Feature vectors for the configurations in figure 3.2.

Let us now try to put all the pieces together and examine a complete feature representation
using only configurational word features. Table 3.1 shows a simple model with seven features, each
defined by an address function and an attribute function. We use the notation STK[i] and BUF[i]
for the ith word in the stack and in the buffer, respectively,7 and we use LDEP(w) and RDEP(w)
for the farthest child of w to the left and to the right, respectively. The attribute functions used
are FORM for word form and DEPREL for dependency label. In figure 3.5, we show how the
value of the feature vector changes as we go through the configurations of the transition sequence
in figure 3.2.8

Although the feature model defined in figure 3.1 is quite sufficient to build a working parser,
a more complex model is usually required to achieve good parsing accuracy. To give an idea of the
complexity involved, table 3.2 depicts a model that is more representative of state-of-the-art parsing
systems. In table 3.2, rows represent address functions, defined using the same operators as in the
earlier example, while columns represent attribute functions, which now also include LEMMA (for

7Note that indexing starts at 0, so that STK[0] is the word on top of the stack, while BUF[0] is the first word in the buffer.
8The special value null is used to indicate that a feature is undefined in a given configuration.

3.3. CLASSIFIER-BASED PARSING 31

Table 3.2: Typical feature model for transition-based parsing with rows rep-
resenting address functions, columns representing attribute functions, and cells
with + representing features.

Attributes
Address FORM LEMMA POSTAG FEATS DEPREL
STK[0] + + + +
STK[1] +
LDEP(STK[0]) +
RDEP(STK[0]) +
BUF[0] + + + +
BUF[1] + +
BUF[2] +
BUF[3] +
LDEP(BUF[0]) +
RDEP(BUF[0]) +

lemma or base form) and FEATS (for morphosyntactic features in addition to the basic part of
speech). Thus, each cell represents a possible feature, obtained by composing the corresponding
address function and attribute function, but only cells containing a + sign correspond to features
present in the model.

We have focused in this section on configurational word features, i.e., features that can be
defined by the composition of an address function and an attribute function, since these are the
most important features in transition-based parsing. In principle, however, features can be defined
over any properties of a configuration that are believed to be important for predicting the correct
transition. One type of feature that has often been used is the distance between two words, typically
the word on top of the stack and the first word in the input buffer. This can be measured by the
number of words intervening, possibly restricted to words of a certain type such as verbs. Another
common type of feature is the number of children of a particular word, possibly divided into left
children and right children.

3.3.2 TRAINING DATA
Once we have defined our feature representation, we want to learn to predict the correct transition
o(c), for any configuration c, given the feature representation f(c) as input. In machine learning
terms, this is a straightforward classification problem, where the instances to be classified are (feature
representations of) configurations, and the classes are the possible transitions (as defined by the
transition system). In a supervised setting, the training data should consist of instances labeled with
their correct class, which means that our training instances should have the form (f(c), t) (t = o(c)).
However, this is not the form in which training data are directly available to us in a treebank.

32 CHAPTER 3. TRANSITION-BASED PARSING

In section 2.2, we characterized a training set D for supervised dependency parsing as con-
sisting of sentences paired with their correct dependency trees:

D = {(Sd,Gd)}|D|d=0

In order to train a classifier for transition-based dependency parsing, we must therefore find a way to
derive from D a new training set D′, consisting of configurations paired with their correct transitions:

D′ = {(f(cd), td)}|D
′|

d=0

Here is how we construct D′ given D:

• For every instance (Sd,Gd) ∈ D, we first construct a transition sequence Cd0,m =
(c0, c1, . . . , cm) such that

1. c0 = c0(Sd),

2. Gd = (Vd,Acm).

• For every non-terminal configuration cdi ∈ Cd0,m, we then add to D′ an instance (f(cdi), t
d
i),

where tdi (c
d
i) = cdi+1.

This scheme presupposes that, for every sentence Sd with dependency tree Gd , we can construct
a transition sequence that results in Gd . Provided that all dependency trees are projective, we can
do this using the parsing algorithm defined in section 3.2 and relying on the dependency tree
Gd = (Vd,Ad) to compute the oracle function in line 3 as follows:

o(c = (σ, β,A)) =

⎧⎪⎪⎨
⎪⎪⎩

Left-Arcr if (β[0], r, σ [0]) ∈ Ad
Right-Arcr if (σ [0], r, β[0]) ∈ Ad and, for all w, r ′,

if (β[0], r ′, w) ∈ Ad then (β[0], r ′, w) ∈ A
Shiftr otherwise

The first case states that the correct transition is Left-Arcr if the correct dependency tree has an
arc from the first word β[0] in the input buffer to the word σ [0] on top of the stack with dependency
label r . The second case states that the correct transition is Right-Arcr if the correct dependency
tree has an arc from σ [0] to β[0] with dependency label r – but only if all the outgoing arcs from
β[0] (according to Gd) have already been added to A. The extra condition is needed because, after
the Right-Arcr transition, the word β[0] will no longer be in either the stack or the buffer, which
means that it will be impossible to add more arcs involving this word. No corresponding condition
is needed for the Left-Arcr case since this will be satisfied automatically as long as the correct
dependency tree is projective. The third and final case takes care of all remaining configurations,
where Shift has to be the correct transition, including the special case where the stack is empty.

3.3. CLASSIFIER-BASED PARSING 33

3.3.3 CLASSIFIERS
Training a classifier on the set D′ = {(f(cd), td)}|D

′|
d=0 is a standard problem in machine learning,

which can be solved using a variety of different learning algorithms. We will not go into the details
of how to do this but limit ourselves to some observations about two of the most popular methods
in transition-based dependency parsing: memory-based learning and support vector machines.

Memory-based learning and classification is a so-called lazy learning method, where learning
basically consists in storing the training instances while classification is based on similarity-based
reasoning (Daelemans and Van den Bosch, 2005). More precisely, classification is achieved by re-
trieving the k most similar instances from memory, given some similarity metric, and extrapolating
the class of a new instance from the classes of the retrieved instances. This is usually called k near-
est neighbor classification, which in the simplest case amounts to taking the majority class of the k
nearest neighbors although there are a number of different similarity metrics and weighting schemes
that can be used to improve performance. Memory-based learning is a purely discriminative learning
technique in the sense that it maps input instances to output classes without explicitly computing
a probability distribution over outputs or inputs (although it is possible to extract metrics that can
be used to estimate probabilities). One advantage of this approach is that it can handle categorical
features as well as numerical ones, which means that feature vectors for transition-based parsing can
be represented directly as shown in section 3.3.1 above, and that it handles multi-class classification
without special techniques. Memory-based classifiers are very efficient to train, since learning only
consists in storing the training instances for efficient retrieval. On the other hand, this means that
most of the computation must take place at classification time, which can make parsing inefficient,
especially with large training sets.

Support vector machines are max-margin linear classifiers, which means that they try to
separate the classes in the training data with the widest possible margin (Vapnik, 1995). They
are especially powerful in combination with kernel functions, which in essence can be used to
transform feature representations to higher dimensionality and thereby achieve both an implicit
feature combination and non-linear classification. For transition-based parsing, polynomial kernels
of degree 2 or higher are widely used, with the effect that pairs of features in the original feature space
are implicitly taken into account. Since support vector machines can only handle numerical features,
all categorical features need to be transformed into binary features.That is, a categorical feature with
m possible values is replaced with m features with possible values 0 and 1. The categorical feature
assuming its ith value is then equivalent to the ith binary feature having the value 1 while all other
features have the value 0. In addition, support vector machines only perform binary classification,
but there are several techniques for solving the multi-class case. Training can be computationally
intensive for support vector machines with polynomial kernels, so for large training sets special
techniques often must be used to speed up training. One commonly used technique is to divide the
training data into smaller bins based on the value of some (categorical) feature, such as the part of
speech of the word on top of the stack. Separate classifiers are trained for each bin, and only one
of them is invoked for a given configuration during parsing (depending on the value of the feature

34 CHAPTER 3. TRANSITION-BASED PARSING

Transition Preconditions

Left-Arcr (σ |wi,wj |β,A)⇒ (σ,wj |β,A∪{(wj , r, wi)}) (wk, r
′, wi) /∈ A

i �= 0

Right-Arcr (σ |wi,wj |β,A)⇒ (σ |wi |wj , β,A∪{(wi, r, wj)})
Reduce (σ |wi, β,A)⇒ (σ, β,A) (wk, r

′, wi) ∈ A
Shift (σ,wi |β,A)⇒ (σ |wi, β,A)

Figure 3.6: Transitions for arc-eager shift-reduce dependency parsing.

used to define the bins). Support vector machines with polynomial kernels currently represent the
state of the art in terms of accuracy for transition-based dependency parsing.

3.4 VARIETIES OF TRANSITION-BASED PARSING

So far,we have considered a single transition system,defined in section 3.1, and a single,deterministic
parsing algorithm, introduced in section 3.2. However, there are many possible variations on the basic
theme of transition-based parsing, obtained by varying the transition system, the parsing algorithm,
or both. In addition, there are many possible learning algorithms that can be used to train classifiers, a
topic that was touched upon in the previous section. In this section,we will introduce some alternative
transition systems (section 3.4.1) and some variations on the basic parsing algorithm (section 3.4.2).
Finally, we will discuss how non-projective dependency trees can be processed even if the underlying
transition system only derives projective dependency trees (section 3.5).

3.4.1 CHANGING THE TRANSITION SYSTEM
One of the peculiarities of the transition system defined earlier in this chapter is that right dependents
cannot be attached to their head until all their dependents have been attached. As a consequence,
there may be uncertainty about whether a Right-Arcr transition is appropriate, even if it is certain
that the first word in the input buffer should be a dependent of the word on top of the stack. This
problem is eliminated in the arc-eager version of this transition system, defined in figure 3.6. In this
system, which is called arc-eager because all arcs (whether pointing to the left or to the right) are
added as soon as possible, the Right-Arcr is redefined so that the dependent word wj is pushed
onto the stack (on top of its head wi), making it possible to add further dependents to this word. In
addition, we have to add a new transition Reduce, which makes it possible to pop the dependent
word from the stack at a later point in time, and which has as a precondition that the word on
the top of the stack already has a head, i.e., that the arc set contains an arc (wk, r ′, wi) for some k

3.4. VARIETIES OF TRANSITION-BASED PARSING 35

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root,Economic], [news, . . . , .], ∅)

LAatt⇒ ([root], [news, . . . , .], A1 = {(news,ATT,Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
RApred⇒ ([root, had], [little, . . . , .], A3 = A2! ∪{(root,PRED, had)})

SH⇒ ([root, had, little], [effect, . . . , .], A3)
LAatt⇒ ([root, had], [effect, . . . , .], A4 = A3∪{(effect,ATT, little)})
RAobj⇒ ([root, had, effect], [on, . . . , .], A5 = A4∪{(had,OBJ, effect)})
RAatt⇒ ([root, . . . on], [financial,markets, .], A6 = A5∪{(effect,ATT, on)})

SH⇒ ([root, . . . , financial], [markets, .], A6)
LAatt⇒ ([root, . . . on], [markets, .], A7 = A6∪{(markets,ATT, financial)})
RApc⇒ ([root, . . . ,markets], [.], A8 = A7∪{(on,PC,markets)})

RE⇒ ([root, . . . , on], [.], A8)
RE⇒ ([root, . . . , effect], [.], A8)
RE⇒ ([root, had], [.], A8)

RApu⇒ ([root, . . . , .], [], A9 = A8∪{(had,PU, .)})

Figure 3.7: Arc-eager transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr ,
RAr = Right-Arcr , RE = Reduce, SH = Shift).

and r ′ (where wi is the word on top of the stack).9 To further illustrate the difference between the
two systems, figure 3.7 shows the transition sequence needed to parse the sentence in figure 1.1 in
the arc-eager system (cf. figure 3.2). Despite the differences, however, both systems are sound and
complete with respect to the class of projective dependency trees (or forests that can be turned into
trees, to be exact), and both systems have linear time and space complexity when coupled with the
deterministic parsing algorithm formulated in section 3.2 (Nivre, 2008). As parsing models, the two
systems are therefore equivalent with respect to the � and h components but differ with respect to
the λ component, since the different transition sets give rise to different parameters that need to be
learned from data.

Another kind of variation on the basic transition system is to add transitions that will allow a
certain class of non-projective dependencies to be processed. Figure 3.8 shows two such transitions
called NP-Leftr and NP-Rightr , which behave exactly like the ordinary Left-Arcr and Right-
Arcr transitions, except that they apply to the second word from the top of the stack and treat the top
word as a context node that is unaffected by the transition. Unless this context node is later attached
to the head of the new arc, the resulting tree will be non-projective. Although this system cannot

9Moreover, we have to add a new precondition to the Left-Arcr transition to prevent that it applies when the word on top of
the stack already has a head, a situation that could never arise in the old system. The precondition rules out the existence of an
arc (wk, r ′, wi) in the arc set (for any k and r ′).

36 CHAPTER 3. TRANSITION-BASED PARSING

Transition Precondition

NP-Leftr (σ |wi |wk,wj |β,A)⇒ (σ |wk,wj |β,A∪{(wj , r, wi)}) i �= 0

NP-Rightr (σ |wi |wk,wj |β,A)⇒ (σ |wi,wk|β,A∪{(wi, r, wj)})

Figure 3.8: Added transitions for non-projective shift-reduce dependency parsing.

cope with arbitrary non-projective dependency trees, it can process many of the non-projective
constructions that occur in natural languages (Attardi, 2006).

In order to construct a transition system that can handle arbitrary non-projective dependency
trees, we can modify not only the set of transitions but also the set of configurations. For example, if
we define configurations with two stacks instead of one, we can give a transition-based account of
the algorithms for dependency parsing discussed by Covington (2001). With an appropriate choice
of transitions, we can then define a system that is sound and complete with respect to the class GS
of arbitrary dependency for a given sentence S. The space complexity for deterministic parsing with
an oracle remains O(n) but the time complexity is now O(n2). To describe this system here would
take us too far afield, so the interested reader is referred to Nivre (2008).

3.4.2 CHANGING THE PARSING ALGORITHM
The parsing algorithm described in section 3.2 performs a greedy,deterministic search for the optimal
transition sequence, exploring only a single transition sequence and terminating as soon as it reaches
a terminal configuration. Given one of the transition systems described so far, this happens after
a single left-to-right pass over the words of the input sentence. One alternative to this single-pass
strategy is to perform multiple passes over the input while still exploring only a single path through
the transition system in each pass. For example, given the transition system defined in section 3.1, we
can reinitialize the parser by refilling the buffer with the words that are on the stack in the terminal
configuration and keep iterating until there is only a single word on the stack or no new arcs were
added during the last iteration.This is essentially the algorithm proposed by Yamada and Matsumoto
(2003) and commonly referred to as Yamada’s algorithm. In the worst case, this may lead to n− 1
passes over the input, each pass takingO(n) time, which means that the total running time isO(n2),
although the worst case almost never occurs in practice.

Another variation on the basic parsing algorithm is to relax the assumption of determinism
and to explore more than one transition sequence in a single pass. The most straightforward way of
doing this is to use beam search, that is, to retain the k most promising partial transition sequences
after each transition step. This requires that we have a way of scoring and ranking all the possible
transitions out of a given configuration, which means that learning can no longer be reduced to a pure
classification problem. Moreover, we need a way of combining the scores for individual transitions

3.5. PSEUDO-PROJECTIVE PARSING 37

in such a way that we can compare transition sequences that may or may not be of the same length,
which is a non-trivial problem for transition-based dependency parsing. However, as long as the size
of the beam is bounded by a constant k, the worst-case running time is still O(n).

3.5 PSEUDO-PROJECTIVE PARSING
Most of the transition systems that are used for classifier-based dependency parsing are restricted to
projective dependency trees. This is a serious limitation given that linguistically adequate syntactic
representations sometimes require non-projective dependency trees. In this section, we will therefore
introduce a complementary technique that allows us to derive non-projective dependency trees even
if the underlying transition system is restricted to dependency trees that are strictly projective. This
technique, known as pseudo-projective parsing, consists of four essential steps:

1. Projectivize dependency trees in the training set while encoding information about necessary
transformations in augmented arc labels.

2. Train a projective parser on the transformed training set.

3. Parse new sentences using the projective parser.

4. Deprojectivize the output of the projective parser, using heuristic transformations guided by
augmented arc labels.

The first step relies on the fact that it is always possible to transform a non-projective dependency tree
into a projective tree by substituting each non-projective arc (wi, r, wj) by an arc (anc(wi), r ′, wj),
where anc(wi) is an ancestor of wi such that the new arc is projective. In a dependency tree, such
an ancestor must always exist since the root node will always satisfy this condition even if no other
node does.10 However, to make a minimal transformation of the non-projective tree, we generally
prefer to let anc(wi) be the nearest ancestor (from the original head wi) such that the new arc is
projective.

We will illustrate the projectivization transformation with respect to the non-projective depen-
dency tree in figure 2.1, repeated in the top half of figure 3.9. This tree contains two non-projective
arcs: hearing

att→ on and scheduled
tmp→ today. Hence, it can be projectivized by replacing these arcs

with arcs that attach both on and today to is, which in both cases is the head of the original head.
However, to indicate that these arcs do not belong to the true, non-projective dependency tree, we
modify the arc labels by concatenating them with the label going into the original head: sbj:att
and vc:tmp. Generally speaking, a label of the form head:dep signifies that the dependent has the
function dep and was originally attached to a head with function head. Projectivizing the tree with
this type of encoding gives the tree depicted in the bottom half of figure 3.9.

Given that we have projectivized all the dependency trees in the training set, we can train a
projective parser as usual.When this parser is used to parse new sentences, it will produce dependency

10I.e., for any arc (w0, r, wj) in a dependency tree, it must be true that w0 →∗ wk for all 0 < k < j .

38 CHAPTER 3. TRANSITION-BASED PARSING

Figure 3.9: Projectivization of a non-projective dependency tree.

trees that are strictly projective as far as the tree structure is concerned, but where arcs that need to be
replaced in order to recover the correct non-projective tree are labeled with the special, augmented arc
labels. These trees, which are said to be pseudo-projective, can then be transformed into the desired
output trees by replacing every arc of the form (wi,head:dep, wj) by an arc (desc(wi),dep, wj),
where desc(wi) is a descendant of wi with an ingoing arc labeled head. The search for desc(wi)
can be made more or less sophisticated, but a simple left-to-right, breadth-first search starting from
wi is usually sufficient to correctly recover more than 90% of all non-projective dependencies found
in natural language (Nivre and Nilsson, 2005).

The main advantage of the pseudo-projective technique is that it in principle allows us to
parse sentences with arbitrary non-projective dependency trees in linear time, provided that projec-
tivization and deprojectivization can also be performed in linear time. Moreover, as long as the base
parser is guaranteed to output a dependency tree (or a dependency forest that can be automatically
transformed into a tree), the combined system is sound with respect to the class GS of non-projective
dependency trees for a given sentence S. However, one drawback of this technique is that it leads
to an increase in the number of distinct dependency labels, which may have a negative impact on
efficiency both in training and in parsing (Nivre, 2008).

3.6 SUMMARY AND FURTHER READING

In this chapter, we have shown how parsing can be performed as greedy search through a transition
system, guided by treebank-induced classifiers.The basic idea underlying this approach can be traced
back to the 1980s but was first applied to data-driven dependency parsing by Kudo and Matsumoto
(2002), who proposed a system for parsing Japanese, where all dependencies are head-final. The ap-
proach was generalized to allow mixed headedness by Yamada and Matsumoto (2003), who applied

3.6. SUMMARY AND FURTHER READING 39

it to English with state-of-the-art results. The latter system essentially uses the transition system
defined in section 3.1, together with an iterative parsing algorithm as described in section 3.4.2, and
classifiers trained using support vector machines.

The arc-eager version of the transition system, described in section 3.4.1, was devel-
oped independently by Nivre (2003) and used to parse Swedish (Nivre et al., 2004) and En-
glish (Nivre and Scholz, 2004) in linear time using the deterministic, single-pass algorithm for-
mulated in section 3.2. An in-depth description of this system, sometimes referred to as Nivre’s
algorithm, can be found in Nivre (2006b) and a large-scale evaluation, using data from ten different
languages, in Nivre et al. (2007). Early versions of this system used memory-based learning but more
accurate parsing has later been achieved using support vector machines (Nivre et al., 2006).

A transition system that can handle restricted forms of non-projectivity while preserving the
linear time complexity of deterministic parsing was first proposed by Attardi (2006), who extended
the system of Yamada and Matsumoto and combined it with several different machine learning
algorithms including memory-based learning and logistic regression. The pseudo-projective pars-
ing technique was first described by Nivre and Nilsson (2005) but is inspired by earlier work in
grammar-based parsing by Kahane et al. (1998). Systems that can handle arbitrary non-projective
trees, inspired by the algorithms originally described by Covington (2001), have recently been ex-
plored by Nivre (2006a, 2007).

Transition-based parsing using different forms of beam search, rather than purely determin-
istic parsing, has been investigated by Johansson and Nugues (2006, 2007b), Titov and Henderson
(2007a,b), and Duan et al. (2007), among others, while Cheng et al. (2005) and Hall et al. (2006)
have compared the performance of different machine learning algorithms for transition-based pars-
ing. A general framework for the analysis of transition-based dependency-based parsing, with proofs
of soundness, completeness and complexity for several of the systems treated in this chapter (as well
as experimental results) can be found in Nivre (2008).

41

C H A P T E R 4

Graph-Based Parsing
Well-formed dependency graphs are directed trees that span all the words of the sentence and
originate out of the sentence’s unique root. Researchers in graph theory have developed a wide range
of algorithms for processing both directed and undirected graphs, some of which are the oldest and
most well understood in computer science. This raises a question: Is it possible to create dependency
parsers that use standard algorithms for directed graphs and trees? This is the basic research question
that has been asked in graph-based models of dependency parsing, which will be introduced in this
chapter. Unlike transition-based systems, a graph-based system explicitly parameterizes models over
substructures of a dependency tree, instead of indirect parameterization over transitions used to
construct a tree. These models come with many pros and cons relative to their transition-based
counterparts, which is a topic that will be addressed in chapter 7. Using our standard conventions,
we will define graph-based parsing systems through a model M = (�,λ, h) consisting of a set of
constraints on permissible structures �, a set of parameters λ, and a fixed parsing algorithm h. As
in the previous chapter, we focus exclusively on systems that do not make use of a formal grammar,
thus � is simply the set of constraints that force the model to produce a well-formed dependency
graph, i.e., a dependency tree.

At the heart of graph-based parsing systems is the notion of the score of a dependency tree
G = (V ,A) ∈ GS for a sentence S:

score(G) = score(V ,A) ∈ R

This score represents how likely it is that a particular tree is the correct analysis forS.Scores are general
and different graph-based systems make different assumptions about how scores are generated. For
example, some systems assume that scores are restricted to linear classifiers whereas other systems
constrain scores to be conditional or joint probabilities. The fundamental property of graph-based
parsing systems is that this score is assumed to factor through the scores of subgraphs of G:

score(G) = f (ψ1, ψ2, . . . , ψq) for all ψi ∈ 	G
Here f is some function over subgraphs ψ and 	G represents the relevant set of subgraphs of G.
The nature of f is general, but for most of this chapter we will assume that it is equivalent to a
summation over factor parameters and that the score can be rewritten as:

score(G) =
∑
ψ∈	G

λψ

Parameters are constrained to be real values, though their actual make-up is typically more complex
such as combinations of weighted feature functions that return real values. Models that sum factor

42 CHAPTER 4. GRAPH-BASED PARSING

parameters represent the majority of graph-based dependency parsers, but defining the score to be
the product of factor parameters is also common (see section 4.1 for more on this).

Using this general blueprint, we can state that any graph-based parsing system must define
four things:

1. The definition of 	G for a given dependency tree G.

2. The definition of the parameters λ = {λψ | for all ψ ∈ 	G, for all G ∈ GS, for all S}.
3. A method for learning λ from labeled data.

4. A parsing algorithm h(S, �,λ) = argmaxG∈GS score(G).

The parameter set λ appears infinite as it ranges over all possible subgraphs of all dependency trees
for all sentences. However, as stated earlier, λψ , is typically not a single variable, but a function that
maps subgraphs to real values. Thus, graph-based parsing systems do not store an infinite number
of parameters, but instead a finite number of functions over subgraphs. It is only for notational
simplicity that we treat these functions as single parameters in the discussion.

This chapter begins with the formulation of the simplest and most common instantiation of
graph-based dependency parsing – called arc-factored parsing. Detailed parsing algorithms for both
projective and non-projective trees are given. We will then discuss common feature representations
of these models as well as different learning paradigms used in data-driven implementations. Next,
we look at many of the computational difficulties that arise when extending graph-based models
beyond arc-factored systems. We conclude with a brief summary and literature overview for further
reading.

4.1 ARC-FACTORED MODELS
The smallest and most basic parameterization is over single dependency arcs themselves – the so
called arc-factored models. Using the above notation we can define arc-factored models for a given
dependency tree G = (V ,A) as follows:

• 	G = A
• λψ = λ(wi,r,wj) ∈ R for each (wi, r, wj) ∈ A

Thus, in arc-factored models a system assigns a real valued parameter to every labeled arc in the tree.
λ is thus the set of all arc weights. Precise definitions of λ(wi,r,wj) will be discussed in section 4.3. We
abuse notation here since an arc is not technically a subgraph of G. Instead we let the arc represent
the subgraph induced by it, i.e., the subgraph consisting of the two nodes in the arc plus the labeled
arc itself.

The score of a dependency tree G = (V ,A) is subsequently defined as:

score(G) =
∑

(wi ,r,wj)∈A
λ(wi,r,wj)

4.2. ARC-FACTORED PARSING ALGORITHMS 43

That is, the score of a tree factors by the parameters of its arcs. Assuming we have access to a
meaningful set of parameters λ, then the primary problem of interest is the parsing problem for an
arbitrary input S:

h(S, �,λ) = argmax
G=(V ,A)∈GS

score(G) = argmax
G=(V ,A)∈GS

∑
(wi ,r,wj)∈A

λ(wi,r,wj)

To solve the parsing problem, an algorithm must find the tree whose component arc parameters
sum to the maximum value. In some cases, λ(wi,r,wj) may represent probabilities or non-negative arc
potentials, in which case it would be more natural to multiply arc parameters instead of summing
them. However, we can always transform the argmax of a product to an argmax of a summation
through a log transform:

h(S, �,λ) = argmax
G=(V ,A)∈GS

∏
(wi ,r,wj)∈A

λ(wi,r,wj)

= argmax
G=(V ,A)∈GS

log[
∏

(wi ,r,wj)∈A
λ(wi,r,wj)]

= argmax
G=(V ,A)∈GS

∑
(wi ,r,wj)∈A

log λ(wi,r,wj)

Any algorithms we develop for the summation of parameters will naturally extend to a product of
parameters by simply re-setting λ(wi,r,wj) ≡ log λ(wi,r,wj).

Our parsing model M = (�,λ, h) is thus a set of constraints � restricting valid outputs to
dependency trees, a set of arc parameters λ and a parsing function h that solves the above argmax
problem. For the moment, we will assume that a meaningful set of parameters is provided to the
system and focus our attention on algorithms for computing h. Section 4.3 will examine common
paradigms for defining and learning λ.

4.2 ARC-FACTORED PARSING ALGORITHMS
Arc-factored parsing algorithms are based on a straight-forward mapping between dependency trees
and the graph-theoretic concept of spanning trees. Let G = (V ,A) be a standard directed graph
(digraph) or multi-directed graph (multi-digraph) in the case where one allows multiple arcs between
nodes. Assume also that there is some scoring function that assigns real values to the arcs in G and
the score of any subgraph of G is equal to the sum of its arc scores.

Definition 4.1. A maximum spanning tree or MST of a digraph (or a multi-digraph) G is the
highest scoring subgraph G′ that satisfies the following spanning tree conditions:

• V ′ = V , i.e.,G′ spans all the original nodes in G

• G′ is a directed tree

44 CHAPTER 4. GRAPH-BASED PARSING

It is not difficult to see how one can define a construction that equates arc-factored dependency
parsing to finding the MST of a graph. For an input sentence S = w0w1 . . . wn, with label set
R = {r1, . . . , rm} and parameters λ, consider a graph GS = (VS,AS) such that:

• VS = {w0, w1, . . . , wn} (which is the standard definition of VS)

• AS = {(wi, r, wj) | for all wi,wj ∈ VS and r ∈ R, where j �= 0}
First, note theGS is a multi-digraph as, for any two nodeswi andwj , there are multiple arcs between
them – namely one for each possible dependency type r . Second, note that GS is a complete graph
in the node set VS − {w0} and that there is an arc from w0 to all other words in the sentence. This
definition leads to the following proposition:

Proposition 4.2. The set of well-formed dependency graphs (dependency trees) of S, GS , and the set of
spanning trees of GS are identical.

Proof. The proof is trivial and falls out of the definition of spanning trees and dependency trees. First,
note that any spanning tree ofGS must have as its root w0 as there are no incoming arcs to it in the
graph. Now, any spanning tree originating out of the root wordw0 is by definition a dependency tree
(a directed tree spanning all words and rooted at w0). Furthermore, every valid dependency graph
must be a spanning tree ofGS sinceGS contains all permissible arcs and a well-formed dependency
graph is spanning over the node set VS and is a directed tree. �

This simple proposition results in the central corollary for arc-factored models:

Corollary 4.3. For an input sentence S = w0w1 . . . wn, the parsing problem (i.e., solving h) is equiva-
lent to finding the maximum spanning tree of GS using arc parameters λ(wi,r,wj).

Proof. Proposition 4.2 and the fact that dependency trees and spanning trees are both scored by
summing arc parameters. �

Thus, finding the maximum spanning tree of GS also solves the arc-factored dependency parsing
problem. This is only true for the case when we do not include a projectivity constraint on the
set GS as spanning trees can be both projective and non-projective with respect to a sentence S.
In fact, algorithms for projective arc-factored parsing do not trace their roots to graph-theoretic
algorithms, but instead to chart-parsing algorithms used for parsing context-free grammars. We will
examine algorithms for both the non-projective and projective dependency parsing problems as their
algorithmic differences will be important when moving beyond arc-factored models.

4.2. ARC-FACTORED PARSING ALGORITHMS 45

4.2.1 REDUCING LABELED TO UNLABELED PARSING
In graph-based dependency parsing, we are typically dealing with multi-digraphs since dependency
relations are labeled with types. However, for simplicity of presentation we often wish to compute
properties only over digraphs, which represents an unlabeled parsing problem. Fortunately, we can
proceed with a trivial reduction from labeled parsing to unlabeled parsing, which will result in graphs
with a single arc between two nodes. For an input sentence S, and its corresponding multi-digraph
GS , define a new digraph G′S = (V ′S, A′S) such that:

• V ′S = VS
• A′S = {(wi, wj) | wi,wj ∈ V ′S , where j �= 0}

G′S is also a complete digraph, but with a single arc between each node. Let us now define a new
parameter set over digraph arcs:

λ(wi,wj) = max
r

λ(wi,r,wj)

This reduction from GS to G′S and from labeled to unlabeled parameters takes O(|R|n2) since the
new graph G′S has O(n2) arcs and the parameter for each arc is determined by enumerating |R|
possibilities.

Proposition 4.4. Let G = (V ,A) be the MST of GS and let G′ = (V ′, A′) be the MST of G′S . The
following holds:

(1)
∑

(wi ,r,wj)∈A
λ(wi,r,wj) =

∑
(wi ,wj)∈A′

λ(wi,wj)

(2) (wi, r, wj) ∈ A if and only if (wi, wj) ∈ A′ and r = argmax
r

λ(wi,r,wj)

Proof. If (wi, r, wj) ∈ A, then it must be true that r = argmaxr λ(wi,r,wj), otherwise we could
simply replace this arc with the argmax and get a higher weighted tree. Since we set λ(wi,wj) to
precisely this value, we ensure that the max over the digraph is equivalent to the max over the multi-
digraph, making the above equivalences true. We omit the case when two or more labels satisfy
argmaxr λ(wi,r,wj) since it is trivial to deal with such ties by arbitrarily choosing one label. �

Proposition 4.4 tells us that we can solve the labeled dependency parsing problem by solving the corre-
sponding unlabeled dependency parsing problem – assuming we maintain a reverse map that specifies
the original labeled arc from which each unlabeled arc was derived. In sections 4.2.2 and 4.2.3, we
will focus on solving the unlabeled parsing problem with the knowledge that this reduction equates
it to the original labeled problem of interest.

46 CHAPTER 4. GRAPH-BASED PARSING

4.2.2 NON-PROJECTIVE PARSING ALGORITHMS
Dependency parsing algorithms are designated as non-projective if their search space GS consists of all
projective and non-projective dependency trees.From the previous section,we know that it is possible
to find the highest scoring dependency tree in this set by finding the maximum spanning tree ofGS .
The most common algorithm for finding the MST of a graph is the Chu-Liu-Edmonds algorithm,
which is sketched in figure 4.1. The algorithm can be characterized as both greedy and recursive as
it consists of a greedy arc selection step, possibly followed by a recursive call on a transformation of
the original complete graph GS . In the following section, we present an informal analysis of this
algorithm and its use in dependency parsing.

Possibly the best way to explore the Chu-Liu-Edmonds algorithm is through an example. We
will use the simple sentence S = John saw Mary with the induced digraph GS shown in figure 4.2.
This figure will serve to illustrate each step of the algorithm on GS . Note that we artificially set
λ(wj ,w0) = −∞ and disregard these arcs since they should never occur in any well-formed tree. The
first step of the main procedure in the algorithm (denoted Chu-Liu-Edmonds in figure 4.1) is to
find, for each node, the incoming arc with highest value, which transforms the graph from figure 4.2a
to figure 4.2b. If the result of this greedy stage is a tree, it must be an MST and, thus, the most likely
dependency tree. To see this, consider a tree constructed by greedily choosing the incoming arc of
highest value for every word. Now assume, there exists a different tree with a higher score. Find a
node wj , such that (wi, wj) is part of the tree resulting from the greedy arc selection, (wi′, wj) is
part of the hypothesized higher scoring tree, and i �= i′. We know by the definition of the greedy
tree that λ(wi,wj) is at least as large as λ(wi′ ,wj), so we can simply add (wi, wj) to the hypothesized
higher scoring tree and subtract (wi′, wj), and we will obtain a graph (not necessarily a tree) with
at least as high a score. If we repeat this process, we will eventually converge to the original tree
obtained through greedy arc selection and are always guaranteed that the resulting graph will have
a score at least as large as the hypothesized higher scoring tree. Thus, such a higher scoring tree
cannot exist and we must have the MST (or one of many MSTs in the case of ties).

However, in the current example, there is a cycle. The Chu-Liu-Edmonds algorithm dictates
that we contract this cycle into a single node and recalculate arc parameters according to lines 3 and
4 of the contract procedure in figure 4.1. In cases where multiple cycles occur, one can be chosen
arbitrarily for contraction. This results in the graph in figure 4.2c. The new node wjs represents the
contraction of nodes John and saw. The arc parameter from wjs to Mary is set to 30 since that is the
highest scoring arc from any node in wjs . The arc parameter from root into wjs is set to 40 since
this represents the score of the best spanning tree originating from root and including the nodes
in the cycle represented by wjs . The same leads to the arc from Mary to wjs . The fundamental
property of the Chu-Liu-Edmonds algorithm is that an MST in this graph can be transformed into
an MST in the original graph. This fact follows from a lemma stating that after the greedy step, all
but one of the arcs of any cycle must exist in some MST (a single arc must be removed to break the
cycle and for the graph to be a tree). Knowing this, we can observe that in the contracted graph,
the parameters for arcs going into the contracted node equal the highest score of an arc entering the

4.2. ARC-FACTORED PARSING ALGORITHMS 47

h(S, �,λ) – non-projective
Sentence S = w0w1 . . . wn
Arc parameters λ(wi,wj) ∈ λ

1 Construct GS = (VS,AS)
VS = {w0, w1, . . . , wn}
AS = {(wi, wj) | for all wi,wj ∈ VS}

2 return Chu-Liu-Edmonds(GS , λ)

Chu-Liu-Edmonds(G,λ)
Graph G = (V ,A)
Arc parameters λ(wi,wj) ∈ λ

1 A′ = {(wi, wj) | wj ∈ V,wi = argmaxwi λ(wi ,wj)}
2 G′ = (V ,A′)
3 If G′ has no cycles, then return G′ and quit
4 Find any arc set AC that is a cycle in G′
5 < GC,wc, ep >= contract(G′, AC,λ)
6 G = (A, V) = Chu-Liu-Edmonds(GC,λ)
7 For the arc (wi, wc) ∈ A where ep(wi,wc) = wj ,

identify the arc (wk,wj) ∈ C for some wk
8 Find all arcs (wc,wl) ∈ A
9 A = A ∪ {(ep(wc,wl), wl)}for all (wc,wl)∈A∪ AC ∪ {(wi, wj)} − {(wk,wj)}

10 V = V
11 return G

contract(G = (V ,A), C,λ)
1 Let GC be the subgraph of G excluding nodes in C
2 Add a node wc to GC representing cycle C
3 For wj ∈ V − C : ∃wi∈C(wi,wj) ∈ A

Add arc (wc,wj) to GC with
ep(wc,wj) = argmaxwi∈C λ(wi,wj)
wi = ep(wc,wj)
λ(wc,wj) = λ(wi,wj)

4 For wi ∈ V − C : ∃wj∈C(wi,wj) ∈ A
Add arc (wi, wc) to GC with

ep(wi,wc) = argmaxwj∈C
[
λ(wi,wj) − λ(a(wj),wj)

]
wj = ep(wi,wc)
λ(wi,wc) =

[
λ(wi,wj) − λ(a(wj),wj) + score(C)

]
where a(w) is the predecessor of w in C
and score(C) =∑

w∈C λ(a(w),w)
5 return < GC,wc, ep >

Figure 4.1: The Chu-Liu-Edmonds spanning tree algorithm for non-projective dependency parsing.

cycle and breaking it, e.g., the arc parameter from root intowjs is 40 representing that arc entering
the node saw and breaking the cycle by removing the single arc from John to saw.

The algorithm is then recursively called (steps c to d in figure 4.2). Note that one must keep
track of the real endpoints of the arcs into and out ofwjs for reconstruction later.This is done through
the function ep in figure 4.1. Running the greedy step in this case results in a tree and therefore
the MST of this graph. The algorithm concludes by traversing up a recursive call to reconstruct the
dependency tree.The arc fromwjs to Mary originally was from the node saw, so that arc is included.

48 CHAPTER 4. GRAPH-BASED PARSING

Figure 4.2: The Chu-Liu-Edmonds algorithm illustrated on an example English sentence John saw
Mary.

Furthermore, the arc from root to wjs represented a tree from root to saw to John, so all those
arcs are included to get the final (and correct) MST.

Naively, this algorithm runs in O(n3) time since each recursive call takes O(n2) to find the
highest incoming arc for each word and to identify a cycle and contract the graph. Furthermore,
there are at most n recursive calls since we cannot contract the graph more than n times as each

4.2. ARC-FACTORED PARSING ALGORITHMS 49

contraction ultimately results in a smaller graph. An improvement to O(n2) was given by Tarjan
(1977) for complete/dense graphs, which is precisely what we need here. We omit discussion of
the Tarjan implementation since it only complicates matters and, in practice, the simpler O(n3)

algorithm above rarely requires n recursive calls. Once we take into account the O(|R|n2) time to
reduce the labeled multi-digraph to a digraph, then the resulting run-time for finding the MST is
at worst O(|R|n2 + n2) = O(|R|n2).

4.2.3 PROJECTIVE PARSING ALGORITHMS
The set of projective dependency trees is equivalent to the set of nested dependency trees under the
assumption of an artificial root node as the leftmost word. As such, it is well-known that projective
dependency parsers are strongly related to context-free parsers. The result of this equivalence means
that many standard algorithms for parsing context-free grammars can be altered to parse projective
dependency trees. In particular, a simple variant of the Cocke-Kasami-Younger (CKY) algorithm
for context-free parsing serves the purpose. Alternative methods for projective dependency parsing
that embed dependency arcs directly into a CFG are explored in chapter 5.

To start, we will define a dynamic programming table, denoted byC[s][t][i], which represents
the value of the highest scoring projective tree that spans the string ws . . . wt and which is rooted at
wordwi , where s ≤ i ≤ t . For convenience, we graphically represent a table entryC[s][t][i] through
a labeled triangle, as in figure 4.3e. Clearly, if we could populate C, then C[0][n][0] would represent
the highest scoring dependency tree for an input sentence S = w0w1 . . . wn, which is precisely the
value we are interested in for the parsing problem. The question then becomes how to fill the table.
The base case is trivial:

C[i][i][i] = 0.0, for all 0 ≤ i ≤ n

This is because any dependency tree of a single word must have a score of 0 as there are no dependency
arcs to contribute. Now, assume that C[s][t][i] is correctly populated for all s, t and i such that
s ≤ i ≤ t and 0 ≤ t − s ≤ n′, for some n′ < n. Let us now attempt to fill an entry in the table
C[s][t][i], where t − s = n′ + 1. First, we note that any projective tree rooted at wi and spanning
ws to wt is ultimately made up of smaller adjacent subgraphs (as shown in figure 4.3a). Secondly,
we note that larger trees may be constructed by continuously adding adjacent dependency arcs from
the inside out, creating subgraphs spanning larger and larger strings until the last subgraph is added,
as illustrated in figure 4.3a-e.1 Thus, to build a subgraph that spans ws to wt , we only need to
consider the final merger of two subtrees as all other subtree constructions are accounted for in our
hypothesis about C for smaller spans where t − s ≤ n′.This observation is identical to that made by
context-free parsing algorithms. The possible dependency arc and subtree merges we must consider

1Typically, a pre-specified order is used, such as all dependencies to the left are first created before all to the right. This is required
when spurious ambiguity in parse derivations must be avoided.

50 CHAPTER 4. GRAPH-BASED PARSING

Figure 4.3: Illustration showing that every projective subgraph can be broken into a combination of
smaller adjacent subgraphs.

for calculating C[s][t][i] are given in figure 4.4, and we can write the corresponding recurrence:

C[s][t][i] = max
s≤q<t,s≤j≤t

{
C[s][q][i] + C[q + 1][t][j] + λ(wi,wj) if j > i

C[s][q][j] + C[q + 1][t][i] + λ(wi,wj) if j < i
(4.1)

That is, we need to consider all possible dependents of wi , call them wj , and all possible substring
spans, indexed by q. A simple structural induction proof can be given for the correctness of this
algorithm by noting that the base case of span length 0 holds and our inductive hypothesis shows
that, for any length span, we can correctly calculate C assuming C has been computed for all shorter
spans. AfterC is populated,C[0][n][0]will be the entry of interest since it corresponds to the highest
weighted tree spanning all words and rooted at w0. A simple bottom-up algorithm based on CKY
can be constructed around this recurrence to fill in C. This algorithm starts by filling out the base
case of span size 1 (t − s = 0), and then uses the recurrence to fill out all entries of the table where
t − s = 1, then all entries where t − s = 2, etc. This algorithm will run in O(n5) since it must fill
O(n3) entries in the table, and each entry must considerO(n2) possibilities, i.e., the maximum over
q and j . When we add the O(|R|n2) factor to reduce the parsing problem from the labeled case to
the unlabeled case, the total run-time is O(|R|n2 + n5).

The above algorithm simply finds the score of the best tree and does not define a mechanism
for extracting this tree. This can be done in a number of ways. Perhaps the easiest is to maintain an
auxiliary arc table,A[s][t][i], which is populated parallel toC and contains all the arcs in the highest
scoring tree spanning ws to wt rooted at wi . In equation 4.1, we already found the maximum q and
j for populating C[s][t][i]. We can simply use these two indices to define a recurrence forA[s][t][i]

4.2. ARC-FACTORED PARSING ALGORITHMS 51

Figure 4.4: CKY algorithm for projective dependency parsing.

as:

A[i][i][i] = {}

A[s][t][i] =
{
A[s][q][i] ∪ A[q + 1][t][j] ∪ (wi, wj) if j > i

A[s][q][j] ∪ A[q + 1][t][i] ∪ (wi, wj) if j < i

The final tree for a sentence S is thenG = (V ,A[0][n][0]). This technique only adds at mostO(n)
when computing the inner loop since there can never be more than n arcs in a well-formed graph.
Since the inner loop is alreadyO(n2) due to the search for q and j , maintaining A[s][t][i] does not
change the run-time complexity of CKY. However, the space complexity is now O(n4) as opposed
to O(n3) when we just had to maintain C. A more space efficient method of tree reconstruction
is to use back-pointers – a technique common in inference algorithms that are based on Viterbi’s
algorithm, of which CKY and the present projective dependency parsing algorithm can be viewed
as generalizations to trees. In the back-pointer method, instead of storing an entire graphA[s][t][i],
each entry instead stores the two indices, q and j , making the size of the tableO(n3). These indices
are then used to reconstruct the graph recursively starting at entry A[0][n][0].

Any parsing algorithm that runs in O(n5) is unlikely to be much use in practical situations
without heavy pruning or approximations. Fortunately, Eisner’s algorithm for projective dependency
parsing provides a straight-forward technique for reducing the runtime complexity substantially.
This comes from a simple observation that a wordwi may collect its left dependents independent of
its right dependents without any global repercussions in finding the highest weighted tree. Consider
the tree in figure 4.3a. A parsing algorithm can first construct two separate subgraphs, one spanning
fromwi towt and another spanning fromws towi , each representing the right or left dependents of
wi respectively. Note that in both these subgraphs, the head of the tree wi is at the periphery. Let us
use this observation to break apart the construction of a dependency arc into smaller but equivalent
steps. Graphically, this can be seen in figure 4.5 in which every item has the head of the subgraph
at the periphery. Briefly, Eisner’s algorithm starts by considering the left and right subgraphs of the

52 CHAPTER 4. GRAPH-BASED PARSING

Figure 4.5: Illustration showing Eisner’s projective dependency parsing algorithm relative to CKY.

original trees headed by wi and wj . A dependency arc is then created from wi to wj (step a to b).
This creates a new type of subgraph that is headed bywi and contains only the left subgraph headed
by wj . This intermediate type of subgraph is required since it constrains the next step to subsume
wj ’s right subgraph and maintain equivalence with the original O(n5) algorithm. This is precisely
what happens in the next stage when we transition from step b to step c. Finally, we can combine
the left and right subgraphs rooted at wi to recover the equivalent outcome as the O(n5) algorithm
(step d). This last step is merely to give the reader an intuition of the equivalence between the two
algorithms, and in fact is never needed.

At first, it may appear that breaking each arc construction into smaller steps has made things
worse. However, we can note that every subgraph in figure 4.5a-c only requires indices for two
words: the head, which is now at the periphery, and the opposite peripheral index. Consider a
dynamic programming table of the form E[s][t][d][c], which is intended to represent the highest
weighted subgraph spanning ws to wt , with head either ws (when d = 1) or wt (when d = 0).
Additionally, c indicates whether the subgraph is constrained only to consider left/right subgraphs
of the dependent in the previous arc construction (c = 1) or not (c = 0). Graphically, all possibilities
are outlined in figure 4.6. Using the simple breakdown of CKY given in figure 4.5, we can then define
a new dynamic programming algorithm to populate E. We call this algorithm Eisner’s algorithm.
Pseudo-code for filling the dynamic programming table is in figure 4.7.

The algorithm begins by first initializing all length-one subgraphs to a weight of 0.0, just as
in CKY. Then, the algorithm considers spans of increasing length. In the inner loop, the first step is
to construct new dependency arcs, i.e., steps a-b in figure 4.5.This is done by taking the max over all
internal indices in the span, s ≤ q < t , and calculating the value of merging the two subgraphs and
adding the corresponding arc. For reference, line 8 is equivalent to step a to step b in figure 4.5. Line
7 is the symmetric case of a left dependency arc. After new arcs are added, the algorithm attempts

4.2. ARC-FACTORED PARSING ALGORITHMS 53

Figure 4.6: Illustration showing each type of subgraph in the dynamic program table used in Eisner’s
algorithm.

Eisner(S, �,λ)
Sentence S = w0w1 . . . wn

Arc weight parameters λ(wi,wj) ∈ λ
1 Instantiate E[n][n][2][2] ∈ R

2 Initialization: E[s][s][d][c] = 0.0 for all s, d, c
3 for m : 1..n
4 for s : 1..n
5 t = s +m
6 if t > n then break

% Create subgraphs with c = 1 by adding arcs (step a-b in figure 4.5)
7 E[s][t][0][1] = maxs≤q<t (E[s][q][1][0] + E[q + 1][t][0][0] + λ(wt ,ws))
8 E[s][t][1][1] = maxs≤q<t (E[s][q][1][0] + E[q + 1][t][0][0] + λ(ws,wt))

% Add corresponding left/right subgraphs (step b-c in figure 4.5)
9 E[s][t][0][0] = maxs≤q<t (E[s][q][0][0] + E[q][t][0][1])

10 E[s][t][1][0] = maxs<q≤t (E[s][q][1][1] + E[q][t][1][0])
Figure 4.7: Pseudo-code for Eisner’s algorithm.

to add corresponding left/right subgraphs to arcs that have been previously added (either in the
last step, or for smaller length substrings). A simple proof by structural induction shows that this
algorithm considers all possible subgraphs and, as a result, E[s][t][d][c] is correct for all values of
the four index variables. We can then take E[0][n][1][0] as the score of the best dependency tree.
Additionally, we can use an auxiliary arc table or back-pointers to reconstruct this tree, as is done
for CKY.

In terms of complexity, Eisner’s algorithm is O(n3). The table E[s][t][d][c] is O(n2 × 2×
2) = O(n2) in size. To fill each entry, we must considerO(n) possibilities, i.e., the max over q in all
lines of the inner loop figure 4.7. When we add on the O(|R|n2) runtime for reducing the labeled

54 CHAPTER 4. GRAPH-BASED PARSING

Figure 4.8: Non-projective dependency tree for an English sentence.

parsing problem to the unlabeled parsing problem, the final runtime is O(|R|n2 + n3), which is a
substantial improvement over using anO(|R|n2 + n5)CKY style algorithm. In addition to running
proportional toO(n3), Eisner’s algorithm is based on bottom-up dynamic programming techniques,
which, as we will later show, provides additional benefits when moving beyond arc-factored parsing
models.

4.3 LEARNING ARC-FACTORED MODELS
In chapter 2, we defined a data-driven dependency parsing modelM = (�,λ, h) as containing both
a set of parameters λ and a parsing algorithm h. To this point, we have defined the general form of
the parameters as factoring over arcs in a tree, as well as resulting parsing algorithms that find the
highest scoring tree given the parameters. However, we have yet to discuss the specific form of each
arc parameter λ(wi,r,wj) and how the parameters can be learned from an annotated data set.

4.3.1 PARAMETER AND FEATURE REPRESENTATIONS
Graph-based parsing systems typically assume that the arc parameters are linear classifiers between
a vector of pre-defined features over the arc f(wi, r, wj) ∈ R

m and a corresponding feature weight
vector w ∈ R

m,
λ(wi,r,wj) = w · f(wi, r, wj)

The arc feature function f can include any relevant feature over the arc or the input sentence S. Fea-
tures are typically categorical and post-hoc converted to binary features. For example, let us consider
the arc (hearing, ATT, on) from figure 4.8 (reproduced from chapter 2). A feature representation
might consist of the following categorical features (each feature is shown with the value it takes on
for figure 4.8):

• Identity of wi = hearing

• Identity of wj = on

• Identity of part-of-speech tag for wi = NN

• Identity of part-of-speech tag for wj = IN

4.3. LEARNING ARC-FACTORED MODELS 55

• Identity of r = ATT

• Identity of part-of-speech tags between wi and wj = VBZ, VBN

• Identity of part-of-speech tag for wi−1 = DT

• Identity of part-of-speech tag for wi+1 = VBZ

• Identity of part-of-speech tag for wj−1 = VBN

• Identity of part-of-speech tag for wj+1 = DT

• Distance (in number of words) between wi and wj = 2

• Direction of arc = RIGHT

These features can then be combined to create even more complex categorical features such as,

• Identity of wi = hearing & Identity of wj = on & Direction of arc = RIGHT

For highly inflected languages, additional features could cover a morphological analysis of the words
to promote agreement in gender, number, and other properties. Categorical features like those above
are translated into real-valued features through binarization, as was the case for categorical features
in transition-based systems. For a categorical feature with m possible values, we create m different
features in f with values of 0 or 1 to indicate the absence or presence of the feature-value pair.The fact
that most features in f will have values of 0 permits the use of sparse representations and calculations.

This brief section is meant to give the reader a flavor of the kinds of features used in today’s
graph-based dependency parsing systems. Of course, larger and more sophisticated feature sets do
exist, and we point the reader to the relevant literature in section 4.5.

4.3.2 TRAINING DATA
We assume that a learning algorithm has access to a training set,

D = {(Sd,Gd)}|D|d=1

of input sentences Sd and corresponding dependency trees Gd . In chapter 3, a transformation from
dependency trees to a sequence of parser configurations and transitions was required in order to train
classifiers to assume the part of the oracle. For graph-based systems, things are much simpler. Since
we have parameterized the models directly over the trees, there is no need to transform the training
data. All learning algorithms described in this section assume that the training data are in the form
given above.

56 CHAPTER 4. GRAPH-BASED PARSING

4.3.3 LEARNING THE PARAMETERS
As we have already defined efficient algorithms for finding the most likely dependency tree, a
common learning technique for graph-based dependency parsing is inference-based learning. Under
the assumption that arc parameters are linear classifiers, the inference problem, embodied in the
function h, is:

h(S, �,λ) = argmax
G=(V ,A)∈GS

∑
(wi ,r,wj)∈A

λ(wi,r,wj) = argmax
G=(V ,A)∈GS

∑
(wi ,r,wj)∈A

w · f(wi, r, wj)

In this setting, λ contains both the learned weight vector w and the predefined feature function f.
For simplicity we will focus on the one of the simplest and most common inference-based learning
algorithms, the perceptron algorithm. Pseudo-code for the algorithm is given in figure 4.9. The
perceptron algorithm builds a linear classifier online by considering a single training instance in
isolation, finding the highest weighted tree (i.e., solving h in line 4), and then adding weight to
features that are present in the correct solution while subtracting weight from features that are
present in a possibly incorrect solution. When the data is linearly separable, the perceptron algorithm
is guaranteed to find a w that classifies D perfectly.2 Crucially, the perceptron algorithm only relies
on the solution to h (line 4), which we already have defined in this chapter.Thus, if we define a set of
relevant features, then an inference-based learning algorithm like the perceptron can be employed to
induce a meaningful set of parameters λ from a training set D. Though many graph-based parsing
systems rely only on inference and associated inference-based learning algorithms, there are many
other possibilities that arise naturally out of the arc-factored framework. These include probabilistic
log-linear models, large-margin models, and generative bigram models. Many of these learning
algorithms require computations beyond inference, most notably the summation of tree scores over
the set GS or expected values of arcs under a probabilistic model. These computations can be more
expensive and complex than the Chu-Liu-Edmonds algorithm. Pointers to work in this area are
provided in section 4.5.

4.4 BEYOND ARC-FACTORED MODELS
This chapter has so far been devoted to arc-factored models for graph-based dependency parsing.
This is for many good reasons: Arc-factored models are conceptually simple, based on well known
algorithms from graph-theory, language independent (outside any specific definition of λ and f),
and produce state-of-the-art parsing systems. Though arc-factored models are appealing compu-
tationally, they are not justified linguistically as their underlying arc independence assumption is
simply not valid. Dependencies in any syntactic structure depend on one another, often in complex
ways. In this section, we explore what happens when we move beyond arc-factored models. We look
at two simple extensions. The first is to introduce the notion of arity into the parameters, which will
measure how likely a given word is to have a fixed number of dependents. The second extension

2Collins (2002) provides a more detailed analysis including proofs of convergence and bounds on generalization error.

4.4. BEYOND ARC-FACTORED MODELS 57

Perceptron(D)
Training data D = {(Sd,Gd)}|D|d=1

1 w = 0
2 for n : 1..N
3 for d : 1..|D|
4 Let G′ = h(Sd, �,λ) = argmaxG′∈GSd

∑
(wi ,r,wj)∈A′ w · f(wi, r, wj)

5 if G′ �= Gd
6 w = w+∑

(wi ,r,wj)∈Ad f(wi, r, wj)−∑
(wi ,r,wj)∈A′ f(wi, r, wj)

7 return w

Arc parameters can then be calculated: λ(wi,r,wj) = w · f(wi, r, wj)
Figure 4.9: The perceptron learning algorithm as used in graph-based dependency parsing.

increases the scope of factorization and introduces model parameters over two or more neighboring
arcs in the tree. In both cases, it can be shown that non-projective parsing becomes computationally
intractable. In contrast, projective parsing remains feasible through simple augmentations to the
CKY reduction described above.

The arity of a word wi in a sentence is the number of dependents it has in the correct
dependency tree, denoted awi . For instance, the word had in figure 1.1 has an arity of 3, whereas the
word effect has an arity of 2. Arity is a useful parameter when considering the score of a dependency
tree, e.g., a verb should have an arity greater than zero, whereas an article most likely will have an
arity of zero. Our parameters should attempt to capture this fact. To do this, we first define awi as
the arity of wi in a graph G. Next, we add an additional parameter to the standard arc-factored
model, λawi , that measures the likelihood of a word having a particular arity α. The score of a tree
G = (V ,A) is now defined as:

score(G) =
∑

(wi ,r,wj)∈A
λ(wi,r,wj) +

∑
wi∈V

λawi

We do not weight the terms in this sum as any weighting can easily be folded into the parameters.
Notice that this additional parameter directly ties together the previously independent arcs

since it introduces an implicit trade-off in the parameters controlling arity and the parameters that
create each arc. It is not difficult to show that this simple augmentation results in non-projective
parsing becoming intractable. Consider the NP-complete problem of finding a Hamiltonian Path in
a digraph. As input, the system is given a connected digraph and, as output, the system must indicate
whether there exists at least one directed path that includes all nodes of the graph with no cycles. For
an arbitrary digraph G = (V ,A), we can reduce the Hamiltonian Path problem for G by defining
a sentence S = w0v1 . . . vn, for all vi ∈ V and a new word w0. We then define the parameters as
follows: λ(w0,−,vi) = 0; λ(vi ,−,vj) = 0 iff (vi, vj) ∈ A; λaw0=1 = 0; λavi=1 = 0; and λavi=0 = 0. All
other parameters are set to−∞. Note that we omit arc labels as they are not needed in the reduction.

58 CHAPTER 4. GRAPH-BASED PARSING

Figure 4.10: Horizontal and vertical Markov neighborhoods for the arc (will, VC, remain).

It is straightforward to show that the highest scoring dependency tree for S has a score of 0 if and
only if there exists a Hamiltonian path forG.This is because the arity constraints force each node to
have an arity of at most 1 or suffer a −∞ parameter in the summation. As a result, any dependency
tree must be just a single path connecting all nodes. Furthermore, the arity parameters, as well as the
well-formed dependency graph definition, are defined so that the only node that can be the root is
w0, so we can just remove that node and recover the path. It is also straightforward to see that any
Hamiltonian path corresponds to a zero scoring dependency tree (just add an arc from w0 to the
root of the path). Thus, if we could solve the parsing with arity problem tractably, then we would
have an efficient solution for the Hamiltonian path problem, which cannot be true unless P = NP .
Of course, this is just a worst-case analysis and says nothing about the average-case or situations
where strong assumptions are made about the distribution of parameter values.

The second extension beyond arc-factored models we consider is Markovization. In general,
we would like to say that every dependency decision is dependent on every other arc in a tree.
However, modeling all dependencies simultaneously is clearly not computationally feasible. Instead,
it is common to approximate this by making a Markov assumption over the arcs of the tree, in a
similar way that a Markov assumption can be made for sequential classification problems like part-
of-speech tagging with a hidden Markov model. Markovization can take two forms for dependency
parsing: horizontal or vertical relative to some arc (wi, r, wj), and we denote each as the horizontal
and vertical neighborhoods of (wi, r, wj), respectively. The vertical neighborhood includes all arcs in
any path from root to a leaf that passes through (wi, r, wj).The horizontal neighborhood contains
all arcs (wi, r ′, w′j). Figure 4.10 graphically displays the vertical and horizontal neighborhoods for
the arc (will, VC, remain).

Vertical and horizontal Markovization essentially allow the score of the tree to factor over
a large scope of arcs, provided that they are in the same vertical or horizontal neighborhood. A
dth order factorization is one in which the score of a tree factors only over d arcs – the arc itself

4.4. BEYOND ARC-FACTORED MODELS 59

plus the nearest d − 1 arcs in a neighborhood (arc-factored models are equivalent to d = 1). It
turns out, that even for 2nd order factorizations, non-projective parsing is intractable. As a result,
all higher orders of factorization are intractable since a dth factorization can always be embedded in
a d + 1st factorization by ignoring any additional arcs. We start by looking at the horizontal case.
Mathematically, a 2nd order horizontal Markovization will have parameters for every pair of adjacent
arcs in a tree. Let us define a new parameter λ(wi,r,wj)(wi,r ′,w′j) that parameterizes two horizontally
adjacent arcs with head word wi . The score of a tree can then be defined as:

score(G = (V ,A)) =
∑

(wi ,r,wj),(wi ,r
′,w′j)∈A

λ(wi,r,wj)(wi,r ′,w′j) +
∑

(wi ,r,wj)∈A
λ(wi,r ′,wj)

where the first summation is constrained to consider only adjacent arcs in the same horizontal
neighborhood. We have also included the original arc-factored parameters to account for head
words with an arity of 1. This is a notational convenience as these parameters can be folded into the
2nd order parameters.

Consider the NP-complete problem of 3-dimensional matching (3DM). As input, we are
given three sets of sizem, call themA,B and C, and a set T ⊂ A× B × C.The 3DM problem asks
whether there is a set T ′ ⊆ T such that |T ′| = m and for any two tuples (a, b, c), (a′, b′, c′) ∈
T ′, it is the case that a �= a′, b �= b′, and c �= c′. There is a simple reduction from 3DM to
the parsing problem with horizontal Markovization. We first define a new input sentence S =
w0a1 . . . amb1 . . . bmc1 . . . cm. Next, we set the parameters λ(ai ,−,bj),(ai ,−,ck) = 1, λ(ai ,−,bj) = 0,
and λ(ai ,−,ck) = 0 if and only if (ai, bj , ck) ∈ T . We again omit arc labels since they are not needed.
We additionally set λ(w0,−,ai),(w0,−,aj) = 0, λ(w0,−,ai) = 0 for all ai, aj ∈ A. All other parameters
are set to −∞. The key is that there is a 3DM if and only if the highest scoring dependency tree
has a score of m. First, no dependency tree can have a score greater than m. Second, the only trees
with a score of m will be those that contain arcs from w0 to all ai (contributes zero to the overall
score), and each ai will have exactly two outgoing arcs to a pair bj , and ck (there must be m of
these and the horizontal parameters will each contribute a value of one to the score). Any such
tree represents a 3DM since each a, b, and c, will be involved in exactly one pair of arcs (a,−, b)
and (a,−, c) representing the matching. Conversely, all valid matchings are trees with scores of m
under the definition of the parameters. Thus, there exists a 3DM if and only if the highest scoring
dependency tree has a score ofm. As a result, the parsing problem with horizontal Markovization is
unlikely to be tractable. The vertical case can also be shown to be NP hard using a similar reduction
from 3DM where one ties the vertical arc parameters to items in the set T .

Arity and Markovization represent two of the simplest means of extending graph-based mod-
els beyond arc-factored assumptions. Even these small extensions result in a loss of computational
efficiency and provide strong evidence that any extension that ties together the construction of more
than one arc is unlikely to be feasible.This is a strongly negative result as most linguistic theories tell
us that strong independence assumptions between dependencies are not well-founded. Such consid-

60 CHAPTER 4. GRAPH-BASED PARSING

erations have led to a line of research exploring approximations and guided brute-force techniques
to produce non-projective parsing systems without arc-factored

The above discussion does not assume any projectivity constraints and holds for the non-
projective case only. Once we assume projectivity, moving beyond arc-factored models is straight-
forward. This is because the dynamic programming tables at the heart of projective algorithms can
be easily augmented to account for non-local information. For simplicity, let us consider the O(n5)

CKY style parsing algorithm and the entry C[s][t][i] of the dynamic programming table, which is
shown graphically below:

In this case, the algorithm iterates over all q and j , finding the maximum of the subtree scores plus
the parameter for the new arc from wi to wj (we omit the symmetric case where i > j). To account
for arity, we can simply augment the chart to C[s][t][i][α], where α represents the arity of the root
wi of the subtree spanning ws to wt . The algorithms main recurrence can then be written as:

C[i][i][i][α] =
{

0 if α = 0

−∞ otherwise

C[s][t][i][α] = max
s≤q<t,s≤j≤t,α′

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C[s][q][i][α − 1] + C[q + 1][t][j][α′] if j > i

+ λ(wi,wj) + (λawi=α − λawi=α−1)

C[s][q][j][α′] + C[q + 1][t][i][α − 1] if j < i

+ λ(wi,wj) + (λawi=α − λawi=α−1)

Note that we have to subtract out the old arity parameter for wi and replace it with the new arity of
α. The highest scoring tree is then:

argmax
α>0

C[0][n][0][α]

The recurrence requires an additional iteration over the arity of wj , which results in a new runtime
of O(n6) since α can potentially take n different values. This is a simple worst-case analysis only
meant to show that the run-time is polynomial in n.

Polynomial algorithms are also easily constructed for both horizontal and vertical Markoviza-
tion. In these cases, the dynamic programming table is again augmented, but with information of

4.5. SUMMARY AND FURTHER READING 61

neighboring arcs, e.g., the most previous left (or right) dependent that wi subsumed, or the head of
wi . The recurrences can similarly be augmented to ensure that the table is filled correctly.

4.5 SUMMARY AND FURTHER READING

In this chapter we have discussed various properties of graph-based parsing systems. This included
an in-depth look at arc-factored models, the most common graph-based instantiation, as well as
the computational implications of extensions beyond them. We discussed both projective and non-
projective parsing algorithms and saw that, for arc-factored models, projective algorithms are less
efficient in the worst-case (O(n3) relative to O(n2) for non-projective algorithms). However, once
we move beyond arc-factored models, projective parsing easily remains polynomial in the length of
the input sentence, whereas non-projective parsing becomes intractable.This difference opens many
new directions of research. Clearly, the bottom-up dynamic programming backbone of projective
algorithms allows them to be augmented to move beyond arc-factored assumptions. Do bottom-
up algorithms exist for finding non-projective trees? Most likely not, otherwise we should be able
to augment them in similar ways to get efficient non-projective algorithms without arc-factored
assumptions. Do they exist for a subset of non-projective structures? How linguistically plausible is
this subset? If they exist, what is their relationship to other formalisms like tree adjoining grammars
and combinatorial categorial grammars (Bodirsky et al., 2005; Kuhlmann and Möhl, 2007). The
fact that graph-based non-projective parsing becomes intractable when moving beyond arc-factored
models is related to the work of Neuhaus and Bröker (1997). In that work, it was shown that parsing
in any grammar-based model satisfying some minimal conditions must be NP hard. One of these
conditions was that the grammar models arity.

Before we finish this chapter, it is worthwhile mentioning some of the literature available
for the interested reader. Graph-based methods can be traced to the mid 1990s in the work of
Eisner (1996b) who proposed a generative model of dependency parsing and the cubic parsing
algorithm described here. Though not explicitly called graph-based, Eisner’s work could be viewed
abstractly as 2nd order horizontal graph-based parsing. Roughly ten years after the initial work
of Eisner, extensive work began on discriminative methods for training graph-based dependency
parsers pioneered by McDonald, Crammer and Pereira (2005). It was in this and subsequent work
that the use of graph-theoretic algorithms for dependency parsing began to be explored thoroughly.

In terms of parsing algorithms, Eisner’s projective algorithm has been used in Eisner
(1996b,a); Paskin (2001, 2002); McDonald, Crammer and Pereira (2005); McDonald and Pereira
(2006); McDonald (2006). Context-free parsing algorithms that form the basis for the projective
parsing algorithms described in this chapter include the CKY algorithm (Younger,1967) and Earley’s
algorithm (Earley, 1970). The Chu-Liu-Edmonds algorithm is described formally in Chu and Liu
(1965); Edmonds (1967);Tarjan (1977); Georgiadis (2003), and was first used in dependency parsing
systems by Ribarov (2004) and McDonald, Pereira, Ribarov and Hajič (2005). A k-best extension
for the Chu-Liu-Edmonds is described in Camerini et al. (1980) and was used in the re-ranking
model of Hall (2007). Both non-projective and projective algorithms borrow techniques from se-

62 CHAPTER 4. GRAPH-BASED PARSING

quential processing including the use of back-pointers from the Viterbi algorithm (Viterbi, 1967;
Rabiner, 1989) and Markovization (Rabiner, 1989).

Many learning methods for arc-factored dependency parsing have been pro-
posed, including perceptron-based methods (McDonald, Crammer and Pereira, 2005;
McDonald, Pereira, Ribarov and Hajič, 2005; McDonald and Pereira, 2006; Corston-Oliver et al.,
2006; Carreras, 2007), probabilistic models both generative (Eisner, 1996b; Paskin, 2001;
Klein and Manning, 2002; McDonald and Satta, 2007; Wallach et al., 2008) and discrimina-
tive (Hall, 2007; Koo et al., 2007; Nakagawa, 2007; Smith and Smith, 2007), and max-margin
methods (Koo et al., 2007). Probabilistic or other models that require computing the sum of
tree scores or arc expectations use the matrix-tree theorem (Tutte, 1984) for non-projective
parsing, the application of which was explored in Koo et al. (2007), McDonald and Satta
(2007), and Smith and Smith (2007). Paskin (2001) studied probabilistic models for projective
trees, in which inside-outside like algorithms (Lari and Young, 1990) can be used. Models
that move beyond arc-factored assumptions include approximations based on projective al-
gorithms (McDonald and Pereira, 2006; McDonald et al., 2006), re-ranking methods using
k-best algorithms (Hall, 2007), integer linear programming techniques (Riedel and Clarke, 2006),
branch-and-bound algorithms (Hirakawa, 2006), sampling methods (Nakagawa, 2007), belief prop-
agation (Smith and Eisner, 2008), and tractable projective extensions for Markovization (Eisner,
1996b; McDonald and Pereira, 2006; Carreras, 2007).

Different feature sets have been explored including those for arc-factored mod-
els (McDonald, Crammer and Pereira, 2005) as well as for non-arc-factored mod-
els (McDonald and Pereira, 2006; Hall, 2007; Carreras, 2007; Nakagawa, 2007). McDonald
(2006) explores the impact on parsing accuracy of various feature sets.

There have also been studies using graph-based inference algorithms for voting over the
outputs of different parsing systems (Sagae and Lavie,2006).These methods usually defineλ(wi,r,wj)
as the number of different parsers that predicted that arc. With these parameters, Eisner’s algorithm
or the Chu-Liu-Edmonds algorithm can then be used to produce the tree that, on average, has the
most frequently predicted arcs across all different parsers.

63

C H A P T E R 5

Grammar-Based Parsing
In this chapter, we introduce grammar-based methods for dependency parsing. In contrast to the
data-driven methods treated in chapters 3 and 4, grammar-based methods rely on an explicitly
defined formal grammar.As a consequence,we have a more restrictive definition of the parsing model,
M = (�,λ, h). In the previous chapters, we defined � as a set of constraints. In this chapter, we will
assume that it represents a well-defined formal grammar. In such approaches, parsing is defined as
the analysis of a sentence with respect to the given grammar and a parameter set,G = h(S, �,λ). As
a consequence, if the parser finds an analysis, the sentence is said to belong to the language described
by the grammar. If the parser does not find an analysis, the sentence does not belong to the language.

In purely grammar-based approaches, the parameter set λ is typically empty. Exceptions can
be found in approaches in which probabilities for grammar rules are learned, in which case the
set consists of the learned probabilities, or approaches that use weighted constraints. For the latter
case, the parameter set can be determined manually or acquired automatically. If the parameter set
is learned, the resulting parsing algorithm is an example of a combination of grammar-based and
data-driven parsing.

The first approach that we will discuss here can be described as a modification of constituent-
based parsing methods, in which a context-free grammar is used (section 5.1).This method represents
dependencies as production rules in a context-free grammar. In this way, standard chart parsing
methods can be used. In section 5.1.1, we will investigate a conversion of a dependency grammar
into an efficiently parsable context-free grammar as well as probability models that can be used for
parsing such projective grammars.

The second approach to grammar-based dependency parsing that we discuss defines depen-
dency parsing as a constraint satisfaction problem (section 5.2). Here, the grammar consists of a set
of constraints that restrict possible analyses. Since constraint resolution in the general case is NP
complete, the parser must employ a heuristic to guarantee that a locally optimal analysis is found
efficiently. In such approaches, the constraints are generally written manually.

Definition 5.1. A grammar � of language L for our purposes is any formal, finite-size, complete
description of L.

This definition is out of necessity rather vague because the grammars used in the two approaches
discussed here are very different. We will define these grammars in more detail in the respective
sections.The definition of grammar also has a reverse side that concerns the set of sentences that are
accepted by the grammar. That is, if a sentence is not accepted by the grammar, it is not part of the
language. This is in contrast to strictly data-driven approaches where even non-standard sentences

64 CHAPTER 5. GRAMMAR-BASED PARSING

Figure 5.1: Short dependency example and its representation as a context free tree structure.

are intended to be analyzed as completely as possible.This may be intended in robust systems, where
a wrong or partial analysis is generally preferred to complete failure, or it may be a consequence of
the setup, which is the case for the data-driven parsers presented in the previous chapters.

5.1 CONTEXT-FREE DEPENDENCY GRAMMAR
In section 4.2.3, we looked at projective dependency parsing from a graph-theoretic viewpoint. Here,
we will use the same parsing method, but we will concentrate on the formal grammar aspect.

A projective dependency grammar can be viewed as a special case of a context-free grammar
in which the non-terminal symbols are words. Thus, the dependency representation in figure 5.1 is
a tree structure analysis, which implicitly represents a context-free grammar. In this case, the head
and its immediate dependents constitute a constituent in which the word that is the head also serves
as the head of the constituent. The root of the tree is the root of the dependency tree. We have
restricted this example to dependencies without labels since the approaches which we explore in this
section are cleaner to present without them. However, the models described in this section can easily
be extended to include labels by augmenting words. In the example in figure 5.1, the word the, for
example, could be extended to the:ATT, specifying that the word is in an ATT-relation to its head.

Definition 5.2. A context-free grammar � is a 4-tuple (N,�,�, start) where

1. N is a finite set of non-terminal symbols,

2. � is a finite set of terminal symbols,

3. � is a set of production rules of the form X→ α (where X ∈ N is a (single) non-terminal
symbol, and α is string of non-terminal and terminal symbols),

4. start ∈ N is the start symbol.

5.1. CONTEXT-FREE DEPENDENCY GRAMMAR 65

In the case of a context-free dependency grammar, N contains one non-terminal symbol for every
word in �. Because of this correspondence, we can represent the non-terminals by the words, as
we have done in figure 5.1. start is root, α is a string of words, and X consists of the head of
this string. Thus, each node in the tree structure is lexicalized in the sense of being labeled with a
terminal symbol. This leads to a considerably higher number of nonterminal symbols in comparison
to traditional context-free grammars.

The advantage of regarding a dependency grammar as a context-free grammar is that all the
well-studied parsing algorithms for such grammars, for example CKY (Younger, 1967) or Earley’s
algorithm (Earley, 1970), can be used for dependency parsing as well. A parsing algorithm that is
especially adapted to dependency parsing (Eisner’s algorithm) was introduced in section 4.2.3. Note
that non-projective dependencies cannot be dealt with in this approach.

In the following section, we will look at ways of converting dependency grammars into effi-
ciently parsable context-free grammars and discuss probability models that can be used in conjunction
with such grammars. One improvement for the standard CKY parsing algorithm was presented in
section 4.2.3. This algorithm can be used in grammar-based parsing as well. In this case, the gram-
mar is either written manually or extracted from a treebank. However, the grammar needs to be in
the form of a bilexical context-free grammar.

Definition 5.3. A bilexical context-free grammar �B is a context-free grammar in which� consists
of a set L of left dependencies H → NH H and a set R of right dependencies1 H → H NH .

Each production rule has two right-hand-side symbols, the head of a constituent H (which is also
the left-hand-side node) and a non-head nodeNH . In such a grammar, all dependents are generated
independently inside-out, i.e., the dependents closest to the head are generated first. The resulting
tree structure is binary. A tree structure based on a bilexical grammar for the sentence in figure 5.1 is
shown in the first tree in figure 5.2. For ease of transition to a more complex conversion, we represent
the non-terminals with a lexicalized non-terminal symbol Xh, which expands to wh and all of its
dependents.

Note that bilexical context-free grammars are not equivalent to standard CFGs. In a CFG, it
is possible to have constraints on children both to the left and to the right of the head. In bilexical
CFGs, this is not possible since the left and right children are generated independently of each other.
For more details see Nivre (2002).

5.1.1 PARSING WITH BILEXICAL GRAMMARS
One problem with the conversion presented above concerns the time complexity of a chart parser
using a bilexical grammar. Since the parser has to keep track of which word in a constituent is the
head (i.e., which word will serve as the left-hand-side node in a production), apart from the other
indices in chart parsing, the time complexity isO(n3 ·min(|�|, n2)). Since there is one non-terminal

1Note that the R used in these rules as well as in the rest of this section should not be confused with the one used for dependency
types in previous chapters.

66 CHAPTER 5. GRAMMAR-BASED PARSING

Figure 5.2: Two possible tree structures based on a bilexical grammar.

for every terminal, the number of production rules will in all practical situations be larger than n2, so
the resulting complexity is no better than O(n5). An additional problem results from the fact that
the conversion produces spurious tree structures since the order in which the dependents from the
left and right are added is not defined. Figure 5.2 shows two of the possible tree structures for the
dependency tree shown in figure 5.1. In order to avoid spurious structures and to reduce complexity
to O(n3), a split-head representation can be used instead.

In a split-head representation, each terminal wi of the dependency tree is represented as
two terminals: wli and wri . The intuition behind this conversion method is to attach all the left
dependents of a word to terminal wli and all the right dependents to terminal wri . The introduction
of two terminals per word leads to the two lexical rules:

Lli → wli
Rri → wri

In order to assemble the two terminals (with their dependents), we need the following rule:

Xi → Lli R
r
i

Additionally, we need the following rules for left (wj ← wi) and right (wi → wj) dependencies:

Li → Xj Li

Ri → Ri Xj

Last, we need a rule to create the root node for the dependency root→ wi :

root→ Xi

5.1. CONTEXT-FREE DEPENDENCY GRAMMAR 67

Figure 5.3: The split-head representation of the sentence in figure 5.1.

The split-head context-free tree structure that corresponds to the sentence in figure 5.1 is shown in
figure 5.3. Since Li collects all its left dependents, constituents headed by this symbol will always
have the head wli as the rightmost word in the constituent. For this reason, we do not need the
indices on Li and can reduce it to L. For Rri , the head is always the leftmost word. However, we
do need the index on Xj . Therefore, parsing such structures requires O(n4) parsing time. A more
efficient representation of dependency trees needs to do away with Xj . This can be done with the
Unfold-Fold transformation, a method borrowed from functional programming, as described below.

Since we only have one rule with X on the left, we can replace all occurrences of Xj by the
two symbols on the right-hand-side of the original rule Xj → Llj R

r
j :

Li → Lj Rj Li

Ri → Ri Lj Rj

Now, we do not needXj anymore, but instead we have ternary rules, which again results in a parsing
time requirement ofO(n4) since more combinations of partial trees are possible. For this reason, we
introduce a new symbol,Mi,j , which groups the original symbol with its neighboring new symbol.
This means that in the rule for Li , we group Rj and Li ; and in the rule for Ri , we group Ri and Lj .
Note that the sequence of symbols in both cases is the same, so that we need only one M rule for
both cases.

68 CHAPTER 5. GRAMMAR-BASED PARSING

Li → Lj Mi,j

Ri → Mi,j Rj

Mi,j → Ri Lj

Note also that we do not need the symbol X any longer as we can again replace it in the root rule
by the right-hand-side of its original production:

root→ Li Ri

The next question is: What do we gain by replacing X by a new symbol M with two indices? If we
look more closely, we see that we do not need the indices at all. We already know that we do not need
them for L and R. For Mi,j , the leftmost word is from its Li daughter, i.e., wi , and the rightmost
word is from Rj , i.e.,wj . As a consequence, a grammar based on this transformation can be parsed
in O(n3) time.

To wrap up the conversion, here is the complete set of grammar rules:

root→ LiRi for root→ wi

Lli → wli
Rri → wri
Li → Lj Mi,j for wj ← wi

Ri → Mi,j Rj for wi → wj

Mi,j → Ri Lj for all i, j ∈ �
The tree structure resulting from this conversion for the sentence in figure 5.1 is shown in figure 5.4.

So far, we have discussed an efficient representation for a bilexical grammar, which provides
us with a purely grammar-based approach to dependency parsing. In practice, bilexical grammars
are often data-driven as they are combined with a set of learned parameters λ. One possibility would
be to use the feature-based arc-factored parameterization presented in section 4.1 and to learn the
parameters using the perceptron algorithm. Whereas before we had a direct parameterization over
an arcwi → wj , we would now have a parameterization over production rules likeXi → Xi Xj and
Xi → Xj Xi (or rules likeLi → Lj Mi,j in a transformed grammar).The primary difference is that
now we have a formal grammar that can further restrict the space of well-formed dependency trees
for a sentence. In fact, if one simply includes all possible productions in the grammar, the two systems
would be identical (with the exception that graph-based models can also handle non-projectivity
through different parsing algorithms), which again shows that the division between grammar-based
and data-driven models is more for illustrative purposes.

However, the fact that it is possible to represent dependency grammars using context-free
grammars allows one to employ any number of data-driven techniques that are available for CFGs.
Perhaps the simplest is a probabilistic context-free grammar (PCFG). A PCFG is parameterized
over productions X→ α of the grammar, where each parameter is the conditional probability of
observing a production rule’s right-hand-side given the left-hand-side non-terminal,

λX→α = P(X→ α)

5.2. CONSTRAINT DEPENDENCY GRAMMAR 69

Figure 5.4: Unfold-Fold representation of the sentence in figure 5.1.

such that
∑
α

λX→α =
∑
α

P (X→ α) = 1

The parameters of the model can then be set using a variety of methods, the most common of which is
to maximize the likelihood of a training set derived from a treebank. In the case of bilexical grammars,
each production takes the form Xi → Xj Xi or Xi → Xj Xi , making this yet another model that
factors over dependency arcs. Models of this form are commonly called bilexical probability models, as
they model the probability of observing a head-dependent pair in a dependency tree. Just as was the
case for projective graph-based parsing systems, it is possible to extend these models to incorporate
additional dependency context such as horizontal or vertical dependencies.

5.2 CONSTRAINT DEPENDENCY GRAMMAR

As mentioned previously, a dependency parsing model consists of a grammar, a set of parameters,
and a fixed parsing algorithm, M = (�,λ, h). The grammar in the present case is a constraint
dependency grammar, and the parsing algorithm is a constraint satisfaction solver (see below for
details).The parameters are optional,but they can be present in the form of weights on the constraints
(see section 5.2.1 for more details).

70 CHAPTER 5. GRAMMAR-BASED PARSING

A constraint dependency grammar is a triple � = (�,R,C) in which� is the set of terminal
symbols, i.e., words; R is the label set; and C is the set of constraints.2 Such constraints restrict
dependencies between words or possible heads for a word. In a grammar for English, for example,
a rule would state that a noun phrase consists of a determiner and a countable noun. A constraint
describes the same situation: Countable nouns require determiners. Another example of a constraint
would be: Possible heads for prepositions are verbs or nouns to the left of the preposition. Thus, the
constraints have a function similar to production rules in a CFG grammar.

The rule stating that English nouns are either mass nouns, require a determiner or a genitive
modifier can be formulated as a constraint as follows:

Constraint 5.4. Missing Determiner Constraint:
X .cat = NN→
1) has_feature(X .feat,mass_noun) |
2) has_dependent(X .id ,DET) |
3) has_dependent(X .id ,GMOD)

The missing determiner constraint states that each word with the part-of-speech tag NN (normal
noun) is either marked as a mass noun or is modified by a determiner (DET) or a genitive modifier
(GMOD). In our example, the first line gives the name of the constraint. In the second line, we
state the category that is covered by the constraint, i.e., all words with the part-of-speech tag NN.
In this constraint, we use a single variable,X. The remaining lines following the right arrow specify
the conditions that must hold. In order to specify constraints, we need to specify attributes that can
be accessed and functions that check for properties of the word and its attributes. We have access to
the word itself (or rather its unique index, to be exact) X.id, to its part-of-speech tag X.cat , and to
its head X↑id. In our example, we use two functions, has_feature, and has_dependent , which check
whether a word has a certain feature or a certain dependent.

In a constraint dependency approach, parsing is defined as a constraint satisfaction problem
(CSP). For a fully defined CSP, we need to specify the variables, their domains, and the set of
constraints that need to be satisfied:

1. The set of variables S = w0w1 . . . wn represents the set of words in the sentence.

2. The domain of the variables wi is the set {wj |1 ≤ j ≤ n and j �= i} (the possible heads of a
word).

3. The set C of constraints defines the permissible values for variables.

The set of variables corresponds to the words in the sentence, their domain is the set of possible
heads, i.e., all other words in the sentence except the word itself. For example, the sentence

2We can extend this definition to a 4-tuple in which a separate set is included that represents different levels of annotation. For
example, we can then distinguish between syntactic and semantic constraints. Since we concentrate on the syntactic level here,
the triple suffices.

5.2. CONSTRAINT DEPENDENCY GRAMMAR 71

Economic news had little effect on financial markets.

has the set of variables S = {Economic, news, had, little, effect, on, financial, markets}, the domain of
variable Economic is the set {news, …, markets}, the domain of news is the set {Economic, had, …,
markets} if we disregard the period.

Now, methods from constraint satisfaction can be used to solve the parsing problem. Since
constraint satisfaction problems in general are NP complete,heuristic search techniques must be used.
One possible search technique is constraint propagation, a technique that enforces local consistency.
Similar to graph-based parsing, constraint propagation starts by assuming a fully connected graph,
a constraint network, in which the nodes represent the variables (i.e., the words), and the arcs the
constraints.At the beginning,every word hypothetically depends on every other word in the sentence.
The constraints are then used to exclude certain dependencies. The constraint that a preposition
can only depend on preceding nouns or verbs, for example, excludes all other possibilities. These
constraints are then propagated throughout the network, thus deleting inconsistent values. If,after the
application of all constraints, there are still variables with more than one possible value, the sentence
could not be disambiguated completely by the given set of constraints. In this case, disambiguation
can be completed by a variety of techniques or heuristics. One possibility to avoid incompletely
resolved parses is the use of weights for the constraints. In this case, violations of constraints with
the least important weight are preferred.

5.2.1 WEIGHTED CONSTRAINT DEPENDENCY GRAMMAR
The use of hard constraints, i.e., constraints that must always be satisfied, as described above has
turned out to be too rigorous an approach. Natural language is characterized by a high degree of
exceptions to rules or by phenomena which can more easily be described by preferences rather than by
rules. Languages with free word order provide a good reason for using such preferences. In German,
for example, there are strict rules for the placement of verbal elements but there is more freedom
in the ordering of non-verbal elements. As a consequence, the subject occurs in sentence-initial
position only in approximately 50% of the sentences. Another useful application of soft constraints
can be found in relative clauses in English. They generally follow the noun phrase that they modify.
However, in certain cases, the relative clause can be extraposed. In these cases, the variation can either
be permitted by not constraining the phenomenon in question at all or by a weighted constraint so
that non-canonical word order results in the violation of a constraint with a low weight. The first
option generally results in an increase in ambiguity and is therefore less desirable.

Another problem that is caused by hard constraints concerns robustness issues. Even carefully
edited text often contains ungrammatical usages, either by mistake or in word plays.Manually written
grammars often cover only grammatical language and thus are unable to provide an analysis for such
sentences. Since grammar-based methods assume that the grammar is able to distinguish between
grammatical and ungrammatical sentences, it would be counter-productive to include ungrammatical
rules or constraints into the grammar. In addition, even if the grammar writer had decided to include
such cases, it is difficult to come up with all possible ungrammatical cases. For this reason, soft or

72 CHAPTER 5. GRAMMAR-BASED PARSING

defeasible constraints are used instead. In this approach, each constraint is assigned a weight between
0.0 (= hard constraint) and 1.0. This weight defines the importance of the constraint relative to
other constraints. For a constraint c, we denote its weight by the parameter λc. The acceptability of
an analysis, weight(G), is defined as the product of the weights of all constraints c violated in the
analysis:

weight(G) =
∏
c∈C

λc

An acceptability of 0.0 would indicate ungrammaticality. As a consequence, hard constraints, which
must be satisfied, have the weight 0.0. The higher the weight, the more acceptable the violation
of the respective constraint. Thus, preferences tend to have scores closer to 1.0. Note that this is
counter-intuitive, but in a model in which weights are multiplied, a sentence weight of 0.0 translates
into an ungrammatical analysis.

The difference between English and German subject positions can be described by the fol-
lowing weighted constraints:

Constraint 5.5. English Subject Position : 0.1
X .label = SBJ→ distance(X .id ,X↑id) > 0

Constraint 5.6. German Subject Position : 0.5
X .label = SBJ→ distance(X .id ,X↑id) > 0

Here, X refers to the subject, while X↑id refers to the head of the subject. Both constraints state,
using the distance relation, that the subject is to be found to the left of its head (X↑id). For English,
the weight of the constraint is close to 0.0, indicating that it is a constraint whose violation results
in a low acceptability score. For German, in contrast, the weight is higher, thus indicating that the
violation of the constraint can still lead to an acceptable analysis. The weights can either be assigned
manually, thus leading to a purely grammar-based approach, or they can be learned from a labeled
set of data, in which case the resulting constraint dependency grammar is categorized as both a
grammar-based and a data-driven approach.

5.2.2 TRANSFORMATION-BASED CONSTRAINT DEPENDENCY PARSING
The method based on constraint propagation and weighted constraints achieves good parsing results.
However, it suffers from the following problems: The constraints are often insufficient for reaching
a complete disambiguation of a sentence. When this is the case, the solution consists in applying
heuristics, which increases the risk that the correct solution will be deleted so that from the remaining
variable values, no solution can be reached. For this reason, we will look at an alternative parsing
method that is based on repair. The idea underlying this method is to start with an (arbitrary)
dependency analysis for a sentence and repair it step by step, guided by the weights of the constraints.

5.2. CONSTRAINT DEPENDENCY GRAMMAR 73

That is, the dependency that violates the constraint with the lowest weight (i.e. the hardest constraint)
should be repaired first. Since the resulting dependency tree must be complete, the method has the
anytime property, i.e., the process can be stopped at any time with a complete analysis.

The design of such a repair method needs to answer the following questions:

1. Which dependency graph should be used as the initial graph?

2. Which variable should be modified next?

3. If a variable w is to be modified, which value should be chosen?

The simplest approach to the question concerning the initial graph assignment is to use a ran-
dom graph. However, since convergence normally depends on the quality of the initial graph, it is
reasonable to choose initial results that optimize unary constraints.

Definition 5.7. A unary constraint is a constraint that restricts the domain of a single variable.

The constraints presented in this section (see, e.g., constraint 5.4) are unary constraints. Since only
one variable is involved, unary constraints can be checked very efficiently.

At first glance, there is a very obvious answer to the question of which variable to choose next:
Select the violated constraint with the lowest weight and repair it. This process is repeated until
there are no more violations. One problem with this approach is that only one constraint violation
at a time is repaired. In cases where more than one hard constraint is violated, the repaired graph
will still have an acceptability score of 0.0 (since the sentence score is calculated as the product of
the constraint weights) and will show no improvement. In order to cover such cases properly, the
selection function must separate hard and soft constraints and prefer solutions with fewer violations
of hard constraints. Thus, a solution that violates 3 hard constraints is considered better than one
that violates 4 hard constraints, independently of how many soft constraints are violated.

Another problem with the approach described so far is that it tends to converge to local
maxima. Here, a local maximum is a state in the sequence of repairs in which every possible next
repair step results in a deterioration in acceptability, but which may eventually lead to the best
solution. If reaching the global optimum requires more than one step, the first of these steps will
lead to a deterioration before the global optimum can be reached. Figure 5.5 (adapted from Foth,
1999) shows such a situation for the German sentence Die Katze jagt der Hund. (Theacc catacc chases
thenom dognom.).The first graph (a) incorrectly assumes the canonical word order with subject before
and direct object after the verb.This analysis violates only the constraint that ensures case agreement
in a noun phrase. In order to reach the global optimum (e), the subject and direct object label
must exchange places, and the case assignments for die Katze and for der Hund must be corrected.
The resulting graph would only violate the subject position preference, which is a less important
violation. However, every single step away from the local maximum leads to lower accuracy. In order
to leave the local maximum, the algorithm must be allowed to pursue steps that explore solutions
with initially suboptimal scores. For the example in figure 5.5, first, the agreement violation between

74 CHAPTER 5. GRAMMAR-BASED PARSING

Figure 5.5: A local minimum reached by the repair method (a) and the steps to the global optimum (e).

5.3. SUMMARY AND FURTHER READING 75

der and Hund is corrected so that the determiner is marked as being nominative (b). This correction
leads to the violation of the constraint that requires a direct object to be in accusative. This violation
is remedied by making Hund the subject of the sentence (c). Then Katze cannot be the subject and
is thus changed to direct object (d). Finally, both die and Katze must change their case annotation
to accusative (e). This analysis only violates the preference for having the subject in first position,
which is a softer constraint than the case agreement constraint so that the resulting analysis is the
global optimum.

However, one problem is that there is no guarantee that a better solution will be found when
sub-optimal steps are explored. For this reason, and in order to ensure the anytime property of the
algorithm, the previously found optimal solution (which may still be a local maximum) is stored in
memory so that it can be retrieved when the search is stopped without finding a better solution.
Another problem is that allowing the algorithm to pursue suboptimal solutions by randomly selecting
violations to correct may result in a cycle. Thus, after the first suboptimal repair step in the example
above, the algorithm has the choice between correcting the object agreement violation and undoing
the modification and going back to the local maximum. While the latter improves the overall score,
the former results in a further deterioration. In order to avoid such circular behavior, the algorithm
must keep track of which constraint violations have already been corrected. These violations cannot
be repeated. Such a guided search is called tabu search Glover and Laguna (1977). After a further
modification of the algorithm, the resulting transformation-based constraint dependency parsing
algorithm is a combination of heuristic repair with a complete search of up to two domains of
variables in order to ensure that local maxima can be overcome. This algorithm was tested with a
manually written grammar on German sentences. A comparison of this approach with a complete
search Foth (1999) showed that in 80% of the cases, the same solution is found, in 10% the repair
method provides inferior analyses, but for 10% of the sentences, the analyses of the repair methods
are better. Half of these cases are sentences for which the complete search could not find any analysis.

5.3 SUMMARY AND FURTHER READING

In this chapter, we looked at grammar-based parsing and related issues. We concentrated on two
different approaches to grammar-based parsing: The first approach is based on the finding that
projective dependency grammars can be transformed into context-free grammars. This is based on
work by Gaifman (1965) and Hays (1964) in the 1960s.

The more efficient Unfold-Fold conversion, which represents each word as two separate items
was introduced by Eisner and Blatz (2007) and Johnson (2007). Bilexical probability models in the
context of dependency parsing were introduced by Eisner (1996a,b). He suggested bilexical de-
pendency grammars and a CKY-like chart parser that allows for efficient parsing of dependencies.
A more thorough investigation of the properties of this algorithm can be found in Eisner (2000).
Eisner and Satta (1999) present an efficient parser for parsing bilexical dependency grammars using
the split-head representation described in section 5.1.1. Eisner and Smith (2005) extend the prob-
ability model of Eisner’s parser to include a preference for short-distance dependencies. They show

76 CHAPTER 5. GRAMMAR-BASED PARSING

that the modified probability model improves parsing performance in terms of accuracy and time
requirements for English and Chinese but not for German.

While Eisner’s parsing model is based on bottom-up parsing, there is a parsing model based on
link grammar that works top-down (Sleator and Temperley, 1993). Link grammar is very similar to
dependency grammar; one of the major differences is that links are not directed.The parser proceeds
by setting up a link between two words wi and wj based on the linking requirements of wi and wj ;
then it attempts to link all the words betweenwi andwj . Lafferty et al. (1992) describe a probability
model for the link grammar parser.

Pro3Gres is another grammar-based dependency parser for English. In Pro3Gres (Schneider,
2004; Schneider et al., 2004), a combination of chunk parsing (Abney, 1991) and CKY parsing is
used with a probability model that relies on distances but does not take part-of-speech tags into
account.

A good introduction to learning PCFGs can be found in Manning and Schütze (2000). Ex-
tensions to PCFGs have also been studied in the context of dependency parsing, most notably the
generative statistical parsers of Collins (1999) and Charniak (2000), which have been very influ-
ential in constituency-based parsing for English. Collins et al. (1999) applied the Collins parser
to the Prague Dependency Treebank of Czech, and Hall and Novák (2005) used both the Collins
parser and the Charniak parser to parse Czech, adding a corrective probability model for recov-
ering non-projective dependencies in post-processing. Zeman (2004) and Zeman and Žabokrtský
(2005) investigate combining a number of grammar-based models including those based on the
Collins and Charniak parsers, as well as others. Another example of a combination of constituent
and dependency parsing can be found in the Stanford Parser (Klein and Manning, 2002, 2003),
which combines CFG structures and dependency structures in a factored model.

The second approach to grammar-based dependency parsing defines the problem as con-
straint satisfaction. Here, the grammar consists of constraints.The constraint-based parsing method
was introduced by Maruyama (1990). The Hamburg group around Wolfgang Menzel, who imple-
mented a constraint dependency parser (CDG) for German, used the same techniques for their basic
system but added weights to the constraints (Menzel and Schröder, 1998; Foth and Menzel, 2005;
Schröder et al., 2000). The parser was then extended to perform the transformation-based search
with repair (Foth, 1999; Schröder, 2002; Foth et al., 2004, 2005).The German grammar is manually
written and consists of approximately 700 constraints. A description of the constraint grammar for
German can be found in Foth (2007). Since the manual assignment of weights for so many con-
straints is difficult, the group also experimented with a machine learning approach based on genetic
algorithms (Schröder et al., 2001, 2002). The results show that when starting with the manually
assigned weights, the learning method achieves a moderate increase in quality. When starting with
randomly assigned weights, the learning approach results in a performance level that is close to the
manual results but does not reach them.

The constraint propagation approach was also used in parsec (Harper and Helzerman, 1995;
Harper et al., 1995), a dependency parser that was developed for integration into a speech recognition

5.3. SUMMARY AND FURTHER READING 77

system. Harper et al. developed a learning approach for constraint dependency parsing based on
abstract role values (ARV), which describes a dependency between two words but abstracts over their
exact positions. Instead, only a relative position is given. Wang and Harper extend the approach
to a probabilistic model using SuperARVs (Wang and Harper, 2002, 2004), which are reminiscent
of supertags in tree-adjoining grammar (Bangalore and Joshi, 1999). Parsing with SuperARVs is a
two-stage process: In the first step, each word is assigned the best SuperARVs, and in the second step,
the dependency requirements of the SuperARVs are resolved. This is similar to Eisner’s probability
model B (Eisner, 1996a).

Constraint propagation is central also to Topological Dependency Grammar (Duchier, 1999;
Duchier and Debusmann, 2001), which divides the set of grammatical constraints into imme-
diate dominance (ID) and linear precedence constraints (LP) in a way which is reminiscent of
work on ID/LP-grammars for constituency-based representations. The most recent development
of this framework is called Extensible Dependency Grammar, where the division is generalized
to arbitrarily many dimensions, including also dimensions of semantics and information struc-
ture (Debusmann et al., 2004).

Lin’s minipar (Lin, 1998a) is a principle-based parser that encodes grammatical principles
from the theory of Government and Binding (Chomsky, 1981) as weighted constraints. Parsing is
performed with distributed charts, that is, each word maintains a chart with partial results pertaining
to the grammatical category of the word. In order to coordinate parsing between different words,
minipar employs a message passing algorithm.

79

C H A P T E R 6

Evaluation
In this chapter, we will consider the practical side of dependency parsing. First, we will discuss
different evaluation metrics.Then we will discuss a suggestion for using dependency representations
to compare parsers based on different grammar formalisms, and we will discuss how constituent
treebanks can be converted into a dependency representation. This is an important conversion since
for many languages, only constituent-based treebanks are available. We will also have a quick look
at the shared tasks on dependency parsing of the Conference on Computational Natural Language
Learning (CoNLL) because they provide many valuable resources.

6.1 EVALUATION METRICS
The standard methodology for evaluating dependency parsers, as well as other kinds of parsers,
is to apply them to a test set taken from a treebank and compare the output of the parser to the
gold standard annotation found in the treebank. Dependency parsing has been evaluated with many
different evaluation metrics. The most widely used metrics are listed here:

• Exact match: This is the percentage of completely correctly parsed sentences. The same
measure is also used for the evaluation of constituent parsers.

• Attachment score: This is the percentage of words that have the correct head. The use of
a single accuracy metric is possible in dependency parsing thanks to the single-head prop-
erty of dependency trees, which makes parsing resemble a tagging task, where every word is
to be tagged with its correct head and dependency type. This is unlike the standard metrics
in constituency-based parsing, which are based on precision and recall, since it is not pos-
sible to assume a one-to-one correspondence between constituents in the parser output and
constituents in the treebank annotation.

• Precision/Recall: If we relax the single-head property or if we want to evaluate single depen-
dency types, the following metrics can be used. They correspond more directly to the metrics
used for constituent parsing.

– Precision: This is the percentage of dependencies with a specific type in the parser output
that were correct.

– Recall: This is the percentage of dependencies with a specific type in the test set that
were correctly parsed.

– Fβ=1 measure: This is the harmonic mean of precision and recall.

80 CHAPTER 6. EVALUATION

All of these metrics can be unlabeled (only looking at heads) or labeled (looking at heads and labels).
The most commonly used metrics are the labeled attachment score (LAS) and the unlabeled attachment
score (UAS).

LAS, as we have presented it above, gives an evaluation of how many words were parsed
correctly. However, this may not always be the point of interest. Another way of evaluating the quality
of dependency parses is using sentences as the basic units. In this case, we calculate for each sentence
what the percentage of correct dependencies is and then average over the sentences. The difference
becomes clear when we look at a test set containing 2 sentences: Let us assume that for the first
sentence, the parser assigned correct dependencies to 9 out of 10 words. For the second sentence, we
have 15 out 45 words correct.The word-based LAS would beLASw = (9+ 15)/(10+ 45) = 0.436.
The sentence-based LAS is calculated as LASs = (9/10+ 15/45)/2 = (0.9+ 0.333)/2 = 0.617.

In the light of this distinction, we can call the word-based LAS micro-average LAS and the
sentence-based one a macro-average LAS. Another way of calculating a macro-average LAS is by
averaging over all dependency types.

6.2 DEPENDENCIES FOR CROSS-FRAMEWORK PARSER
EVALUATION

With the advent of many broad coverage (constituent) parsers, the problem of comparing the dif-
ferent analyses of these parsers became obvious. It is very difficult to compare parsers that produce
deep trees with parsers that produce flatter trees. One possibility would be to perform task-based
(in vivo) evaluation, i.e., evaluation in a system that uses a parser as a component, such as a machine
translation system or a question answering system. By integrating different parsers, we can compare
the system’s performance given a specific parser. This is normally not done because of the lack of
systems that can easily integrate different parsers without adaptation.

An additional problem for in vitro evaluation is that the standard evaluation metrics for
constituent parsing, precision and recall, evaluate one attachment error as causing errors on all levels
whose spans are affected by the attachment. This can be shown with the following example adapted
from Lin (1995):

[[Bellows [made [the request]]] [while [[the all-woman jury] [was [out [of [the courtroom]]]]]]]
[Bellows [[made [the request]] [while [[the [[all-woman] jury]] [was [out [of [the courtroom]]]]]]]

One of the differences between the two analyses is that in the first case, the while clause is the
sister of the first clause while in the second analysis, it is a sister of the verb phrase made the request.
An evaluation of these trees results in a recall of 81.8% and in a precision of 75.0%, which seems
excessive for a single attachment error.

A possible way of leveling the differences between flat and deep trees, as well as the high error
counts resulting from different attachment levels, is first converting both the original treebank tree
and the parser output into dependencies and then evaluating on the latter. The dependency format
has the advantage that all structures are reduced to one dependency relation per word, thus equalizing

6.3. CONVERTING CONSTITUENT TREEBANKS INTO DEPENDENCY FORMATS 81

the differences between different parsers. However, if the output of different parsers using different
grammars needs to be compared, the conversion to a single dependency format with a predefined
label set will result in cases in which information is lost. This problem occurs when the parser
makes more fine-grained distinctions than the dependency grammar. The other case, in which the
dependency grammar makes more fine-grained distinctions than the parser, is even more difficult.
In this case, the conversion would need to employ heuristics to determine which dependency label to
use in any given case.This results in errors introduced by the conversion process. Crouch et al. (2002)
report an error of 2 percentage points in a case where they converted the output of an LFG-based
parser into a dependency representation. One possibility to at least partially avoid these problems is
the use of a hierarchy of categories so that the evaluation can be performed on a fine-grained level
as well as on coarser-grained levels. For example, such a hierarchy might specify a rather generic
term argument, which can be either a subject or a complement. Complements can then be split further
into phrasal object and clausal complement. If a parser does not distinguish between different types of
complements, it can still be evaluated on the coarser level of complement.

6.3 CONVERTING CONSTITUENT TREEBANKS INTO
DEPENDENCY FORMATS

So far, we have presupposed the existence of a dependency grammar or a treebank in dependency
format. Many treebanks, however, are annotated with constituent structure. The standard treebank
for English, the Penn Treebank (Marcus et al., 1993), is an example of such a constituent-based
treebank. If we start from such a treebank, we need to convert the treebank to a dependency format
if we wish to build a dependency parser over the resource. In cases where the constituent analysis
is augmented by grammatical functions (such as subject, object, head, non-head), the conversion is
straightforward: For each constituent, we determine its head. All the other words and constituents
are treated as dependents of the head, and their grammatical function can be used as the label for
the dependency. For the constituent structure in the upper half of figure 6.1, for example, we can
see that the verb phrase (VP) is the head of the S constituent, would is the head of the VP, and I
is the head of the subject noun phrase (NP). From this information, we can deduce that there is a
dependency would → I. The whole dependency graph is shown in the lower half of figure 6.1.

In most constituency-annotated treebanks, however, only certain grammatical functions are
annotated explicitly. Head/non-head information is generally implicitly encoded, for example when
an X-bar scheme underlies the annotation. In such cases, the conversion needs to be based on head
finding heuristics. Such rules specify, for each constituent type, which daughter nodes can serve as
heads, in which order they should be searched, and from which direction in the constituent. An
example for such a head-finding heuristic for prepositional phrases (PP) is given below.

PP right IN TO VBG VBN RP FW

82 CHAPTER 6. EVALUATION

((S
(NP-SBJ I/PRP-HD)
(VP-HD would/MD-HD
(VP like/VB-HD

(S
(NP-SBJ it/PRP)
(VP-HD to/TO

(VP-HD have/VB-HD
(NP

(NP-HD a/DT stop/NN-HD)
(PP-LOC in/IN-HD

(NP Boston/NNP-HD))))))))))

Figure 6.1: CFG tree with head information and its dependency representation.

This heuristic states that we search from left to right among the constituents of the PP. If we find a
preposition (IN), we have the head; if the phrase does not contain a preposition, we next look for a
word with the part-of-speech tag TO, and so forth.

Since the constituent tree often does not contain grammatical functions, the dependencies are
either unlabeled or labeled with a combination of the involved constituents. Thus, the dependency
between would and I could be labeled SBJ since the NP is marked as the subject. If this were not
the case, we could label this dependency with the label NP_S_VP stating that the mother node of
the partial tree is the S node, the left constituent is an NP, and the right constituent a VP. This helps
to distinguish subject NPs from objects (which are not attached at the S level). Such dependency
annotations can be used with any dependency parsing algorithms discussed in this book as well as
with head-driven statistical parsers such as the one by Collins (1999).

6.4 THE CoNLL SHARED TASKS ON DEPENDENCY
PARSING

The Conference on Computational Natural Language Learning (CoNLL) features a shared task
each year, in which participants train and test their learning systems on exactly the same data sets,
in order to compare systems under the same conditions. Apart from the results of the systems that
are published at the conferences, the shared tasks have also resulted in very useful repositories for

6.4. THE CoNLL SHARED TASKS ON DEPENDENCY PARSING 83

standardized data sets, overviews of systems, and evaluation software. In 2006 and 2007, the shared
task was devoted to dependency parsing. In 2006, the focus was on multilingual dependency parsing.
In 2007, there were two separate tracks: one track continued the theme of multilingual dependency
parsing, and the other track was concerned with domain adaptation. In 2008, the shared task
was an extension of the previous tasks: joint learning of syntactic and semantic dependencies. All
three shared tasks produced very informative web pages: http://nextens.uvt.nl/˜conll/

for 2006, http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite for 2007, and
http://www.yr-bcn.es/conll2008/ for 2008.

One of the most important outcomes of the 2006 shared task was the data for-
mat, a slight modification of which is in the process of becoming a standard for depen-
dency parsing. The data format is an 8 column format,1 based on the Malt-TAB format (cf.
http://w3.msi.vxu.se/˜nivre/research/MaltXML.html). The 8 columns are:

1. ID: Word counter, starts at 1 for each sentence.

2. FORM: Word form or punctuation symbol.

3. LEMMA: Lemma or stem if available.

4. CPOSTAG: Coarse-grained part-of-speech tag.

5. POSTAG: Fine-grained part-of-speech tag. If only one part-of-speech tagset is available, this
column has the same value as the previous one.

6. FEATS: Unordered set of syntactic and/or morphological features if available. Individual
features are separated by a vertical bar.

7. HEAD: Head of the current word. This is either the ID value of another token or 0 if the
word depends on the virtual root of the sentence (root).

8. DEPREL:The dependency relation (label) to the head. If HEAD=0, the dependency relation
may either be a meaningful label or have the default value ROOT.

Columns 1 through 6 represent possible types of information that are given as input to the parser. If
values are unavailable, the columns contain underscores. Columns 7 and 8 contain the information
to be learned. Figure 6.2 shows a dependency graph for a Dutch sentence and its representation in
the CoNLL dependency format.

The shared task 2006 featured 13 languages from 7 language families: Arabic, Chinese, Czech,
Danish, Dutch, German, Japanese, Portuguese, Slovene, Spanish, Swedish, Turkish, and optionally
Bulgarian. The training sets ranged from 1 500 (Arabic, Slovene) to 72 000 sentences (Czech). The
test sets were selected so that they contained approximately 5 000 words.

The multilingual track of the shared task 2007 featured 10 languages from 9 language families:
Arabic, Basque, Catalan, Chinese, Czech, English, Greek, Hungarian, Italian, and Turkish. For the
1The original format contains 2 more columns, which are almost never used, so we refrain from presenting them here.

http://nextens.uvt.nl/~conll/
http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite
http://www.yr-bcn.es/conll2008/
http://w3.msi.vxu.se/~nivre/research/MaltXML.html

84 CHAPTER 6. EVALUATION

1 Cathy Cathy N N eigen|ev|neut 2 su7
2 zag zie V V trans|ovt|1of2of3|ev 0 ROOT
3 hen hen Pron Pron per|3|mv|datofacc 2 obj1
4 wild wild Adj Adj attr|stell|onverv 5 mod
5 zwaaien zwaai N N soort|mv|neut 2 vc
6 . . Punc Punc punt 5 punct

Figure 6.2: Dependency graph and its representation in the CoNLL column format.

training sets, an upper limit of 500 000 words was introduced, which led to a reduced training set
for Czech as compared to the 2006 Czech training set. As a consequence, the training sets varied
between 2 700 (Greek) and 25 400 (Czech) sentences. The target size for test sets was again set to
5 000 words.

The domain adaptation track 2007 used English as the only language. The training data con-
sisted of a dependency version of the Penn treebank (Marcus et al., 1993), which was also used as
training data for English in the multilingual track.The participants were provided with a small devel-
opment set from the biochemical domain as well as with large sets of unlabeled data from all domains
(training, development, and test). The data for the tests came from two different domains: chemical
abstracts (Kulick et al., 2004) and parent-child dialogs from the CHILDES corpus (MacWhinney,
2000).

All the data sets are still available although most of them require licenses. More information
can be found on the web sites.

In 2006, 19 systems participated. In 2007, 23 systems participated in the multilingual track
and 10 systems in the domain adaptation track. For reasons of space, we will not discuss the do-
main adaptation track further, but will concentrate on the top scores reached for the languages in
2006 and 2007. Complete lists of results can be found on the web pages and in the overview pa-
pers (Buchholz and Marsi, 2006; Nivre, Hall, Kübler, McDonald, Nilsson, Riedel and Yuret, 2007).
The results for 2006 are shown in table 6.1, the results for the multilingual track in 2007 in table 6.2.

The results show that dependency parsing can be successfully applied to a wide variety of
languages. However, there are differences in performance for different languages, with the labeled
attachment score ranging from 91.65% for Japanese to 65.68% for Turkish and 66.91% for Arabic

6.4. THE CoNLL SHARED TASKS ON DEPENDENCY PARSING 85

Table 6.1: Top scoring results for the 13 languages in the CoNLL 2006 shared task. Ar=Arabic,
Ch=Chinese, Cz=Czech, Da=Danish, Du=Dutch, Ge=German, Ja=Japanese, Po=Portuguese,
Sl=Slovene, Sp=Spanish, Sw=Swedish, Tu=Turkish, Bu=Bulgarian.
Language Ar Ch Cz Da Du Ge Ja Po Sl
LAS 66.91 89.96 80.18 84.79 79.19 87.34 91.65 87.60 73.44
UAS 79.39 93.18 97.30 90.58 83.57 90.38 93.16 91.36 83.17

Language Sp Sw Tu Bu
LAS 82.25 84.58 65.68 87.57
UAS 86.05 89.54 75.82 91.72

Table 6.2: Top scoring results for the 10 languages in the CoNLL 2007 shared task (multilingual
track). Ar=Arabic, Ba=Basque, Ca=Catalan, Ch=Chinese, Cz=Czech, En=English, Gr=Greek,
Hu=Hungarian, It=Italian, Tu=Turkish.
Language Ar Ba Ca Ch Cz En Gr Hu
LAS 76.52 76.94 88.70 84.69 80.19 89.61 76.31 80.27
UAS 86.09 82.84 93.40 88.94 86.28 90.63 84.08 83.55

Language It Tu
LAS 84.40 79.81
UAS 87.91 86.22

(in 2006). However, note that the two languages which proved to be the most difficult ones in
2006, Turkish and Arabic, were also used in 2007. The best results in 2007 for these languages were
considerably better (79.81% LAS for Turkish2 and 67.52% for Arabic). In the 2007 multilingual
track, the languages can be separated into three classes with respect to top scores:

• Low (76.31–76.94):
Arabic, Basque, Greek

• Medium (79.81–80.27):
Czech, Hungarian, Turkish

• High (84.40–89.61):
Catalan, Chinese, English, Italian

It is interesting to see that the classes are more easily definable via language characteristics than
via characteristics of the data sets. The split goes across training set size, original data format (con-
stituent vs. dependency), sentence length, percentage of unknown words, number of dependency

2However, it should be pointed out that the rules for scoring intra-word dependencies in Turkish changed from 2006 and 2007,
so that the net gain in accuracy was 7–8 percentage points, rather than 14.

86 CHAPTER 6. EVALUATION

labels, and ratio of part-of-speech tags and dependency labels. The class with the highest top scores
contains languages with a rather impoverished morphology. Medium scores were reached by the two
agglutinative languages, Hungarian and Turkish, as well as by Czech. The most difficult languages
were those that combine a relatively free word order with a high degree of inflection. Based on these
characteristics, one would expect to find Czech in the last class. However, the Czech training set
is four times the size of the training set for Arabic, which is the language with the largest training
set of the difficult languages. In the 2006 set, there are no clear classes with respect to top scores.
Some languages, such as Turkish, fit into the 2007 pattern, and for Japanese, the high results can be
explained by its genre, dialogs. However, there is no overall pattern, and the results cannot easily be
explained by data set or language characteristics.

6.5 SUMMARY AND FURTHER READING
This chapter started out by giving an overview of the evaluation metrics used for dependency parsing.
After looking at a method for using dependency representations to evaluate parsers based on different
linguistic frameworks, we discussed how constituent treebanks can be converted into dependency
representations. Finally, we gave an overview of the CoNLL shared tasks on dependency parsing.
The discussion of shared tasks leads to the question of how to compare the different dependency
parsing algorithms presented in this book, which we look at in chapter 7.

For many languages, there exists a constituent-based but no dependency-based treebank. In
general, it is possible to convert such treebanks into dependencies. The resulting representation
can be used for stand-alone dependency parsing as well as for CFG parsing augmented with de-
pendencies. To our knowledge, the first such conversion was used by Magerman (1995). There
are many different head finding tables for the Penn treebank all ultimately based on Magerman’s
original heuristics. One of the better documented versions can be found in Collins (1999). A de-
scription of the conversion algorithm can be found in Lin (1998b). A converter from the Penn
Treebank format to dependencies was developed by Johansson and Nugues (2007a). This converter
was used for the CoNLL shared tasks 2006 and 2007. The hierarchy of dependencies was sug-
gested by Carroll et al. (1998). A whole range of suggestions for new evaluation metrics, many
of which center around using dependency representations in one form or another, can be found
in Carroll (2002). Overviews of the CoNLL shared tasks were presented by Buchholz and Marsi
(2006) for 2006, by Nivre, Hall, Kübler, McDonald, Nilsson, Riedel and Yuret (2007) for 2007, and
by Surdeanu et al. (2008) for 2008.

87

C H A P T E R 7

Comparison
In previous chapters, we have discussed a few of the more prominent approaches to dependency
parsing that are in use today. We have attempted to make connections between each approach in
the text of these chapters, but this was often in passing and without the treatment that the topic
deserves. In this chapter, we aim to contrast different approaches both theoretically and empirically
when possible. We start by looking at the two purely data-driven methods examined in this book:
transition-based and graph-based parsing. We look at how these methods are different theoretically
and how these differences manifest themselves in empirical parsing accuracy. We then shift our
focus to comparing data-driven and grammar-based approaches and attempt to draw connections
between model assumptions and the resulting algorithms for producing dependency trees.

7.1 COMPARING TRANSITION-BASED AND GRAPH-BASED
MODELS

Before we dive into the comparison, it is worth summarizing quickly both transition-based and
graph-based parsing in terms of parameterization and parsing algorithms.

• Parameterization: Transition-based systems parameterize models over transitions in an ab-
stract state machine, where each state (or configuration) represents a dependency graph. This
allows these models to create rich feature representations over possible next transitions as well
as all previous transitions that have occurred to bring the system into the current state. Con-
versely, graph-based models parameterize over subgraphs of the resulting dependency tree. As
such, these models have a rather impoverished feature representation with a very local scope
– often just over a single arc – and cannot model decisions on a truly global scale.

• Parsing Algorithms:Transition-based models use greedy algorithms to move from one config-
uration to the next by simply choosing the most likely next transition. Such a greedy approach
cannot provide any guarantees that mistakes made early in the process do not propagate to
decisions at later stages – a defect often called error propagation. On the other hand, graph-
based models can often search the space of dependency trees, with guarantees that the returned
dependency tree is the most likely under the model parameters. This is true for arc-factored
models as well as many projective non-arc-factored models.

These differences highlight an inherent trade-off between exact parsing algorithms and the expres-
siveness of feature representations. Graph-based models favor the former at the expense of the latter
and transition-based models the opposite. This trade-off is not artificial. Increasing parameteriza-
tion for graph-based systems results in a loss of parsing efficiency. Furthermore, there is no natural

88 CHAPTER 7. COMPARISON

Table 7.1: Labeled parsing accuracy for top scoring graph and transition-based systems at CoNLL
2006.
Language Ar Bu Ch Cz Da Du Ge Ja
Transition-based 66.71 87.41 86.92 78.42 84.77 78.59 85.82 91.65
Graph-based 66.91 87.57 85.90 80.18 84.79 79.19 87.34 90.71

Language Po Sl Sp Sw Tu Average
Transition-based 87.60 70.30 81.29 84.58 65.68 80.75
Graph-based 86.82 73.44 82.25 82.55 63.19 80.83

notion of globally optimal search in transition-based parsers. Even if such a notion could be precisely
defined, it most likely would require limiting the possible features in order for efficient algorithms
to be defined. This naturally raises a question: Does this trade-off in data-driven models manifest
itself empirically?

The study of McDonald and Nivre (2007) attempt to answer this question and we summarize
their main findings here. McDonald and Nivre conducted a detailed empirical comparison in the
performance of a transition-based parser and a graph-based parser on the CoNLL 2006 data set. As
described in the previous chapter, this data set consisted of 13 different languages. The two highest-
scoring systems on these data sets were one transition-based and one graph-based model, whose
LAS scores can be seen in table 7.1. At first glance, this analysis suggests that there is not much
difference between the two models.There is some variability between languages, but on average, the
systems have remarkably similar accuracies with only an absolute difference of 0.08%. However, a
closer look at the kinds of errors each system makes reveals that average LAS is misleading.

To see this, one can look at both structural properties of dependency trees and linguistic
properties of the input (in the form of surface syntax) or output (in the form of dependency relations).
Structural properties measure LAS for arcs relative to different contexts in the tree,which can include:
root-distance, which is the distance of an arc from the root; arc-length, which is the number of words
between the head and the dependent in the sentence; neighborhood-size,which is the number of arcs in
the same horizontal neighborhood (i.e., among words that share the same head); arc-degree, which is
the degree of non-projectivity of the arc (Nivre, 2006a); etc. When looking at micro-averages relative
to these properties, interesting patterns begin to emerge. In particular, transition-based parsers are
more accurate than graph-based models for arcs that are further away from the root and have a
smaller arc-length. When examining the fundamental trade-off between exact parsing algorithms
and rich feature representations, this distinction seems to make sense. Since transition-based systems
suffer from potential error propagation, we can expect lower accuracies for decisions made later in the
search, such as those nearer to the root and with longer arc lengths. This is precisely what happens,
and there is a marked degradation of accuracy as distance to the root shortens or dependency length
lengthens. On the other hand, there is no theoretical reason that graph-based systems should be

7.1. COMPARING TRANSITION-BASED AND GRAPH-BASED MODELS 89

more accurate for any type of arc property since the search is exact.1 This is manifested in more
uniform accuracies relative to tree properties.

Relating model accuracy to a set of linguistic properties, such as parts of speech (relative
to the dependent in the arc) and dependency types, also reveals interesting properties. Given the
important typological differences that exist between languages, as well as the diversity of annota-
tion schemes used in different treebanks, it is far from straight-forward to compare these categories
across languages. Nevertheless, McDonald and Nivre identify a few broad categories that are cross-
linguistically consistent. For parts of speech, this includes verbs (including both main verbs and
auxiliaries), nouns (including proper names), pronouns (sometimes also including determiners), ad-
jectives, adverbs, adpositions (prepositions, postpositions), and conjunctions (both coordinating and
subordinating). For dependency relation types, this includes a general root category (for labels used
on arcs from the artificial root, including either a generic label or the label assigned to predicates
of main clauses, which are normally verbs), a subject category, and an object category (including
both direct and indirect objects). Unfortunately, many interesting types could not be identified with
high enough precision across languages, such as adverbials, which cannot be clearly distinguished
in annotation schemes that subsume them under a general modifier category, and coordinate struc-
tures, which are sometimes annotated with special dependency types, and sometimes with ordinary
dependency types found also in non-coordinated structures.

If one examines the errors at the part-of-speech level, it is seen that transition-based methods
tend to have better accuracy for nouns and pronouns, while graph-based methods are better on all
other categories, in particular verbs and conjunctions. This pattern is consistent with the analysis of
structural properties insofar as verbs and conjunctions are often involved in dependencies closer to
the root and with longer arc distances, while nouns and pronouns are typically attached to verbs and
therefore occur lower in the tree and with shorter arc distances. Looking at the data, average distance
to the root is 3.1 for verbs and 3.8 for conjunctions, but 4.7 for nouns and 4.9 for pronouns; the
average dependency length is 4.2 for verbs, 4.8 for conjunctions, 2.3 for nouns, and 1.6 for pronouns.
Adverbs resemble verbs and conjunctions with respect to root distance (3.7) but group with nouns
and pronouns for dependency length (2.3). Adpositions and especially adjectives are the only parts
of speech that appear to break this pattern. With a root distance of 4.4/5.2 and an arc length of
2.5/1.5, we would expect transition-based models to be much more accurate when, in fact, they are
not.

Finally, when one considers precision and recall for dependents of the root node (mostly
verbal predicates) and for subjects and objects, similar patterns emerge. Graph-based models have
considerably better precision (and slightly better recall) for the root category, but transition-based
models have an advantage for the nominal categories, especially subjects. A possible explanation
for the latter result, in addition to the graph-based factors invoked before, is that transition-based
models may use previously assigned dependency labels as features (due to their ability to incorporate

1Technically, for the particular graph-based instantiation used in the experiments of McDonald and Nivre (2007), which is the
system of McDonald et al. (2006), the search is exact relative to projective trees with an approximate post-processing step to
introduce non-projective arcs.

90 CHAPTER 7. COMPARISON

rich feature representations over past decisions). This may sometimes be important to disambiguate
subjects and objects in particular for free word order languages where these dependencies may not
have a fixed ordering relative to the verb.

The McDonald and Nivre study highlights the fundamental trade-off between transition-
based and graph-based models, where the former prefers rich feature representations at the cost of
sub-optimal parsing algorithms, and graph-based methods the opposite, and shows that this trade-
off does manifest itself empirically. Error propagation is an issue for transition-based systems, which
typically perform worse on long distance arcs and arcs higher in the tree. But this is offset by the
rich feature representation available to these models that result in better decisions for frequently
occurring classes of arcs like short dependencies or subject and object dependents. The errors for
graph-based models are spread a little more evenly as one might expect due to the fact that inference
algorithms and feature representations should not theoretically perform better for one type of arc
than another.

The fact the transition-based and graph-based parsers make markedly different mistakes
suggests that there might be empirical gains by combining the two types of parsers. Recently, there
has been much positive evidence suggesting that even simple methods for combining transition-
based and graph-based parser yields significant improvements across all languages. These methods
usually take one of two forms. In the first, many variations of graph and transition-based parsers are
created and a meta-system uses the outputs of each in a majority voting scheme to select a single
parse. Voting, in such systems, can be either over entire trees or over individual arcs. The second
method that is common is to use the output of one parser, say a transition-based parser, as additional
input to the other parser, in this case a graph-based parser. Such methods are referred to as stacked
classifiers or stacked parsers. These achieve superior performance by allowing the second parser to
learn relative to the first parser’s strengths and weaknesses, which allows the second parser to use the
predictions of the first parser when advantageous and ignore them when not.

7.2 COMPARING GRAMMAR-BASED AND DATA-DRIVEN
MODELS

The close connection between context-free dependency grammars and projective graph-based de-
pendency parsing has been touched upon throughout both chapters 3 and 4. These systems share
parsing algorithms (CKY and Eisner’s algorithm) and can even share probability models (e.g., bilex-
ical generative models). Perhaps the simplest way of stating this relationship is to say that projective
graph-based models are in fact just context-free dependency grammars where the underlying gram-
mar generates all possible strings, i.e., the language generated by the grammar � is L = �∗, and
all possible trees, i.e., GS for all S ∈ �∗. Of course, the advantage of graph-based systems comes
from assuming a weaker underlying formalism, which results in the ability to exploit graph-theoretic
algorithms to search efficiently for non-projective trees.

However, even when we allow for non-projectivity, there is still a connection between graph-
based and grammar-based models. In particular, if one constrains the structure of dependency trees

7.2. COMPARING GRAMMAR-BASED AND DATA-DRIVEN MODELS 91

so that they are well-nested, which measures the level of overlap between distinct subtrees of the tree,
and have a gap-degree of at most 1, which measures the discontinuity in the yield of nodes in the tree,
then it can be shown that this class of trees corresponds directly to LTAG derivations (Bodirsky et al.,
2005). Again, if we consider a graph-based method as simply an LTAG that generates the language
�∗, then a simple connection with LTAG can be established in the non-projective case. This raises
the question: Is it possible to constrain the Chu-Liu-Edmonds algorithms to parse dependency trees
that are well-nested and have a bounded gap-degree, all in polynomial time? Probably not, as the
complexity of LTAG is well studied and lower-bounds are far in excess of the O(n2) run-time of
Chu-Liu-Edmonds. As a result, any graph-based parsing algorithm that constrains well-nestedness
or gap-degree is most likely to take the form of LTAG algorithms, which themselves are based on
chart-parsing techniques (just like CKY and Eisner’s algorithm) and not greedy-recursive techniques
(like the Chu-Liu-Edmonds algorithm).

Projective transition-based parsing algorithms also have a strong connection to a context-free
counterpart. If one applies the same transformations from dependency trees to context-free phrase
structure as presented in section 5.1, then it is possible to use transition-based parsing algorithms
to parse a context-free grammar. This is because similar transition algorithms can be defined for
phrase structure, which are commonly called shift-reduce parsing algorithms in that body of lit-
erature (Briscoe and Carroll, 1993). Just as in the case of dependencies, these shift-reduce parsing
algorithms can be shown to be sound and complete, but instead with respect to context-free phrase
structure. Thus, it is possible to first convert a set of dependency trees to phrase-structure, train a
shift-reduce parsing model and use it to parse new sentences and reconstruct the dependency trees
from the resulting output. Again, these transition-based models correspond to their grammar-based
equivalents under the assumption that the grammar generates the language �∗.

Although less direct, there are also many strong connections between constraint dependency
grammars and purely data-driven models, most notably graph-based systems. These connections
are most apparent when we consider the parsing algorithms employed by both types of models.
In constraint-based parsing, all models begin by considering the complete dependency graph for a
sentence (previously calledGS) and attempt to satisfy a set of weighted constraints. In the same vein,
graph-based models start with the complete graph and then attempt to satisfy a set of constraints
(i.e., the root, single-head and acyclicity properties of dependency trees). Though constraints are
not weighted directly in graph-based parsing, there is a weighting on arcs that must be maximized
while satisfying the constraints. In fact, we can be explicit about this view of graph-based parsing
by formulating it as an Integer Linear Programming (ILP) problem, which consists of optimizing a
linear objective relative to a set of linear constraints. Consider an input sentence S with the goal of
producing a dependency tree G = (V ,A) ∈ GS . First, let us define a set of variables:

• arij ∈ {0, 1}, where arij = 1 if and only if (wi, r, wj) ∈ A

• a is the vector of all variables arij

92 CHAPTER 7. COMPARISON

Now, let’s consider the following ILP:

argmax
a

∑
i,j,r

arij × λ(wi,r,wj)

such that:
∑
i,r a

r
i0 = 0 (unique root)

for all j > 0,
∑
i,r a

r
ij = 1 (single head)

for all possible cycles C,
∑
(wi ,r,wj)∈C a

r
ij ≤ |C| − 1 (acyclic)

This ILP problem can be solved with a variety of techniques and we can take the resulting vector
a and construct the tree G = (V ,A) by setting A = {(wi, r, wj) | arij = 1 in a}. The constraints
enforce that the assignments of values to a result in a dependency tree rooted out of w0 as they
ensure that the graph is spanning, acyclic and that each non-root has exactly one head in the tree.

There are two drawbacks with this approach. First, ILP problems are in general intractable,
whereas it is known that we can already solve this problem using the Chu-Liu-Edmonds algorithm,
which has a polynomial run-time. However, ILPs are well-studied optimization problems that can
often be solved efficiently using cutting-plane, branch-and-bound or other common algorithmic
techniques.The second problem is that the set of constraints in the above optimization is exponential
in the size of the input.This is due to the third constraint enumerating all possible cycles. It is possible
to combat this by introducing an auxiliary variable:

• bij ∈ {0, 1} where bij = 1 if there is a directed path from wi →∗ wj in G

Note that the definition of bij does not state that when bij = 1 there must be such a path inG, but
only that if there is such a path then bij = 1. The weaker definition is sufficient for our purposes
and makes the resulting optimization simpler. Using this new auxiliary variable, we can then replace
the acyclicity constraint by the following three constraints:

for all i, j, r , bij − arij ≥ 0
for all i, j, k, bik − bij − bjk ≥ −1

for all i ≥ 0, bii = 0

The first two constraints serve to ensure that assignments to bij satisfy its definition and the third
constraint forces the returned graph to be acyclic. The first constraint ties the variables arij and bij
together by stating that if there is an arc from wi to wj with any label, then there must be a path
of length one from word wi to wj represented in b. The second constraint enforces the transitive
closure of the directed path relationship encoded by bij and thus covers all those paths of length
greater than 1. It does this by ensuring that if wi →∗ wj (bij = 1) and wj →∗ wk (bjk = 1) then
wi →∗ wk (bik = 1).Thus, from all length one paths we get all length two paths, and from all length
one and length two paths, we get all length three paths, etc. Having ensured that bij is properly
encoded with respect to a, it is trivial to discard cycles. By the definition of bij , if there were a cycle
wi →∗ wi induced by a, then bii = 1. By forcing bii = 0, we eliminate all such assignments and
the returned graph must be acyclic.

7.3. SUMMARY AND FURTHER READING 93

The optimization was presented here simply to illustrate the close connection between graph-
based systems and constraint dependency grammars. By modeling graph-based parsing in such a
way, we can begin to incorporate constraints such as “a verb can only have at most one subject”:

for all wi that are verbs:
∑
j

a
r=SBJ
ij ≤ 1

The graph-based model, in a sense, becomes grammar-based through such linguistic constraints,
which are similar to the kinds of constraints a constraint dependency grammar might encode.

In terms of algorithmic form, there are also close connections between the transformation-
based parsing algorithms with repair (section 5.2.2) used in constraint dependency grammars and
the parsing algorithms used in data-driven systems. Repair algorithms typically start with a high
likelihood dependency tree (usually by satisfying some simple unary constraints) and then iteratively
attempt to satisfy non-local constraints and move towards an optimal dependency tree. This kind of
post-processing is similar to pseudo-projective parsing, where the system starts by returning the most
likely projective parse and then transforms the parse through encoded arc labels (section 3.5). The
difference is that in constraint dependency grammars, the post-process search is done with respect to
the ultimate objective function, whereas in pseudo-projective parsing, the search is done with respect
to arc labels that have been encoded before the model is even trained. Perhaps a closer analogy is
to search algorithms for non-projective graph-based systems when the model is not arc-factored, in
which case parsing is typically NP-hard (see section 4.4). In this case, a common technique is to begin
by finding the highest scoring projective tree (which can be done efficiently) and then incrementally
making minor adjustments to the tree to introduce non-projectivity if these adjustments increase the
overall score. Just as in the case of constraint dependency grammar, this method is approximate and
will find a local optimum in the search space, but search is still with respect to the ultimate objective
function.

7.3 SUMMARY AND FURTHER READING
In this section,we compared the various dependency parsing systems that were discussed earlier in the
book. In particular, we looked at an empirical evaluation of transition-based and graph-based parsing
and argued that errors made by each system can be connected to theoretical expectations. This was
based primarily on the work of McDonald and Nivre (2007) who give a much more detailed account.
Studies on combining graph-based and transition-based parsers can be found in Sagae and Lavie
(2006), Martins et al. (2008), Nivre and McDonald (2008), and Zhang and Clark (2008). We then
looked at the connections between grammar-based and purely data-driven systems. When context-
free (or projective) assumptions are made, then these models are closely related and even equivalent
under certain assumptions. There is also a strong connection between constraint dependency gram-
mars and graph-based systems, which can be illustrated by formulating graph-based parsing as
an ILP problem. Riedel and Clarke (2006) study graph-based parsing using an ILP formulation
both algorithmically and empirically. Transformation-based parsing algorithms with repair used in

94 CHAPTER 7. COMPARISON

constraint dependency grammars also have analogs in data-driven systems (Foth, 1999; Schröder,
2002; Foth et al., 2004, 2005). For transition-based models, this can come in the form of pseudo-
projective parsing (Nivre and Nilsson, 2005), since both use post-processing techniques over an
initial highly likely tree to produce the final tree returned by the system. For graph-based methods,
approximate post-process searching starting from a base projective parser also has a similar flavor
cf. McDonald and Pereira (2006).

95

C H A P T E R 8

Final Thoughts
Our aim in this book was to provide an in-depth account of the current practices and trends in
dependency parsing.We saw these as data-driven parsers,which includes transition-based and graph-
based parsing,grammar-based parsers,which includes context-free and constraint-based formalisms,
and large-scale multi-lingual parser evaluation. We complemented this with an account of the
commonalities and differences between each kind of parser in terms of their algorithmic make-
up, theoretical properties, and empirical performance when appropriate studies were available. The
approaches covered within these pages certainly does not represent the entire spectrum of research on
dependency parsing, but we hope that the further reading sections provided in each chapter as well as
the appendix of resources and the extensive bibliography that follow will fill out the remaining gaps.
Furthermore, this is a burgeoning research area with a number of new studies being published every
year. We have attempted to incorporate the latest in the field, but the reader is of course encouraged
to check the latest conference proceedings and journal issues to stay abreast of the developments.

We would like to take these final pages to speculate on what the future of research in de-
pendency parsing might hold. If recent trends are any indication, work on data-driven models will
continue to be a major focus. This includes both the application of new learning techniques and
the development of new formulations that cannot be characterized as either transition-based or
graph-based. Further studies at understanding the empirical difference between transition-based
and graph-based systems will hopefully lead to additional empirical improvements as well as new
and principled models that either combine the two types of systems or incorporate the complemen-
tary strengths of each. Having said that, it does appear that the field is approaching the ceiling when
it comes to empirical gains from new machine learning algorithms alone. Evidence for this exists in
the three previous CoNLL shared tasks (from 2006 to 2008), which show that while improvements
are still being made, they are rarely from the addition of new learning techniques. Does that mean
that machine learning will no longer impact the field? Certainly not. For one thing most parsing sys-
tems that employ machine learning do so in a fully supervised setting using treebanks that typically
come from a single or small set of domains. Leveraging semi-supervised and unsupervised learning
algorithms to improve performance across all domains of written and spoken language is still an
outstanding question, though some progress has been made in recent years. Furthermore, treebanks
still only exist in a few languages. Leveraging treebanks from related languages to produce parsers in
low resource languages is also an important problem.To do this, we will most likely require methods
from semi-supervised and unsupervised learning as well as learning techniques for leveraging parallel
corpora that have been developed in the statistical machine translation community.

One central problem in dependency parsing that still awaits its final solution is the treatment
of non-projective dependencies. Current systems usually take one of two routes. Either they employ

96 CHAPTER 8. FINAL THOUGHTS

a parsing algorithm that can handle the complete class of dependency trees and pay a penalty in
terms of rigid independence assumptions or problems of efficiency (or both), or they restrict parsing
to projective structures and attempt to recover non-projective dependencies in some kind of post-
processing step. Both routes achieve some level of success in capturing non-projective dependencies,
but it seems that we should be able to do better by tailoring parsing algorithms to the restricted
class of non-projective structures that seem to be prevalent in natural language. Ideally, we should
then be able to find a better balance between the conflicting pressures of linguistic adequacy and
computational complexity.

Recent years have seen an emphasis on developing parsers that are language general, which
has been one of the main reasons that data-driven techniques have become so prevalent. Realistically
however, there is only so far one can go with such a language agnostic approach to parser development.
Languages are different, often in subtle ways, but also in drastic ways. At some point, insights from
data-driven parsing will be merged back into language-specific parsers, most probably through
formal grammars or other constraints. At that point, we may begin to increasingly see parsers that
are both grammar-based and data-driven in much higher frequency than we see now. Merging the
two will be trivial in some cases, but there will be many examples where a deep understanding of
both the machine learning algorithms and grammar formalisms will be necessary in order to build
theoretically satisfying as well as empirically practical models.

Dependency parsing has matured in the past decade. There is now a wide selection of multi-
lingual parsers that are freely available for download. When they are combined with treebanks
available in over twenty languages, we now have access to automatic parsers at a level that has
never existed. Using these parsers should become more widespread. This includes parser use in
standard natural language processing tasks like machine translation, lexical acquisition, and question
answering, but also in related fields like information retrieval and data mining. Furthermore, using
parsers to analyze the billions and billions of documents and transcripts recorded in electronic
form should certainly provide insights to linguists studying the use and evolution of language. This
increasing use of parsers will result in new demands and resource constraints that will further drive
the questions being asked by researchers in dependency parsing.

97

A P P E N D I X A

Resources
We will have a quick look at the available implementations of parsers and at treebanks. The lists we
present here do not aim for completeness. Since the availability of such resources often changes, we
are only trying to provide starting points.

A.1 PARSERS
For all major parsing methods discussed in chapters 3, 4, and 5, as well as for many other methods,
there are implementations available. These parsers can be grouped into two classes: trainable parsers
and parsers for specific languages, which normally provide a fixed combination of a parsing algorithm
and a grammar. We will not provide locations for these resources since they tend to change rapidly.
Interested users are advised to use their favorite search engine in order to locate these resources.

The following parsers are trainable:

• Jason Eisner’s probabilistic dependency parser (Eisner, 1996b,a, 2000). This parser is an
implementation of the grammar-based bottom-up parsing method presented in section 5.1.
The parser is written in LISP.

• MSTParser (McDonald, 2006; McDonald, Crammer and Pereira, 2005;
McDonald, Pereira, Ribarov and Hajič, 2005; McDonald and Pereira, 2006). This parser is
an implementation of the graph-based parsing method presented in chapter 4. It is written
in Java.

• MaltParser (Nivre, 2003, 2006b, 2007, 2008; Nivre and Nilsson, 2005; Nivre et al., 2004,
2007, 2006). This parser is an implementation of the transition-based parsing method pre-
sented in chapter 3. An open source version is written in Java.

• The k-best Maximum Spanning Tree Dependency Parser (Hall,2007;Hall et al.,2007).The
parser combines an arc-factored model with a maximum entropy optimizer and a reranker.

• The Vine Parser (Dreyer et al., 2006). This parser combines a probabilistic
parser (Eisner and Smith, 2005), a probabilistic relation-labeling model, and a discriminative
minimum risk reranker. The implementation is available in Dyna and C++.

• The ISBN Dependency Parser (Titov and Henderson, 2007a,b). This parser uses a gener-
ative history-based probability model based on Incremental Sigmoid Belief Networks. The
implementation is available in C.

Parsers for specific languages include the following:

98 RESOURCES

• Minipar (Lin, 1994, 1996, 1998a). This parser is an implementation of a principle-based
parsing method for English (see section 5.3).

• The WCDG Parser (Foth et al., 2005; Foth and Menzel, 2005; Foth et al., 2000, 2004;
Menzel and Schröder, 1998). This parser is an implementation of weighted constraint de-
pendency parsing for German as described in section 5.2. A version for English is under
construction.

• Pro3Gres (Schneider, 2004; Schneider et al., 2004). This parser employs a combination of
chunk parsing and CYK parsing for English. The parser is written in PROLOG.

• The Link Grammar Parser (Lafferty et al., 1992; Sleator and Temperley, 1991, 1993). This
parser is an implementation for link grammar, a variant of dependency grammar with undi-
rected links. The parser is written in C and includes a grammar for English, but there is also
a version for Russian available.

• CaboCha (Kudo and Matsumoto,2002,2000).This parser is an implementation of transition-
based dependency parsing for Japanese using support vector machines.

A.2 TREEBANKS

Treebanks are used for training parsers as well as for evaluating their analyses.The available treebanks
can be divided into two groups: genuine dependency treebanks and treebanks annotated in other
formats for which conversions to a dependency format exist. Genuine dependency treebanks include
the following:

• Prague Arabic Dependency Treebank (Hajič et al., 2004). This treebank is available from
the Linguistic Data Consortium (LDC) for a license fee. LDC catalog no.: LDC2004T23.

• Prague Dependency Treebank (Czech) (Hajič et al., 2000). This treebank is annotated on 3
levels: the morphological, syntactic, and tectogrammatical level. It is available from LDC for
a license fee. LDC catalog no. for version 1.0: LDC2001T10, for version 2.0: LDC2006T01.

• Danish Dependency Treebank (Kromann, 2003). The annotation of this treebank is based
on Discontinuous Grammar (Buch-Kromann, 2005).

• Bosque, Floresta sintá(c)tica (Portuguese) (Afonso et al., 2002). The Portuguese treebank
does not require a license.

• METU-Sabancı Turkish Treebank (Oflazer et al., 2003). This treebank is freely available
after signing a license agreement.

A.3. DEPENDENCY PARSING WIKI 99

A.3 DEPENDENCY PARSING WIKI
There is a wiki for dependency parsing at http://depparse.uvt.nl/depparse-wiki/, which
collects the experience from the two CoNLL shared tasks. The wiki is a repository for parsers and
treebanks, but also for best practices in the field.

http://depparse.uvt.nl/depparse-wiki/

101

Bibliography

Abney, Steven (1991). Parsing by chunks, in R. Berwick, S. Abney and C. Tenny (eds), Principle-
Based Parsing, Kluwer, pp. 257–278.

Afonso, Susana, Bick, Eckhard, Haber, Renato and Santos, Diana (2002). Floresta sintá(c)tica: A
treebank for Portuguese, Proceedings of the 3rd International Conference on Language Resources and
Evaluation (LREC), Las Palmas, Gran Canaria, pp. 1698–1703.

Attardi, Giuseppe (2006). Experiments with a multilanguage non-projective dependency parser,
Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL), New
York, NY, pp. 166–170.

Bangalore, Srinivas and Joshi, Aravind K. (1999). Supertagging: An approach to almost parsing,
Computational Linguistics 25(2): 237–267.

Bodirsky, Manuel, Kuhlmann, Marco and Möhl, Mathias (2005). Well-nested drawings as models
of syntactic structure, 10th Conference on Formal Grammar and 9th Meeting on Mathematics of
Language, Edinburgh, Scotland.

Briscoe, Edward and Carroll, John (1993). Generalised probabilistic LR parsing of natural language
(corpora) with unification-based grammars, Computational Linguistics 19: 25–59.

Buch-Kromann, Matthias (2005). Discontinuous Grammar. A Model of Human Parsing and Language
Acquisition, PhD thesis, Copenhagen Business School, Copenhagen, Denmark.

Buchholz, Sabine and Marsi, Erwin (2006). CoNLL-X shared task on multilingual dependency
parsing, Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL),
New York, NY, pp. 149–164.

Camerini,Paolo M.,Fratta,Luigi and Maffioli,Francesco (1980). The k best spanning arborescences
of a network, Networks 10(2): 91–110. DOI: 10.1002/net.3230100202

Carreras, Xavier (2007). Experiments with a higher-order projective dependency parser, Proceedings
of the CoNLL Shared Task of EMNLP-CoNLL 2007, Prague, Czech Republic, pp. 957–961.

Carroll, John, Briscoe, Edward and Sanfilippo, Antonio (1998). Parser evaluation: A survey and a
new proposal, Proceedings of the 1st International Conference on Language Resources and Evaluation
(LREC), Granada, Spain, pp. 447–454.

http://dx.doi.org/10.1002/net.3230100202

102 RESOURCES

Carroll, John (ed.) (2002). LREC 2002 Workshop Proceedings: Beyond parseval – Towards Improved
Evaluation Measures for Parsing Systems, Las Palmas, Gran Canaria.

Charniak, Eugene (2000). A maximum-entropy-inspired parser, Proceedings of the First Meeting of
the North American Chapter of the Association for Computational Linguistics (NAACL), Seattle, WA,
pp. 132–139.

Chelba, Ciprian, Engle, David, Jelinek, Frederick, Jimenez, Victor, Khudanpur, Sanjeev, Mangu,
Lidia, Printz, Harry, Ristad, Eric, Rosenfeld, Ronald, Stolcke, Andreas and Wu, Dekai (1997).
Structure and performance of a dependency language model, Proceedings of Eurospeech, Vol. 5,
Rhodes, Greece, pp. 2775–2778.

Cheng, Yuchang, Asahara, Masayuki and Matsumoto, Yuji (2005). Machine learning-based depen-
dency analyzer for Chinese, Proceedings of International Conference on Chinese Computing (ICCC),
Bangkok, Thailand, pp. 66–73.

Chomsky, Noam (1981). Lectures on Government and Binding, Foris.

Chu, Y. J. and Liu, T. H. (1965). On the shortest arborescence of a directed graph, Science Sinica
14: 1396–1400.

Collins, Michael (1999). Head-Driven Statistical Models for Natural Language Parsing, PhD thesis,
University of Pennsylvania.

Collins, Michael (2002). Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms, Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), Philadelphia, PA. DOI: 10.3115/1118693.1118694

Collins, Michael, Hajič, Jan, Ramshaw, Lance and Tillmann, Christoph (1999). A statistical parser
for Czech, Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics
(ACL), Collge Park, MD, pp. 505–512. DOI: 10.3115/1034678.1034754

Corston-Oliver, Simon, Aue, Antony, Duh, Kevin and Ringger, Eric (2006). Multilingual de-
pendency parsing using Bayes point machines, Proceedings of the Human Language Technology
Conference of the NAACL, Main Conference, New York, NY, pp. 160–167.

Covington, Michael A. (2001). A fundamental algorithm for dependency parsing, Proceedings of the
39th Annual ACM Southeast Conference, Athens, GA, pp. 95–102.

Crouch, Richard, Kaplan, Ronald M., King, Tracy H. and Riezler, Stefan (2002). A comparison of
evaluation metrics for a broad coverage stochastic parser, Proceedings of the LREC Workshop on the
Evaluation of Parsing Systems, Las Palmas, Gran Canaria, pp. 67–74.

Culotta, Aron and Sorensen, Jeffery (2004). Dependency tree kernels for relation extraction, Proceed-
ings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL), Barcelona,
Spain, pp. 423–429. DOI: 10.3115/1218955.1219009

http://dx.doi.org/10.3115/1118693.1118694
http://dx.doi.org/10.3115/1034678.1034754
http://dx.doi.org/10.3115/1218955.1219009

A.3. DEPENDENCY PARSING WIKI 103

Daelemans, Walter and Van den Bosch, Antal (2005). Memory-Based Language Processing, Cam-
bridge University Press.

Debusmann, Ralph, Duchier, Denys and Kruijff, Geert-Jan M. (2004). Extensible dependency
grammar: A new methodology, Proceedings of the COLING Workshop on Recent Advances in De-
pendency Grammar, Geneva, Switzerland, pp. 78–85.

Ding, Yuan and Palmer, Martha (2004). Synchronous dependency insertion grammars: A grammar
formalism for syntax based statistical MT, Proceedings of the COLING Workshop on Recent Advances
in Dependency Grammar, Geneva, Switzerland, pp. 90–97.

Dreyer, Markus, Smith, David A. and Smith, Noah A. (2006). Vine parsing and minimum risk
reranking for speed and precision, Proceedings of the 10th Conference on Computational Natural
Language Learning (CoNLL), New York, NY, pp. 201–205.

Duan, Xiangyu, Zhao, Jun and Xu, Bo (2007). Probabilistic parsing action models for multi-lingual
dependency parsing, Proceedings of the CoNLL Shared Task of EMNLP-CoNLL 2007, Prague,
Czech Republic, pp. 940–946.

Duchier, Denys (1999). Axiomatizing dependency parsing using set constraints, Proceedings of the
Sixth Meeting on Mathematics of Language, Orlando, FL, pp. 115–126.

Duchier, Denys and Debusmann, Ralph (2001). Topological dependency trees: A constraint-based
account of linear precedence, Proceedings of the 39th Annual Meeting of the Association for Com-
putational Linguistics (ACL) and the 10th Conference of the European Chapter of the ACL (EACL),
Toulouse, France, pp. 180–187.

Earley, Jay (1970). An efficient context-free parsing algorithm, Communications of the ACM 13: 94–
102. DOI: 10.1145/362007.362035

Edmonds, Jack (1967). Optimum branchings, Journal of Research of the National Bureau of Standards
71B: 233–240.

Eisner, Jason and Blatz, John (2007). Program transformations for optimization of parsing algorithms
and other weighted logic programs, Proceedings of the 11th Conference on Formal Grammar, Dublin,
Ireland, pp. 45–85.

Eisner, Jason M. (1996a). An empirical comparison of probability models for dependency grammar,
Technical Report IRCS-96-11, Institute for Research in Cognitive Science, University of Pennsyl-
vania.

Eisner, Jason M. (1996b). Three new probabilistic models for dependency parsing: An exploration,
Proceedings of the 16th International Conference on Computational Linguistics (COLING), Copen-
hagen, Denmark, pp. 340–345. DOI: 10.3115/992628.992688

http://dx.doi.org/10.1145/362007.362035
http://dx.doi.org/10.3115/992628.992688

104 RESOURCES

Eisner, Jason M. (2000). Bilexical grammars and their cubic-time parsing algorithms, in H. Bunt
and A. Nijholt (eds), Advances in Probabilistic and Other Parsing Technologies, Kluwer, pp. 29–62.

Eisner, Jason and Satta, Giorgio (1999). Efficient parsing for bilexical context-free grammars and
head-automaton grammars, Proceedings of the 37th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), College Park, MD, pp. 457–464. DOI: 10.3115/1034678.1034748

Eisner, Jason and Smith, Noah (2005). Parsing with soft and hard constraints on dependency length,
Proceedings of the 9th International Workshop on Parsing Technologies (IWPT), Vancouver, Canada,
pp. 30–41.

Foth, Kilian (1999). Tranformationsbasiertes Constraint-Parsing. Diplomarbeit, Universität Ham-
burg.

Foth, Kilian (2007). Hybrid Methods of Natural Language Analysis, Shaker.

Foth, Kilian, Daum, Michael and Menzel, Wolfgang (2004). A broad-coverage parser for German
based on defeasible constraints, Proceedings of KONVENS 2004, Vienna, Austria, pp. 45–52.

Foth, Kilian, Daum, Michael and Menzel, Wolfgang (2005). Parsing unrestricted German text
with defeasible constraints, in H. Christiansen, P. R. Skadhauge and J. Villadsen (eds), Constraint
Solving and Language Processing, Springer, pp. 140–157.

Foth, Kilian and Menzel, Wolfgang (2005). Robust parsing with weighted constraints, Natural
Language Engineering 11(1): 1–25. DOI: 10.1017/S1351324903003267

Foth, Kilian, Schröder, Ingo and Menzel, Wolfgang (2000). A transformation-based parsing tech-
nique with anytime properties, Proceedings of the 6th International Workshop on Parsing Technologies
(IWPT), Trento, Italy, pp. 89–100.

Gaifman, Haim (1965). Dependency systems and phrase-structure systems, Information and Control
8: 304–337. DOI: 10.1016/S0019-9958(65)90232-9

Georgiadis, Leonidas (2003). Arborescence optimization problems solvable by Edmonds’ algorithm,
Theoretical Computer Science 301: 427 – 437. DOI: 10.1016/S0304-3975(02)00888-5

Glover, Fred and Laguna, Manuel (1977). Tabu Search, Kluwer.

Haghighi, Aria, Ng, Andrew and Manning, Christopher (2005). Robust textual inference via graph
matching, Proceedings of the Human Language Technology Conference and the Conference on Empir-
ical Methods in Natural Language Processing (HLT/EMNLP), Vancouver, Canada, pp. 387–394.
DOI: 10.3115/1220575.1220624

Hajič, Jan, Böhmová, Alena, Hajičová, Eva and Vidová-Hladká, Barbora (2000). The Prague De-
pendency Treebank: A three-level annotation scenario, in A. Abeillé (ed.),Treebanks: Building and
Using Parsed Corpora, Kluwer Academic Publishers.

http://dx.doi.org/10.3115/1034678.1034748
http://dx.doi.org/10.1017/S1351324903003267
http://dx.doi.org/10.1016/S0019-9958(65)90232-9
http://dx.doi.org/10.1016/S0304-3975(02)00888-5
http://dx.doi.org/10.3115/1220575.1220624

A.3. DEPENDENCY PARSING WIKI 105

Hajič, Jan, Smrž, Otakar, Zemánek, Petr, Šnaidauf, Jan and Beška, Emanuel (2004). Prague Ara-
bic Dependency Treebank: Development in data and tools, Proceedings of the NEMLAR 2004
International Conference on Arabic Language Resources and Tools, Cairo, Egypt.

Hall, Johan, Nivre, Joakim and Nilsson, Jens (2006). Discriminative classifiers for deterministic
dependency parsing,Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions,Sydney,
Australia, pp. 316–323.

Hall, Keith (2007). k-best spanning tree parsing, Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics (ACL), Prague, Czech Republic, pp. 392–399.

Hall, Keith, Havelka, Jiři and Smith, David A. (2007). Log-linear models of non-projective trees, k-
best MST parsing and tree-ranking, Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
Prague, Czech Republic, pp. 962–966.

Hall, Keith and Novák, Vaclav (2005). Corrective modeling for non-projective dependency parsing,
Proceedings of the 9th International Workshop on Parsing Technologies (IWPT), Vancouver, Canada,
pp. 42–52.

Harper, Mary P. and Helzerman, Randall A. (1995). Extensions to constraint depen-
dency parsing for spoken language processing, Computer Speech and Language 9: 187–234.
DOI: 10.1006/csla.1995.0011

Harper, Mary P., Helzermann, Randall A., Zoltowski, Carla B., Yeo, Boon-Lock, Chan, Yin, Stew-
ard,Todd and Pellom,Bryan L.(1995). Implementation issues in the development of the PARSEC
parser, Software: Practice and Experience 25: 831–862. DOI: 10.1002/spe.4380250802

Havelka, Jiři (2007). Beyond projectivity: Multilingual evaluation of constraints and measures on
non-projective structures,Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics (ACL), Prague, Czech Republic, pp. 608–615.

Hays, David G. (1964). Dependency theory: A formalism and some observations, Language 40: 511–
525. DOI: 10.2307/411934

Hellwig, Peter (1986). Dependency unification grammar, Proceedings of the 11th International Con-
ference on Computational Linguistics (COLING), Bonn, Germany, pp. 195–198.

Hellwig, Peter (2003). Dependency unification grammar, in V. Agel, L. M. Eichinger, H.-W.
Eroms, P. Hellwig, H. J. Heringer and H. Lobin (eds), Dependency and Valency, Walter de Gruyter,
pp. 593–635.

http://dx.doi.org/10.1006/csla.1995.0011
http://dx.doi.org/10.1002/spe.4380250802
http://dx.doi.org/10.2307/411934

106 RESOURCES

Hirakawa, Hideki (2006). Graph branch algorithm: an optimum tree search method for scored
dependency graph with arc co-occurrence constraints, Proceedings of the 21st International Confer-
ence on Computational Linguistics and the 44th Annual Meeting of the Association for Computational
Linguistics, Sydney, Australia, pp. 361–368.

Hudson, Richard A. (1984). Word Grammar, Blackwell.

Hudson, Richard A. (1990). English Word Grammar, Blackwell.

Hudson, Richard A. (2007). Language Networks: The New Word Grammar, Oxford University Press.

Järvinen,Timo and Tapanainen, Pasi (1998). Towards an implementable dependency grammar, Pro-
ceedings of the Workshop on Processing of Dependency-Based Grammars (ACL-COLING), Montreal,
Canada, pp. 1–10.

Johansson, Richard and Nugues, Pierre (2006). Investigating multilingual dependency parsing,
Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL), New
York, NY, pp. 206–210.

Johansson, Richard and Nugues, Pierre (2007a). Extended constituent-to-dependency conversion
for English, Proceedings of NODALIDA 2007, Tartu, Estonia.

Johansson, Richard and Nugues, Pierre (2007b). Incremental dependency parsing using online
learning, Proceedings of the CoNLL Shared Task of EMNLP-CoNLL 2007, Prague, Czech Republic,
pp. 1134–1138.

Johnson, Mark (2007). Transforming projective bilexical dependency grammars into efficiently-
parseable CFGs with unfold-fold, Proceeding of the 45th Annual Meeting of the Association of
Computational Linguistics, Prague, Czech Republic, pp. 168–175.

Kahane, Sylvain, Nasr, Alexis and Rambow, Owen (1998). Pseudo-projectivity: A polynomially
parsable non-projective dependency grammar, Proceedings of the 36th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL) and the 17th International Conference on Computational
Linguistics (COLING), Montreal, Canada, pp. 646–652.

Karlsson, Fred (1990). Constraint grammar as a framework for parsing running text, Papers Presented
to the 13th International Conference on Computational Linguistics (COLING), Helsinki, Finland,
pp. 168–173.

Karlsson,Fred,Voutilainen,Atro,Heikkilä, Juha and Anttila,Arto (eds) (1995). Constraint Grammar:
A language-independent system for parsing unrestricted text, Mouton de Gruyter.

Klein, Dan (2005). The Unsupervised Learning of Natural Language Structure, PhD thesis, Stanford
University.

A.3. DEPENDENCY PARSING WIKI 107

Klein, Dan and Manning, Christopher D. (2002). Fast exact natural language parsing with a factored
model, Advances in Neural Information Processing Systems (NIPS), Cambridge, MA, pp. 3–10.

Klein, Dan and Manning, Christopher D. (2003). Accurate unlexicalized parsing, Proceedings of
the 41st Annual Meeting of the Association for Computational Linguistics (ACL), pp. 423–430.
DOI: 10.3115/1075096.1075150

Koo, Terry, Globerson, Amir, Carreras, Xavier and Collins, Michael (2007). Structured prediction
models via the matrix-tree theorem, Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
Prague, Czech Republic, pp. 141–150.

Kromann, Matthias Trautner (2003). The Danish Dependency Treebank and the DTAG treebank
tool, Proceedings of the 2nd Workshop on Treebanks and Linguistic Theories (TLT), Växjö, Sweden,
pp. 217–220.

Kudo, Taku and Matsumoto, Yuji (2000). Japanese dependency structure analysis based on support
vector machines, Proceedings of the Joint SIGDAT Conference on Empirical Methods in NLP and
Very Large Corpora, Hong Kong, pp. 18–25.

Kudo, Taku and Matsumoto, Yuji (2002). Japanese dependency analysis using cascaded chunking,
Proceedings of the 6th Workshop on Computational Language Learning (CoNLL), Taipei, Taiwan,
pp. 63–69.

Kuhlmann, Marco and Möhl, Mathias (2007). Mildly context-sensitive dependency languages,
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL),
Prague, Czech Republic, pp. 160–167.

Kuhlmann, Marco and Nivre, Joakim (2006). Mildly non-projective dependency structures, Proceed-
ings of the COLING/ACL 2006 Main Conference Poster Sessions, Sydney, Australia, pp. 507–514.

Kulick,Seth,Bies,Ann,Liberman,Mark,Mandel,Mark,McDonald,Ryan,Palmer,Martha,Schein,
Andrew,Ungar,Lyle,Winters,Scott and White,Pete (2004). Integrated annotation for biomedical
information extraction, Proceedings of the Workshop on Linking Biological Literature, Ontologies, and
Databases (HLT-NAACL), Boston, MA, pp. 61–68.

Lafferty, John, Sleator, Daniel and Temperley, Davy (1992). Grammatical trigrams: A probabilistic
model of link grammar, Proceedings of the AAAI Fall Symposium on Probabilistic Approaches to
Natural Language, Cambridge, MA, pp. 89–97.

Lari, Karim and Young, Steve J. (1990). The estimation of stochastic context-free gram-
mars using the inside-outside algorithm, Computer Speech and Language 4(1): 35–56.
DOI: 10.1016/0885-2308(90)90022-X

http://dx.doi.org/10.3115/1075096.1075150
http://dx.doi.org/10.1016/0885-2308(90)90022-X

108 RESOURCES

Lin, Dekang (1994). PRINCIPAR – an efficient, borad-coverage, principle-based parser, Proceedings
of the 15th International Conference on Computational Linguistics (COLING), Kyoto, Japan, pp. 482–
488.

Lin, Dekang (1995). A dependency-based method for evaluating broad-coverage parsers, Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI), Montreal, Canada,
pp. 1420–1425.

Lin, Dekang (1996). Evaluation of PRINCIPAR with the SUSANNE corpus, Robust Parsing
Workshop at ESSLLI, Prague, Czech Republic, pp. 54–69.

Lin, Dekang (1998a). Dependency-based evaluation of MINIPAR, Proceedings of the LREC Work-
shop on the Evaluation of Parsing Systems, Granada, Spain.

Lin, Dekang (1998b). A dependency-based method for evaluating broad-coverage parsers, Journal
of Natural Language Engineering 4: 97–114.

MacWhinney, Brian (2000). The CHILDES Project: Tools for Analyzing Talk, Lawrence Erlbaum.

Magerman, David M. (1995). Statistical decision-tree models for parsing, Proceedings of the 33rd
Annual Meeting of the Association for Computational Linguistics (ACL), Cambridge, MA, pp. 276–
283. DOI: 10.3115/981658.981695

Manning, Christopher D. and Schütze, Hinrichs (2000). Foundations of Statistical Natural Language
Processing, MIT Press.

Marcus, Mitchell P., Santorini, Beatrice and Marcinkiewicz, Mary Ann (1993). Building a large
annotated corpus of English: The Penn Treebank, Computational Linguistics 19(2): 313–330.

Marcus, Solomon (1965). Sur la notion de projectivité, Zeitschrift für mathematische Logik und
Grundlagen der Mathematik 11: 181–192. DOI: 10.1002/malq.19650110212

Martins, André F.T., Das, Dipanjan, Smith, Noah A. and Xing, Eric P. (2008). Stacking depen-
dency parsers, Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), Honolulu, Hawaii.

Maruyama, Hiroshi (1990). Structural disambiguation with constraint propagation, Proceedings of
the 28th Annual Meeting of the Association for Computational Linguistics (ACL), Pittsburgh, PA,
pp. 31–38. DOI: 10.3115/981823.981828

McDonald, Ryan (2006). Discriminative Learning and Spanning Tree Algorithms for Dependency
Parsing, PhD thesis, University of Pennsylvania.

McDonald, Ryan, Crammer, Koby and Pereira, Fernando (2005). Online large-margin training of
dependency parsers, Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL), Ann Arbor, MI, pp. 91–98. DOI: 10.3115/1219840.1219852

http://dx.doi.org/10.3115/981658.981695
http://dx.doi.org/10.1002/malq.19650110212
http://dx.doi.org/10.3115/981823.981828
http://dx.doi.org/10.3115/1219840.1219852

A.3. DEPENDENCY PARSING WIKI 109

McDonald, Ryan, Lerman, Kevin and Pereira, Fernando (2006). Multilingual dependency analysis
with a two-stage discriminative parser, Proceedings of the 10th Conference on Computational Natural
Language Learning (CoNLL), New York, NY, pp. 216–220.

McDonald, Ryan and Nivre, Joakim (2007). Characterizing the errors of data-driven dependency
parsing models, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL), Prague, Czech Re-
public, pp. 122–131.

McDonald, Ryan and Pereira, Fernando (2006). Online learning of approximate dependency pars-
ing algorithms, Proceedings of the 11th Conference of the European Chapter of the Association for
Computational Linguistics (EACL), Trento, Italy, pp. 81–88.

McDonald, Ryan, Pereira, Fernando, Ribarov, Kiril and Hajič, Jan (2005). Non-projective depen-
dency parsing using spanning tree algorithms, Proceedings of the Human Language Technology Con-
ference and the Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP),
Vancouver, Canada, pp. 523–530. DOI: 10.3115/1220575.1220641

McDonald, Ryan and Satta, Giorgio (2007). On the complexity of non-projective data-driven
dependency parsing,Proceedings of the 10th International Conference on ParsingTechnologies (IWPT),
Prague, Czech Republic, pp. 121–132.

Mel’čuk, Igor (1988). Dependency Syntax: Theory and Practice, State University of New York Press.

Menzel, Wolfgang and Schröder, Ingo (1998). Decision procedures for dependency parsing using
graded constraints, Proceedings of the Workshop on Processing of Dependency-Based Grammars (ACL-
COLING), Montreal, Canada, pp. 78–87.

Milicevic, Jasmina (2006). A short guide to the Meaning-Text linguistic theory, Journal of Koralex
8: 187–233.

Nakagawa, Tetsuji (2007). Multilingual dependency parsing using global features, Proceedings of the
CoNLL Shared Task of EMNLP-CoNLL 2007, Prague, Czech Republic, pp. 952–956.

Neuhaus, Peter and Bröker, Norbert (1997). The complexity of recognition of linguistically adequate
dependency grammars, Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics (ACL) and the 8th Conference of the European Chapter of the Association for Computational
Linguistics (EACL), Madrid, Spain, pp. 337–343.

Nikula, Henrik (1986). Dependensgrammatik, Liber.

Nivre, Joakim (2002). Two models of stochastic dependency grammar,Technical Report 02118, Växjö
University, School of Mathematics and Systems Engineering.

http://dx.doi.org/10.3115/1220575.1220641

110 RESOURCES

Nivre, Joakim (2003). An efficient algorithm for projective dependency parsing, Proceedings of the
8th International Workshop on Parsing Technologies (IWPT), Nancy, France, pp. 149–160.

Nivre, Joakim (2006a). Constraints on non-projective dependency graphs, Proceedings of the 11th
Conference of the European Chapter of the Association for Computational Linguistics (EACL), Trento,
Italy, pp. 73–80.

Nivre, Joakim (2006b). Inductive Dependency Parsing, Springer.

Nivre, Joakim (2007). Incremental non-projective dependency parsing, Proceedings of Human Lan-
guage Technologies: The Annual Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL HLT), Rochester, NY, pp. 396–403.

Nivre, Joakim (2008). Algorithms for deterministic incremental dependency parsing, Computational
Linguistics 34(4): 513—553. DOI: 10.1162/coli.07-056-R1-07-027

Nivre, Joakim, Hall, Johan, Kübler, Sandra, McDonald, Ryan, Nilsson, Jens, Riedel, Sebastian and
Yuret, Deniz (2007). The CoNLL 2007 shared task on dependency parsing, Proceedings of the
CoNLL Shared Task of EMNLP-CoNLL 2007, Prague, Czech Republic, pp. 915–932.

Nivre, Joakim, Hall, Johan and Nilsson, Jens (2004). Memory-based dependency parsing, Proceedings
of the 8th Conference on Computational Natural Language Learning (CoNLL), Boston, MA, pp. 49–
56.

Nivre, Joakim, Hall, Johan, Nilsson, Jens, Chanev, Atanas, Eryiğit, Gülşen, Kübler, Sandra, Marinov,
Svetoslav and Marsi, Erwin (2007). MaltParser: A language-independent system for data-driven
dependency parsing, Natural Language Engineering 13: 95–135.

Nivre, Joakim, Hall, Johan, Nilsson, Jens, Eryiğit, Gülşen and Marinov, Svetoslav (2006). Labeled
pseudo-projective dependency parsing with support vector machines, Proceedings of the 10th Con-
ference on Computational Natural Language Learning (CoNLL), New York, NY, pp. 221–225.

Nivre, Joakim and McDonald, Ryan (2008). Integrating graph-based and transition-based depen-
dency parsers, Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics
(ACL), Columbus, OH.

Nivre, Joakim and Nilsson, Jens (2005). Pseudo-projective dependency parsing,Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL), Ann Arbor, MI, pp. 99–106.
DOI: 10.3115/1219840.1219853

Nivre, Joakim and Scholz, Mario (2004). Deterministic dependency parsing of English text, Pro-
ceedings of the 20th International Conference on Computational Linguistics (COLING), Geneva,
Switzerland, pp. 64–70. DOI: 10.3115/1220355.1220365

http://dx.doi.org/10.1162/coli.07-056-R1-07-027
http://dx.doi.org/10.3115/1219840.1219853
http://dx.doi.org/10.3115/1220355.1220365

A.3. DEPENDENCY PARSING WIKI 111

Oflazer, Kemal, Say, Bilge, Hakkani-Tür, Dilek Zeynep and Tür, Gökhan (2003). Building a Turkish
treebank, in A. Abeillé (ed.), Treebanks: Building and Using Parsed Corpora, Kluwer, pp. 261–277.

Paskin, Mark A. (2001). Cubic-time parsing and learning algorithms for grammatical bigram mod-
els, Technical Report UCB/CSD-01-1148, Computer Science Division, University of California
Berkeley.

Paskin, Mark A. (2002). Grammatical bigrams, Advances in Neural Information Processing Systems
(NIPS), Vancouver, Canada.

Quirk, Chris, Menezes, Arul and Cherry, Colin (2005). Dependency treelet translation: syntactically
informed phrasal SMT, Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL), Ann Arbor, MI, pp. 271–279. DOI: 10.3115/1219840.1219874

Rabiner, Lawrence R. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition, Proceedings of the IEEE 77(2): 257–285. DOI: 10.1109/5.18626

Ribarov, Kiril (2004). Automatic Building of a Dependency Tree, PhD thesis, Charles University.

Riedel, Sebastian and Clarke, James (2006). Incremental integer linear programming for non-
projective dependency parsing, Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Sydney, Australia, pp. 129–137.

Sagae, Kenji and Lavie, Alon (2006). Parser combination by reparsing, Proceedings of the Human
Language Technology Conference of the NAACL, Main Conference, New York, NY, pp. 125–132.

Schneider, Gerold (2004). Combining shallow and deep processing for a robust, fast, deep-linguistic
dependency parser, Proceedings of the ESSLLI Workshop on Combining Shallow and Deep Processing
in NLP, Nancy, France.

Schneider, Gerold, Dowdall, James and Rinaldi, Fabio (2004). A robust and hybrid deep-linguistic
theory applied to large-scale parsing, Proceedings of the COLING Worskhop on Robust Methods in
the Analysis of NL Data (ROMAND), Geneva, Switzerland, pp. 14–23.

Schröder, Ingo (2002). Natural Language Parsing with Graded Constraints, PhD thesis, Hamburg
University.

Schröder, Ingo, Menzel, Wolfgang, Foth, Kilian and Schulz, Michael (2000). Modeling dependency
grammar with restricted constraints, Traitement Automatique des Langues 41(1): 113–144.

Schröder, Ingo, Pop, Horia, Menzel, Wolfgang and Foth, Kilian (2001). Learning grammar weights
using genetic algorithms, Proceedings of the International Conference on Recent Advances in Natural
Language Processing (RANLP), Tzigov Chark, Bulgaria.

http://dx.doi.org/10.3115/1219840.1219874
http://dx.doi.org/10.1109/5.18626

112 RESOURCES

Schröder, Ingo, Pop, Horia, Menzel, Wolfgang and Foth, Kilian (2002). Learning the constraints
weights of a dependency grammar using genetic algorithms, Proceedings of the 13th International
Conference on Domain Decomposition Methods (CIMNE), Barcelona, Spain.

Sgall, Petr, Hajičová, Eva and Panevová, Jarmila (1986). The Meaning of the Sentence in Its Pragmatic
Aspects, Reidel.

Sleator, Daniel and Temperley, Davy (1991). Parsing English with a link grammar, Technical Report
CMU-CS-91-196, Carnegie Mellon University, Computer Science.

Sleator, Daniel and Temperley, Davy (1993). Parsing English with a link grammar, Proceedings
of the Third International Workshop on Parsing Technologies (IWPT), Tilburg, The Netherlands,
pp. 277–292.

Smith, David A. and Eisner, Jason (2008). Dependency parsing by belief propagation, Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP), Honolulu, Hawaii.

Smith,David A.and Smith,Noah A. (2007). Probabilistic models of nonprojective dependency trees,
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), Prague, Czech Republic, pp. 132–
140.

Smith, Noah A. (2006). Novel Estimation Methods for Unsupervised Discovery of Latent Structure in
Natural Language Text, PhD thesis, Johns Hopkins University.

Snow, Rion, Jurafsky, Dan and Ng, Andrew Y. (2005). Learning syntactic patterns for automatic
hypernym discovery, Advances in Neural Information Processing Systems (NIPS),Vancouver,Canada.

Starosta, Stanley (1988). The Case for Lexicase: An Outline of Lexicase Grammatical Theory, Pinter
Publishers.

Surdeanu,Mihai, Johansson,Richard,Meyers,Adam,Màrquez,Lluís and Nivre, Joakim (2008).The
CoNLL 2008 shared task on joint parsing of syntactic and semantic dependencies, CoNLL 2008:
Proceedings of the Twelfth Conference on Computational Natural Language Learning, Manchester,
England, pp. 159–177.

Tapanainen, Pasi and Järvinen, Timo (1997). A non-projective dependency parser, Proceedings of the
5th Conference on Applied Natural Language Processing (ANLP), Washington, D.C., pp. 64–71.

Tarjan, Robert E. (1977). Finding optimum branchings, Networks 7: 25–35.
DOI: 10.1002/net.3230070103

Tarvainen, Kalevi (1982). Einführung in die Dependenzgrammatik, Niemeyer.

Tesnière, Lucien (1959). Éléments de syntaxe structurale, Editions Klincksieck.

http://dx.doi.org/10.1002/net.3230070103

A.3. DEPENDENCY PARSING WIKI 113

Titov, Ivan and Henderson, James (2007a). Fast and robust multilingual dependency parsing with a
generative latent variable model, Proceedings of the CoNLL Shared Task of EMNLP-CoNLL 2007,
Prague, Czech Republic, pp. 947–951.

Titov, Ivan and Henderson, James (2007b). A latent variable model for generative dependency
parsing, Proceedings of the 10th International Conference on Parsing Technologies (IWPT), Prague,
Czech Republic, pp. 144–155.

Tutte, William T. (1984). Graph Theory, Cambridge University Press.

Vapnik, Vladimir N. (1995). The Nature of Statistical Learning Theory, Springer.

Viterbi, Andrew J. (1967). Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm, IEEE Transactions on Information Theory 13(2): 260–269.
DOI: 10.1109/TIT.1967.1054010

Wallach, Hann, Sutton, Charles and McCallum, Andrew (2008). Bayesian modeling of dependency
trees using hierarchical Pitman-Yor priors, Workshop on Prior Knowledge for Text and Language
Processing, Helsinki, Finland.

Wang, Mengqiu, Smith, Noah A. and Mitamura, Teruko (2007). What is the Jeopardy Model? A
quasi-synchronous grammar for QA, Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
Prague, Czech Republic, pp. 22–32.

Wang, Wen and Harper, Mary (2002). The SuperARV language model: Investigating the ef-
fectiveness of tightly integrating multiple knowledge sources, Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), Philadelphia, PA, pp. 238–247.
DOI: 10.3115/1118693.1118724

Wang, Wen and Harper, Mary P. (2004). A statistical constraint dependency grammar (CDG)
parser, Proceedings of the Workshop on Incremental Parsing: Bringing Engineering and Cognition
Together (ACL), Barcelona, Spain, pp. 42–29.

Weber, H. J. (1997). Dependenzgrammatik. Ein interaktives Arbeitsbuch, Günter Narr.

Yamada, Hiroyasu and Matsumoto, Yuji (2003). Statistical dependency analysis with support vector
machines, Proceedings of the 8th International Workshop on Parsing Technologies (IWPT), Nancy,
France, pp. 195–206.

Younger,Daniel H.(1967). Recognition and parsing of context-free languages in timen3, Information
and Control 10: 189–208. DOI: 10.1016/S0019-9958(67)80007-X

Yuret, Deniz (1998). Discovery of Linguistic Relations Using Lexical Attraction, PhD thesis, Mas-
sachusetts Institute of Technology.

http://dx.doi.org/10.1109/TIT.1967.1054010
http://dx.doi.org/10.3115/1118693.1118724
http://dx.doi.org/10.1016/S0019-9958(67)80007-X

114 RESOURCES

Zeman, Daniel (2004). Parsing with a Statistical Dependency Model, PhD thesis, Charles University.

Zeman, Daniel and Žabokrtský, Zdeněk (2005). Improving parsing accuracy by combining diverse
dependency parsers, Proceedings of the 9th International Workshop on Parsing Technologies (IWPT),
Vancouver, Canada, pp. 171–178.

Zhang, Yue and Clark, Stephen (2008). A tale of two parsers: investigating and combining graph-
based and transition-based dependency parsing using beam-search, Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP), Honolulu, Hawaii.

115

Author Biographies

Sandra Kübler is Assistant Professor of Computational Linguistics at Indiana University, where
she has worked since 2006. She received her M.A. from the University of Trier and her Ph.D. in
Computational Linguistics from the University of Tübingen. Sandra’s research focuses on data-
driven methods for syntactic and semantic processing. For her dissertation work, she developed a
novel memory-based approach to parsing spontaneous speech. This parser was integrated into the
Verbmobil speech-to-speech translation system. Sandra is currently interested in parsing German,
a non-configurational language, for which several treebanks are available. Her research focuses on
comparisons between constituent-based and dependency-based parsing and comparisons of how
different annotation schemes influence parsing results.

Ryan McDonald is a Senior Research Scientist at Google, Inc., where he has worked since 2006.
He received his B.Sc. from the University of Toronto and his Ph.D. in Computer and Information
Science from the University of Pennsylvania. Ryan’s research focuses on learning and inference algo-
rithms for parsing and summarizing natural language. His dissertation work advanced the theoretical
and empirical foundations for modern graph-based dependency parsers. The result of this work was
the MSTParser software package, which tied for the most accurate system in the first shared task on
multilingual dependency parsing at the Conference on Computational Natural Language Learn-
ing in 2006. Since arriving at Google, Ryan’s research has focused on opinion mining, including
methods for automatically identifying opinions, extracting relevant attributes, and building faceted
summaries from large text collections.

Joakim Nivre is Professor of Computational Linguistics at Uppsala University (since 2008) and
at Växjö University (since 2002). He holds a Ph.D. in General Linguistics from the University of
Gothenburg and a Ph.D. in Computer Science from Växjö University. Joakim’s research focuses on
data-driven methods for natural language processing, in particular for syntactic and semantic anal-
ysis. He is one of the main developers of the transition-based approach to data-driven dependency
parsing, described in his 2006 book Inductive Dependency Parsing and implemented in the MaltParser
system. Systems developed using MaltParser were tied for first place in the shared tasks on multilin-
gual dependency parsing at the Conference on Computational Natural Language Learning in both
2006 and 2007. Joakim’s current research interests include the analysis of mildly non-projective
dependency structures, the integration of morphological and syntactic processing for richly inflected
languages, and the modeling of human sentence processing.

	Synthesis Lectures on Human Language Technologies
	Contents
	Preface
	Introduction
	Dependency Grammar
	Dependency Parsing
	Summary and Further Reading

	Dependency Parsing
	Dependency Graphs and Trees
	Properties of Dependency Trees
	Projective Dependency Trees

	Formal Definition of Dependency Parsing
	Summary and Further Reading

	Transition-Based Parsing
	Transition Systems
	Parsing Algorithm
	Classifier-Based Parsing
	Feature Representations
	Training Data
	Classifiers

	Varieties of Transition-Based Parsing
	Changing the Transition System
	Changing the Parsing Algorithm

	Pseudo-Projective Parsing
	Summary and Further Reading

	Graph-Based Parsing
	Arc-Factored Models
	Arc-Factored Parsing Algorithms
	Reducing Labeled to Unlabeled Parsing
	Non-Projective Parsing Algorithms
	Projective Parsing Algorithms

	Learning Arc-Factored Models
	Parameter and Feature Representations
	Training Data
	Learning the Parameters

	Beyond Arc-Factored Models
	Summary and Further Reading

	Grammar-Based Parsing
	Context-Free Dependency Grammar
	Parsing with Bilexical Grammars

	Constraint Dependency Grammar
	Weighted Constraint Dependency Grammar
	Transformation-Based Constraint Dependency Parsing

	Summary and Further Reading

	Evaluation
	Evaluation Metrics
	Dependencies for Cross-Framework Parser Evaluation
	Converting Constituent Treebanks intoDependency Formats
	Converting Constituent Treebanks into Dependency Formats
	The CoNLL Shared Tasks on DependencyParsing
	The CoNLL Shared Tasks on Dependency Parsing
	Summary and Further Reading

	Comparison
	Comparing Transition-Based and Graph-Based Models
	Comparing Grammar-Based and Data-Driven Models
	Summary and Further Reading

	Final Thoughts
	Resources
	Parsers
	Treebanks
	Dependency Parsing Wiki

	Bibliography
	Author Biographies

