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Dependency Parsing - Output



Dependency Parsing

TurboParser output from
http://demo.ark.cs.cmu.edu/parse?sentence=I%20ate%20the%20fish%20with%20a%20fork.

http://demo.ark.cs.cmu.edu/parse?sentence=I%20ate%20the%20fish%20with%20a%20fork.


Dependency Parsing - Output Structure

A parse is an arborescence (aka directed rooted tree):

I Directed [Labeled] Graph

I Acyclic

I Single Root

I Connected and Spanning: ∃ directed path from root to every
other word



Projective / Non-projective

I Some parses are projective: edges don’t cross

I Most English sentences are projective, but non-projectivity is
common in other languages (e.g. Czech, Hindi)

Non-projective sentence in English:

and Czech:

Examples from Non-projective Dependency Parsing using Spanning Tree Algorithms McDonald et al., EMNLP ’05



Dependency Parsing - Approaches



Dependency Parsing Approaches

I Chart (Eisner, CKY)
I O(n3)
I Only produces projective parses

I Shift-reduce
I O(n) (fast!), but inexact
I “Pseudo-projective” trick can capture some non-projectivity

I Graph-based (MST)
I O(n2) for arc-factored
I Can produce projective and non-projective parses
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Graph-based Dependency Parsing



Arc-Factored Model

Every possible labeled directed edge e between every pair of nodes
gets a score, score(e).

G = 〈V ,E 〉 =

(O(n2) edges)

Example from Non-projective Dependency Parsing using Spanning Tree Algorithms McDonald et al., EMNLP ’05
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Arc-Factored Model

Best parse is:

A∗ = arg max
A⊆G

s.t. A an arborescence

∑
e∈A

score(e)

etc. . .
The Chu-Liu-Edmonds algorithm finds this argmax.
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Chu-Liu-Edmonds

Chu and Liu ’65, On the Shortest Arborescence of a Directed Graph, Science
Sinica

Edmonds ’67, Optimum Branchings, JRNBS



Chu-Liu-Edmonds - Intuition

Every non-ROOT node needs exactly 1 incoming edge

In fact, every connected component that doesn’t contain ROOT

needs exactly 1 incoming edge

I Greedily pick an incoming edge for each node.

I If this forms an arborescence, great!

I Otherwise, it will contain a cycle C .

I Arborescences can’t have cycles, so we can’t keep every edge
in C . One edge in C must get kicked out.

I C also needs an incoming edge.

I Choosing an incoming edge for C determines which edge to
kick out
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Chu-Liu-Edmonds - Recursive (Inefficient) Definition

def maxArborescence(V , E, ROOT ):
””” returns best arborescence as a map from each node to its parent ”””
for v in V \ ROOT:

bestInEdge[v ]← arg maxe∈inEdges[v ] e.score

if bestInEdge contains a cycle C :
# build a new graph where C is contracted into a single node
vC ← new Node()

V ′ ← V ∪ {vC} \ C
E ′ ← {adjust(e) for e ∈ E \ C}
A← maxArborescence(V ′, E ′, ROOT )
return {e.original for e ∈ A} ∪ C \ {A[vC ].kicksOut}

# each node got a parent without creating any cycles
return bestInEdge

def adjust(e):
e′ ← copy(e)

e′.original← e
if e.dest ∈ C :

e′.dest← vC
e′.kicksOut← bestInEdge[e.dest]

e′.score← e.score− e′.kicksOut.score
elif e.src ∈ C :

e′.src← vC
return e′



Chu-Liu-Edmonds

Consists of two stages:

I Contracting (everything before the recursive call)

I Expanding (everything after the recursive call)



Chu-Liu-Edmonds - Preprocessing

I Remove every edge incoming to ROOT
I This ensures that ROOT is in fact the root of any solution

I For every ordered pair of nodes, vi , vj , remove all but the
highest-scoring edge from vi to vj



Chu-Liu-Edmonds - Contracting Stage

I For each non-ROOT node v , set bestInEdge[v ] to be its
highest scoring incoming edge.

I If a cycle C is formed:
I contract the nodes in C into a new node vC
I edges outgoing from any node in C now get source vC
I edges incoming to any node in C now get destination vC
I For each node u in C , and for each edge e incoming to u from

outside of C :
I set e.kicksOut to bestInEdge[u], and
I set e.score to be e.score− e.kicksOut.score.

I Repeat until every non-ROOT node has an incoming edge and
no cycles are formed



An Example - Contracting Stage

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1
V2
V3

kicksOut
a
b
c
d
e
f
g
h
i
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An Example - Contracting Stage

V1

ROOT

V3V2

a : 5− 10 b : 1− 11 c : 1

f : 5d : 11

h : 9− 10

e : 4

i : 8− 11g : 10

V4

bestInEdge

V1 g
V2 d
V3

kicksOut
a g
b d
c
d
e
f
g
h g
i d
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An Example - Contracting Stage
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An Example - Contracting Stage

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 g
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V5 a
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i d



Chu-Liu-Edmonds - Expanding Stage

After the contracting stage, every contracted node will have
exactly one bestInEdge. This edge will kick out one edge inside
the contracted node, breaking the cycle.

I Go through each bestInEdge e in the reverse order that we
added them

I lock down e, and remove every edge in kicksOut(e) from
bestInEdge.



An Example - Expanding Stage
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Chu-Liu-Edmonds - Notes

I This is a greedy algorithm with a clever form of delayed
back-tracking to recover from inconsistent decisions (cycles).

I CLE is exact: it always recovers the optimal arborescence.



Chu-Liu-Edmonds - Notes

I Efficient implementation:
Tarjan ’77, Finding Optimum Branchings, Networks

Not recursive. Uses a union-find (a.k.a. disjoint-set) data
structure to keep track of collapsed nodes.

I Even more efficient:
Gabow et al. ’86, Efficient Algorithms for Finding Minimum Spanning

Trees in Undirected and Directed Graphs, Combinatorica

Uses a Fibonacci heap to keep incoming edges sorted.
Finds cycles by following bestInEdge instead of randomly
visiting nodes.
Describes how to constrain ROOT to have only one outgoing
edge
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Arc Scoring / Learning



Arc Scoring

Features
can look at source (head), destination (child), and arc label.
For example:

I number of words between head and child,

I sequence of POS tags between head and child,

I is head to the left or right of child?

I vector state of a recurrent neural net at head and child,

I vector embedding of label,

I etc.



Learning

Recall that when we have a parameterized model, and we have a
decoder that can make predictions given that model. . .

we can use structured perceptron, or structured hinge loss:

Lθ(xi , yi ) = max
y∈Y
{scoreθ(y) + cost(y , yi )} − scoreθ(yi )
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