
Dependency Parsing

Tutorial at COLING-ACL, Sydney 2006

Joakim Nivre1 Sandra Kübler2

1Uppsala University and Växjö University, Sweden
E-mail: nivre@msi.vxu.se

2Eberhard-Karls Universität Tübingen, Germany
E-mail: kuebler@sfs.uni-tuebingen.de

Dependency Parsing 1(103)

Introduction

Why?

◮ Increasing interest in dependency-based approaches to
syntactic parsing in recent years

◮ New methods emerging
◮ Applied to a wide range of languages
◮ CoNLL-X shared task (June, 2006)

◮ Dependency-based methods still less accessible for the
majority of researchers and developers than the more widely
known constituency-based methods

Dependency Parsing 2(103)

Introduction

For Whom?

◮ Researchers and students working on syntactic parsing or
related topics within other traditions

◮ Researchers and application developers interested in using
dependency parsers as components in larger systems

Dependency Parsing 3(103)

Introduction

What?

◮ Computational methods for dependency-based parsing
◮ Syntactic representations
◮ Parsing algorithms
◮ Machine learning

◮ Available resources for different languages
◮ Parsers
◮ Treebanks

Dependency Parsing 4(103)

Introduction

Outline

Introduction
Motivation and Contents
Basic Concepts of Dependency Syntax

Parsing Methods
Dynamic Programming
Constraint Satisfaction
Deterministic Parsing
Non-Projective Dependency Parsing

Pros and Cons of Dependency Parsing

Practical Issues
Parsers
Treebanks
Evaluation

Outlook

Dependency Parsing 5(103)

Introduction

Outline

Introduction
Motivation and Contents
Basic Concepts of Dependency Syntax

Parsing Methods
Dynamic Programming
Constraint Satisfaction
Deterministic Parsing
Non-Projective Dependency Parsing

Pros and Cons of Dependency Parsing

Practical Issues
Parsers
Treebanks
Evaluation

Outlook

Joakim

Sandra

Break

Joakim

Sandra

Dependency Parsing 5(103)

Introduction

Dependency Syntax

◮ The basic idea:
◮ Syntactic structure consists of lexical items, linked by binary

asymmetric relations called dependencies.

◮ In the words of Lucien Tesnière [Tesnière 1959]:
◮ La phrase est un ensemble organisé dont les éléments constituants

sont les mots. [1.2] Tout mot qui fait partie d’une phrase cesse par

lui-même d’être isolé comme dans le dictionnaire. Entre lui et ses

voisins, l’esprit aperçoit des connexions, dont l’ensemble forme la

charpente de la phrase. [1.3] Les connexions structurales établissent

entre les mots des rapports de dépendance. Chaque connexion unit

en principe un terme supérieur à un terme inférieur. [2.1] Le terme

supérieur reçoit le nom de régissant. Le terme inférieur reçoit le

nom de subordonné. Ainsi dans la phrase Alfred parle [. . .], parle

est le régissant et Alfred le subordonné. [2.2]

Dependency Parsing 6(103)

Introduction

Dependency Syntax

◮ The basic idea:
◮ Syntactic structure consists of lexical items, linked by binary

asymmetric relations called dependencies.

◮ In the words of Lucien Tesnière [Tesnière 1959]:
◮ The sentence is an organized whole, the constituent elements of

which are words. [1.2] Every word that belongs to a sentence ceases

by itself to be isolated as in the dictionary. Between the word and

its neighbors, the mind perceives connections, the totality of which

forms the structure of the sentence. [1.3] The structural

connections establish dependency relations between the words. Each

connection in principle unites a superior term and an inferior term.

[2.1] The superior term receives the name governor. The inferior

term receives the name subordinate. Thus, in the sentence Alfred

parle [. . .], parle is the governor and Alfred the subordinate. [2.2]

Dependency Parsing 6(103)

Introduction

Dependency Structure

Economic news had little effect on financial markets .

Dependency Parsing 7(103)

Introduction

Dependency Structure

Economic news had little effect on financial markets .

Dependency Parsing 7(103)

Introduction

Dependency Structure

Economic news had little effect on financial markets .

Dependency Parsing 7(103)

Introduction

Dependency Structure

Economic news had little effect on financial markets .

Dependency Parsing 7(103)

Introduction

Dependency Structure

Economic news had little effect on financial markets .

Dependency Parsing 7(103)

Introduction

Dependency Structure

Economic news had little effect on financial markets .

sbj

Dependency Parsing 7(103)

Introduction

Dependency Structure

Economic news had little effect on financial markets .

sbjnmod

Dependency Parsing 7(103)

Introduction

Dependency Structure

Economic news had little effect on financial markets .

obj

sbjnmod

Dependency Parsing 7(103)

Introduction

Dependency Structure

Economic news had little effect on financial markets .

obj

p

sbjnmod nmod nmod

pc

nmod

Dependency Parsing 7(103)

Introduction

Terminology

Superior Inferior

Head Dependent
Governor Modifier
Regent Subordinate
...

...

Dependency Parsing 8(103)

Introduction

Terminology

Superior Inferior

Head Dependent
Governor Modifier
Regent Subordinate
...

...

Dependency Parsing 8(103)

Introduction

Notational Variants

had

news

sbj

Economic

nmod
effect

obj

little

nmod

on

nmod

markets

pc

financial

nmod

.

p

Dependency Parsing 9(103)

Introduction

Notational Variants

VBD

NN NN PU

JJ JJ IN

NNS

JJ

Economic news had little effect on financial markets .

obj

p

nmod

sbj

nmod nmod

pc

nmod

Dependency Parsing 9(103)

Introduction

Notational Variants

Economic news had little effect on financial markets .

obj

p

sbjnmod nmod nmod

pc

nmod

Dependency Parsing 9(103)

Introduction

Notational Variants

Economic news had little effect on financial markets .

obj

p

sbjnmod nmod nmod

pc

nmod

Dependency Parsing 9(103)

Introduction

Phrase Structure

JJ

Economic

��

NN

news

HH

�
�

�
�

�
�

�
�

�
�

��

NP

VBD

had

�
�

�
�

�
�

�
VP

S

JJ

little

��

NN

effect

HH

"
"

"
"

"

HH

NP

NP

IN

on

�
�

�

HH

PP

JJ

financial

��

NNS

markets

HH

HH

NP PU

.

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

Dependency Parsing 10(103)

Introduction

Comparison

◮ Dependency structures explicitly represent
◮ head-dependent relations (directed arcs),
◮ functional categories (arc labels),
◮ possibly some structural categories (parts-of-speech).

◮ Phrase structures explicitly represent
◮ phrases (nonterminal nodes),
◮ structural categories (nonterminal labels),
◮ possibly some functional categories (grammatical functions).

◮ Hybrid representations may combine all elements.

Dependency Parsing 11(103)

Introduction

Some Theoretical Frameworks

◮ Word Grammar (WG) [Hudson 1984, Hudson 1990]

◮ Functional Generative Description (FGD) [Sgall et al. 1986]

◮ Dependency Unification Grammar (DUG)
[Hellwig 1986, Hellwig 2003]

◮ Meaning-Text Theory (MTT) [Mel’čuk 1988]

◮ (Weighted) Constraint Dependency Grammar ([W]CDG)
[Maruyama 1990, Harper and Helzerman 1995,

Menzel and Schröder 1998, Schröder 2002]

◮ Functional Dependency Grammar (FDG)
[Tapanainen and Järvinen 1997, Järvinen and Tapanainen 1998]

◮ Topological/Extensible Dependency Grammar ([T/X]DG)
[Duchier and Debusmann 2001, Debusmann et al. 2004]

Dependency Parsing 12(103)

Introduction

Some Theoretical Issues

◮ Dependency structure sufficient as well as necessary?

◮ Mono-stratal or multi-stratal syntactic representations?

◮ What is the nature of lexical elements (nodes)?
◮ Morphemes?
◮ Word forms?
◮ Multi-word units?

◮ What is the nature of dependency types (arc labels)?
◮ Grammatical functions?
◮ Semantic roles?

◮ What are the criteria for identifying heads and dependents?

◮ What are the formal properties of dependency structures?

Dependency Parsing 13(103)

Introduction

Some Theoretical Issues

◮ Dependency structure sufficient as well as necessary?

◮ Mono-stratal or multi-stratal syntactic representations?

◮ What is the nature of lexical elements (nodes)?
◮ Morphemes?
◮ Word forms?
◮ Multi-word units?

◮ What is the nature of dependency types (arc labels)?
◮ Grammatical functions?
◮ Semantic roles?

◮ What are the criteria for identifying heads and dependents?

◮ What are the formal properties of dependency structures?

Dependency Parsing 13(103)

Introduction

Criteria for Heads and Dependents

◮ Criteria for a syntactic relation between a head H and a
dependent D in a construction C [Zwicky 1985, Hudson 1990]:

1. H determines the syntactic category of C ; H can replace C .
2. H determines the semantic category of C ; D specifies H.
3. H is obligatory; D may be optional.
4. H selects D and determines whether D is obligatory.
5. The form of D depends on H (agreement or government).
6. The linear position of D is specified with reference to H.

◮ Issues:
◮ Syntactic (and morphological) versus semantic criteria
◮ Exocentric versus endocentric constructions

Dependency Parsing 14(103)

Introduction

Some Clear Cases

Construction Head Dependent

Exocentric Verb Subject (sbj)
Verb Object (obj)

Endocentric Verb Adverbial (vmod)
Noun Attribute (nmod)

Economic news suddenly affected financial markets .

objsbj

vmodnmod nmod

Dependency Parsing 15(103)

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

?

Dependency Parsing 16(103)

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

Dependency Parsing 16(103)

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

?

Dependency Parsing 16(103)

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj

Dependency Parsing 16(103)

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj ? ?

Dependency Parsing 16(103)

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj co cj

Dependency Parsing 16(103)

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj co cj?

Dependency Parsing 16(103)

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj co cjpcvc

Dependency Parsing 16(103)

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj co cjpcvc

?

Dependency Parsing 16(103)

Introduction

Some Tricky Cases

◮ Complex verb groups (auxiliary ↔ main verb)

◮ Subordinate clauses (complementizer ↔ verb)

◮ Coordination (coordinator ↔ conjuncts)

◮ Prepositional phrases (preposition ↔ nominal)

◮ Punctuation

I can see that they rely on this and that .

vgsbj sbj

sbar

obj co cjpcvc

p

Dependency Parsing 16(103)

Introduction

Dependency Graphs

◮ A dependency structure can be defined as a directed graph G ,
consisting of

◮ a set V of nodes,
◮ a set E of arcs (edges),
◮ a linear precedence order < on V .

◮ Labeled graphs:
◮ Nodes in V are labeled with word forms (and annotation).
◮ Arcs in E are labeled with dependency types.

◮ Notational conventions (i , j ∈ V):
◮ i → j ≡ (i , j) ∈ E
◮ i →∗ j ≡ i = j ∨ ∃k : i → k, k →∗ j

Dependency Parsing 17(103)

Introduction

Formal Conditions on Dependency Graphs

◮ G is (weakly) connected:
◮ For every node i there is a node j such that i → j or j → i .

◮ G is acyclic:
◮ If i → j then not j →∗ i .

◮ G obeys the single-head constraint:
◮ If i → j , then not k → j , for any k 6= i .

◮ G is projective:
◮ If i → j then i →∗ k, for any k such that i <k < j or j <k < i .

Dependency Parsing 18(103)

Introduction

Connectedness, Acyclicity and Single-Head

◮ Intuitions:
◮ Syntactic structure is complete (Connectedness).
◮ Syntactic structure is hierarchical (Acyclicity).
◮ Every word has at most one syntactic head (Single-Head).

◮ Connectedness can be enforced by adding a special root node.

Economic news had little effect on financial markets .

obj

sbjnmod nmod nmod

pc

nmod

Dependency Parsing 19(103)

Introduction

Connectedness, Acyclicity and Single-Head

◮ Intuitions:
◮ Syntactic structure is complete (Connectedness).
◮ Syntactic structure is hierarchical (Acyclicity).
◮ Every word has at most one syntactic head (Single-Head).

◮ Connectedness can be enforced by adding a special root node.

root Economic news had little effect on financial markets .

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Dependency Parsing 19(103)

Introduction

Projectivity

◮ Most theoretical frameworks do not assume projectivity.
◮ Non-projective structures are needed to account for

◮ long-distance dependencies,
◮ free word order.

What did economic news have little effect on ?

obj

vg

p

sbj

nmod nmod nmod

pc

Dependency Parsing 20(103)

Introduction

Scope of the Tutorial

◮ Dependency parsing:
◮ Input: Sentence x = w1, . . . , wn

◮ Output: Dependency graph G

◮ Focus of tutorial:
◮ Computational methods for dependency parsing
◮ Resources for dependency parsing (parsers, treebanks)

◮ Not included:
◮ Theoretical frameworks of dependency syntax
◮ Constituency parsers that exploit lexical dependencies
◮ Unsupervised learning of dependency structure

Dependency Parsing 21(103)

Parsing Methods

Parsing Methods

◮ Three main traditions:
◮ Dynamic programming
◮ Constraint satisfaction
◮ Deterministic parsing

◮ Special issue:
◮ Non-projective dependency parsing

Dependency Parsing 22(103)

Parsing Methods

Dynamic Programming

◮ Basic idea: Treat dependencies as constituents.

◮ Use, e.g., CYK parser (with minor modifications).

◮ Dependencies as constituents:

Dependency Parsing 23(103)

Parsing Methods

Dynamic Programming

◮ Basic idea: Treat dependencies as constituents.

◮ Use, e.g., CYK parser (with minor modifications).

◮ Dependencies as constituents:

the dog barked

⇒ barked

dog

the dog

barked

Dependency Parsing 23(103)

Parsing Methods

Dynamic Programming

◮ Basic idea: Treat dependencies as constituents.

◮ Use, e.g., CYK parser (with minor modifications).

◮ Dependencies as constituents:

the dog barked

nmod sbj ⇒ barked

dog
sbj

the

nmod
dog

barked

Dependency Parsing 23(103)

Parsing Methods

Dependency Chart Parsing

◮ Grammar is regarded as context-free, in which each node is
lexicalized.

◮ Chart entries are subtrees, i.e., words with all their left and
right dependents.

◮ Problem: Different entries for different subtrees spanning a
sequence of words with different heads.

◮ Time requirement: O(n5).

Dependency Parsing 24(103)

Parsing Methods

Dynamic Programming Approaches

◮ Original version: [Hays 1964]

◮ Link Grammar: [Sleator and Temperley 1991]

◮ Earley-style parser with left-corner filtering:
[Lombardo and Lesmo 1996]

◮ Bilexical grammar: [Eisner 1996a, Eisner 1996b, Eisner 2000]

◮ Bilexical grammar with discriminative estimation methods:
[McDonald et al. 2005a, McDonald et al. 2005b]

Dependency Parsing 25(103)

Parsing Methods

Eisner’s Bilexical Algorithm

◮ Two novel aspects:
◮ Modified parsing algorithm
◮ Probabilistic dependency parsing

◮ Time requirement: O(n3).

◮ Modification: Instead of storing subtrees, store spans.

◮ Def. span: Substring such that no interior word links to any
word outside the span.

◮ Underlying idea: In a span, only the endwords are active, i.e.
still need a head.

◮ One or both of the endwords can be active.

Dependency Parsing 26(103)

Parsing Methods

Example

the man in the corner taught his dog to play golf root

Dependency Parsing 27(103)

Parsing Methods

Example

the man in the corner taught his dog to play golf root

Spans:

(man in the corner) (dog to play)

Incorrect span:
Dependency Parsing 27(103)

Parsing Methods

Assembly of Correct Parse

Start by combining adjacent words to minimal spans:

(the man) (man in) (in the) . . .

Dependency Parsing 28(103)

Parsing Methods

Assembly of Correct Parse

Combine spans which overlap in one word; this word must be
governed by a word in the left or right span.

(in the) + (the corner) ⇒ (in the corner)

Dependency Parsing 28(103)

Parsing Methods

Assembly of Correct Parse

Combine spans which overlap in one word; this word must be
governed by a word in the left or right span.

(man in) + (in the corner) ⇒ (man in the corner)

Dependency Parsing 28(103)

Parsing Methods

Assembly of Correct Parse

Combine spans which overlap in one word; this word must be
governed by a word in the left or right span.

Invalid span:

(the man in the corner)

Dependency Parsing 28(103)

Parsing Methods

Assembly of Correct Parse

Combine spans which overlap in one word; this word must be
governed by a word in the left or right span.

(dog to) + (to play) ⇒ (dog to play)

Dependency Parsing 28(103)

Parsing Methods

Assembly of Correct Parse

(the man) + (man in the corner taught his dog to play golf root)

⇒ (the man in the corner taught his dog to play golf root)

Dependency Parsing 28(103)

Parsing Methods

Eisner’s Probability Models

◮ Model A: Bigram lexical affinities
◮ First generates a trigram Markov model for POS tagging.
◮ Decides for each word pair whether they have a dependency.
◮ Model is leaky because it does not control for crossing

dependencies, multiple heads, . . .

Dependency Parsing 29(103)

Parsing Methods

Eisner’s Probability Models

◮ Model A: Bigram lexical affinities
◮ First generates a trigram Markov model for POS tagging.
◮ Decides for each word pair whether they have a dependency.
◮ Model is leaky because it does not control for crossing

dependencies, multiple heads, . . .
◮ Model B: Selectional preferences

◮ First generates a trigram Markov model for POS tagging.
◮ Each word chooses a subcat/supercat frame.
◮ Selects an analysis that satisfies all frames if possible.
◮ Model is also leaky because last step may fail.

Dependency Parsing 29(103)

Parsing Methods

Eisner’s Probability Models

◮ Model A: Bigram lexical affinities
◮ First generates a trigram Markov model for POS tagging.
◮ Decides for each word pair whether they have a dependency.
◮ Model is leaky because it does not control for crossing

dependencies, multiple heads, . . .
◮ Model B: Selectional preferences

◮ First generates a trigram Markov model for POS tagging.
◮ Each word chooses a subcat/supercat frame.
◮ Selects an analysis that satisfies all frames if possible.
◮ Model is also leaky because last step may fail.

◮ Model C: Recursive Generation
◮ Each word generates its actual dependents.
◮ Two Markov chains:

◮ Left dependents
◮ Right dependents

◮ Model is not leaky.

Dependency Parsing 29(103)

Parsing Methods

Eisner’s Model C

Pr(words, tags, links) =

∏

1≤i≤n

(

∏

c

Pr(tword(depc(i)) | tag(depc−1(i)), tword(i))

)

c = −(1 + #left − deps(i)) . . . 1 + #right − deps(i), c 6= 0

or: depc+1(i) if c < 0

Dependency Parsing 30(103)

Parsing Methods

Eisner’s Results

◮ 25 000 Wall Street Journal sentences

◮ Baseline: most frequent tag chosen for a word, each word
chooses a head with most common distance

◮ Model X: trigram tagging, no dependencies

◮ For comparison: state-of-the-art constituent parsing,
Charniak: 92.2 F-measure

Model Non-punct Tagging

Baseline 41.9 76.1
Model X – 93.1

Model A too slow
Model B 83.8 92.8
Model C 86.9 92.0

Dependency Parsing 31(103)

Parsing Methods

Maximum Spanning Trees

[McDonald et al. 2005a, McDonald et al. 2005b]

◮ Score of a dependency tree = sum of scores of dependencies

◮ Scores are independent of other dependencies.

◮ If scores are available, parsing can be formulated as maximum
spanning tree problem.

◮ Two cases:
◮ Projective: Use Eisner’s parsing algorithm.
◮ Non-projective: Use Chu-Liu-Edmonds algorithm for finding

the maximum spanning tree in a directed graph
[Chu and Liu 1965, Edmonds 1967].

◮ Use online learning for determining weight vector w:
large-margin multi-class classification (MIRA)

Dependency Parsing 32(103)

Parsing Methods

Maximum Spanning Trees (2)

◮ Complexity:
◮ Projective (Eisner): O(n3)
◮ Non-projective (CLE): O(n2)

score(sent, deps) =
∑

(i ,j)∈deps

score(i , j) =
∑

(i ,j)∈deps

w · f (i , j)

Dependency Parsing 33(103)

Parsing Methods

Online Learning

Training data: T = (sentt , depst)
T
t=1

1. w = 0; v = 0; i = 0;

2. for n : 1..N

3. for t : 1..T

4. w(i+1) = update w(i) according to (sentt , depst)

5. v = v + w(i+1)

6. i = i + 1

7. w = v/(N · T)

Dependency Parsing 34(103)

Parsing Methods

MIRA

MIRA weight update:

min ||w(i+1) −w(i)|| so that

score(sentt, depst)− score(sentt, deps ′) ≥ L(depst , deps ′)

∀deps ′ ∈ dt(sentt)

◮ L(deps, deps ′): loss function

◮ dt(sent): possible dependency parses for sentence

Dependency Parsing 35(103)

Parsing Methods

Results by McDonald et al. (2005a, 2005b)

◮ Unlabeled accuracy per word (W) and per sentence (S)

English Czech
Parser W S W S

k-best MIRA Eisner 90.9 37.5 83.3 31.3
best MIRA CLE 90.2 33.2 84.1 32.2
factored MIRA CLE 90.2 32.2 84.4 32.3

◮ New development (EACL 2006):
◮ Scores of dependencies are not independent any more
◮ Better results
◮ More later

Dependency Parsing 36(103)

Parsing Methods

Parsing Methods

◮ Three main traditions:
◮ Dynamic programming
◮ Constraint satisfaction
◮ Deterministic parsing

◮ Special issue:
◮ Non-projective dependency parsing

Dependency Parsing 37(103)

Parsing Methods

Constraint Satisfaction

◮ Uses Constraint Dependency Grammar.

◮ Grammar consists of a set of boolean constraints, i.e. logical
formulas that describe well-formed trees.

◮ A constraint is a logical formula with variables that range over
a set of predefined values.

◮ Parsing is defined as a constraint satisfaction problem.

◮ Parsing is an eliminative process rather than a constructive
one such as in CFG parsing.

◮ Constraint satisfaction removes values that contradict
constraints.

Dependency Parsing 38(103)

Parsing Methods

Examples for Constraints

◮ Based on [Maruyama 1990]

Dependency Parsing 39(103)

Parsing Methods

Examples for Constraints

◮ Based on [Maruyama 1990]

◮ Example 1:
◮ word(pos(x)) = DET ⇒

(label(X) = NMOD, word(mod(x)) = NN, pos(x) < mod(x))
◮ A determiner (DET) modifies a noun (NN) on the right with

the label NMOD.

Dependency Parsing 39(103)

Parsing Methods

Examples for Constraints

◮ Based on [Maruyama 1990]

◮ Example 1:
◮ word(pos(x)) = DET ⇒

(label(X) = NMOD, word(mod(x)) = NN, pos(x) < mod(x))
◮ A determiner (DET) modifies a noun (NN) on the right with

the label NMOD.

◮ Example 2:
◮ word(pos(x)) = NN ⇒

(label(x) = SBJ, word(mod(x)) = VB, pos(x) < mod(x))
◮ A noun modifies a verb (VB) on the right with the label SBJ.

Dependency Parsing 39(103)

Parsing Methods

Examples for Constraints

◮ Based on [Maruyama 1990]

◮ Example 1:
◮ word(pos(x)) = DET ⇒

(label(X) = NMOD, word(mod(x)) = NN, pos(x) < mod(x))
◮ A determiner (DET) modifies a noun (NN) on the right with

the label NMOD.

◮ Example 2:
◮ word(pos(x)) = NN ⇒

(label(x) = SBJ, word(mod(x)) = VB, pos(x) < mod(x))
◮ A noun modifies a verb (VB) on the right with the label SBJ.

◮ Example 3:
◮ word(pos(x)) = VB ⇒

(label(x) = ROOT, mod(x) = nil)
◮ A verb modifies nothing, its label is ROOT.

Dependency Parsing 39(103)

Parsing Methods

Constraint Satisfaction Approaches

◮ Constraint Grammar: [Karlsson 1990, Karlsson et al. 1995]

◮ Constraint Dependency Grammar:
[Maruyama 1990, Harper and Helzerman 1995]

◮ Functional Dependency Grammar: [Järvinen and Tapanainen 1998]

◮ Topological Dependency Grammar: [Duchier 1999, Duchier 2003]

◮ Extensible Dependency Grammar: [Debusmann et al. 2004]

◮ Constraint Dependency Grammar with defeasible constraints:
[Foth et al. 2000, Foth et al. 2004, Menzel and Schröder 1998,

Schröder 2002]

Dependency Parsing 40(103)

Parsing Methods

Constraint Satisfaction

◮ Constraint satisfaction in general is NP complete.

◮ Parser design must ensure practical efficiency.

◮ Different approaches to do constraint satisfaction:
◮ Maruyama applies constraint propagation techniques, which

ensure local consistency (arc consistency).
◮ Weighted CDG uses transformation-based constraint resolution

with anytime properties [Foth et al. 2000, Foth et al. 2004,

Menzel and Schröder 1998, Schröder 2002].
◮ TDG uses constraint programming [Duchier 1999, Duchier 2003].

Dependency Parsing 41(103)

Parsing Methods

Maruyama’s Constraint Propagation

Three steps:

1. Form initial constraint network using a“core”grammar.

2. Remove local inconsistencies.

3. If ambiguity remains, add new constraints and repeat step 2.

Dependency Parsing 42(103)

Parsing Methods

Constraint Propagation Example

◮ Problem: PP attachment

◮ Sentence: Put the block on the floor on the table in the room

◮ Simplified representation: V1 NP2 PP3 PP4 PP5

Dependency Parsing 43(103)

Parsing Methods

Constraint Propagation Example

◮ Problem: PP attachment

◮ Sentence: Put the block on the floor on the table in the room

◮ Simplified representation: V1 NP2 PP3 PP4 PP5

◮ Correct analysis:

V1 NP2 PP3 PP4 PP5

Put the block on the floor on the table in the room

obj pmod pmod

loc

Dependency Parsing 43(103)

Parsing Methods

Initial Constraints

◮ ◮ word(pos(x))=PP
⇒ (word(mod(x)) ∈ {PP, NP, V}, mod(x) < pos(x))

◮ A PP modifies a PP, an NP, or a V on the left.

Dependency Parsing 44(103)

Parsing Methods

Initial Constraints

◮ ◮ word(pos(x))=PP
⇒ (word(mod(x)) ∈ {PP, NP, V}, mod(x) < pos(x))

◮ A PP modifies a PP, an NP, or a V on the left.

◮ ◮ word(pos(x))=PP, word(mod(x)) ∈ {PP, NP}
⇒ label(x)=pmod

◮ If a PP modifies a PP or an NP, its label is pmod.

Dependency Parsing 44(103)

Parsing Methods

Initial Constraints

◮ ◮ word(pos(x))=PP
⇒ (word(mod(x)) ∈ {PP, NP, V}, mod(x) < pos(x))

◮ A PP modifies a PP, an NP, or a V on the left.

◮ ◮ word(pos(x))=PP, word(mod(x)) ∈ {PP, NP}
⇒ label(x)=pmod

◮ If a PP modifies a PP or an NP, its label is pmod.

◮ ◮ word(pos(x))=PP, word(mod(x))=V ⇒ label(x)=loc
◮ If a PP modifies a V, its label is loc.

Dependency Parsing 44(103)

Parsing Methods

Initial Constraints

◮ ◮ word(pos(x))=PP
⇒ (word(mod(x)) ∈ {PP, NP, V}, mod(x) < pos(x))

◮ A PP modifies a PP, an NP, or a V on the left.

◮ ◮ word(pos(x))=PP, word(mod(x)) ∈ {PP, NP}
⇒ label(x)=pmod

◮ If a PP modifies a PP or an NP, its label is pmod.

◮ ◮ word(pos(x))=PP, word(mod(x))=V ⇒ label(x)=loc
◮ If a PP modifies a V, its label is loc.

◮ ◮ word(pos(x))=NP
⇒ (word(mod(x))=V, label(x)=obj, mod(x) < pos(x))

◮ An NP modifies a V on the left with the label obj.

Dependency Parsing 44(103)

Parsing Methods

Initial Constraints

◮ ◮ word(pos(x))=PP
⇒ (word(mod(x)) ∈ {PP, NP, V}, mod(x) < pos(x))

◮ A PP modifies a PP, an NP, or a V on the left.

◮ ◮ word(pos(x))=PP, word(mod(x)) ∈ {PP, NP}
⇒ label(x)=pmod

◮ If a PP modifies a PP or an NP, its label is pmod.

◮ ◮ word(pos(x))=PP, word(mod(x))=V ⇒ label(x)=loc
◮ If a PP modifies a V, its label is loc.

◮ ◮ word(pos(x))=NP
⇒ (word(mod(x))=V, label(x)=obj, mod(x) < pos(x))

◮ An NP modifies a V on the left with the label obj.

◮ ◮ word(pos(x))=V ⇒ (mod(x)=nil, label(x)=root)
◮ A V modifies nothing with the label root.

Dependency Parsing 44(103)

Parsing Methods

Initial Constraints

◮ ◮ word(pos(x))=PP
⇒ (word(mod(x)) ∈ {PP, NP, V}, mod(x) < pos(x))

◮ A PP modifies a PP, an NP, or a V on the left.

◮ ◮ word(pos(x))=PP, word(mod(x)) ∈ {PP, NP}
⇒ label(x)=pmod

◮ If a PP modifies a PP or an NP, its label is pmod.

◮ ◮ word(pos(x))=PP, word(mod(x))=V ⇒ label(x)=loc
◮ If a PP modifies a V, its label is loc.

◮ ◮ word(pos(x))=NP
⇒ (word(mod(x))=V, label(x)=obj, mod(x) < pos(x))

◮ An NP modifies a V on the left with the label obj.

◮ ◮ word(pos(x))=V ⇒ (mod(x)=nil, label(x)=root)
◮ A V modifies nothing with the label root.

◮ ◮ mod(x) < pos(y) < pos(x) ⇒ mod(x) ≤ mod(y) ≤ pos(x)
◮ Modification links do not cross.

Dependency Parsing 44(103)

Parsing Methods

Initial Constraint Network

V1 PP5

NP2 PP4

PP3

Dependency Parsing 45(103)

Parsing Methods

Initial Constraint Network

V1 PP5

NP2 PP4

PP3

Possible values ⇐ unary constraints:

V1: <root, nil>
NP2: <obj, 1>
PP3: <loc, 1>, <pmod, 2>
PP4: <loc, 1>, <pmod, 2>, <pmod, 3>
PP5: <loc, 1>, <pmod, 2>, <pmod, 3>, <pmod,4>

Dependency Parsing 45(103)

Parsing Methods

Initial Constraint Network

V1 PP5

NP2 PP4

PP3

1

Each arc has a constraint matrix:
For arc 1 :

↓ V1 \ NP2 → <obj, 1>

<root, nil> 1

Dependency Parsing 45(103)

Parsing Methods

Initial Constraint Network

V1 PP5

NP2 PP4

PP3
2

Each arc has a constraint matrix:
For arc 2 :

↓ PP3 \ PP4 → <loc, 1> <pmod, 2> <pmod, 3>

<loc, 1> 1 0 1
<pmod, 2> 1 1 1

Dependency Parsing 45(103)

Parsing Methods

Adding New Constraints

◮ Still 14 possible analyses.

◮ Filtering with binary constraints does not reduce ambiguity.

◮ Introduce more constraints:

Dependency Parsing 46(103)

Parsing Methods

Adding New Constraints

◮ Still 14 possible analyses.

◮ Filtering with binary constraints does not reduce ambiguity.

◮ Introduce more constraints:

◮ ◮ word(pos(x))=PP, on table ∈ sem(pos(x))
⇒ ¬(floor ∈ sem(mod(x)))

◮ A floor is not on the table.

Dependency Parsing 46(103)

Parsing Methods

Adding New Constraints

◮ Still 14 possible analyses.

◮ Filtering with binary constraints does not reduce ambiguity.

◮ Introduce more constraints:

◮ ◮ word(pos(x))=PP, on table ∈ sem(pos(x))
⇒ ¬(floor ∈ sem(mod(x)))

◮ A floor is not on the table.

◮ ◮ label(x)=loc, label(y)=loc, mod(x)=mod(y), word(mod(x))=V
⇒ x=y

◮ No verb can take two locatives.

Dependency Parsing 46(103)

Parsing Methods

Adding New Constraints

◮ Still 14 possible analyses.

◮ Filtering with binary constraints does not reduce ambiguity.

◮ Introduce more constraints:

◮ ◮ word(pos(x))=PP, on table ∈ sem(pos(x))
⇒ ¬(floor ∈ sem(mod(x)))

◮ A floor is not on the table.

◮ ◮ label(x)=loc, label(y)=loc, mod(x)=mod(y), word(mod(x))=V
⇒ x=y

◮ No verb can take two locatives.

◮ Each value in the domains of nodes is tested against the new
constraints.

Dependency Parsing 46(103)

Parsing Methods

Modified Tables
Old:

↓ PP3 \ PP4 → <loc, 1> <pmod, 2> <pmod, 3>

<loc, 1> 1 0 1
<pmod, 2> 1 1 1

Dependency Parsing 47(103)

Parsing Methods

Modified Tables
Old:

↓ PP3 \ PP4 → <loc, 1> <pmod, 2> <pmod, 3>

<loc, 1> 1 0 1
<pmod, 2> 1 1 1

violates first constraint

Dependency Parsing 47(103)

Parsing Methods

Modified Tables
Old:

↓ PP3 \ PP4 → <loc, 1> <pmod, 2> <pmod, 3>

<loc, 1> 1 0 1
<pmod, 2> 1 1 1

After applying first new constraint:

↓ PP3 \ PP4 → <loc, 1> <pmod, 2>

<loc, 1> 1 0
<pmod, 2> 1 1

Dependency Parsing 47(103)

Parsing Methods

Modified Tables
Old:

↓ PP3 \ PP4 → <loc, 1> <pmod, 2> <pmod, 3>

<loc, 1> 1 0 1
<pmod, 2> 1 1 1

After applying first new constraint:

↓ PP3 \ PP4 → <loc, 1> <pmod, 2>

<loc, 1> 1 0
<pmod, 2> 1 1

violates second constraint

Dependency Parsing 47(103)

Parsing Methods

Modified Tables
Old:

↓ PP3 \ PP4 → <loc, 1> <pmod, 2> <pmod, 3>

<loc, 1> 1 0 1
<pmod, 2> 1 1 1

After applying first new constraint:

↓ PP3 \ PP4 → <loc, 1> <pmod, 2>

<loc, 1> 0 0
<pmod, 2> 1 1

Dependency Parsing 47(103)

Parsing Methods

Modified Tables
Old:

↓ PP3 \ PP4 → <loc, 1> <pmod, 2> <pmod, 3>

<loc, 1> 1 0 1
<pmod, 2> 1 1 1

After applying first new constraint:

↓ PP3 \ PP4 → <loc, 1> <pmod, 2>

<loc, 1> 0 0
<pmod, 2> 1 1

After applying second new constraint:

↓ PP3 \ PP4 → <loc, 1> <pmod, 2>

<pmod, 2> 1 1

Dependency Parsing 47(103)

Parsing Methods

Weighted Constraint Parsing

◮ Approach by [Foth et al. 2004, Foth et al. 2000,

Menzel and Schröder 1998, Schröder 2002]

◮ Robust parser, which uses soft constraints

◮ Each constraint is assigned a weight between 0.0 and 1.0

◮ Weight 0.0: hard constraint, can only be violated when no
other parse is possible

◮ Constraints assigned manually (or estimated from treebank)

◮ Efficiency: uses a heuristic transformation-based constraint
resolution method

Dependency Parsing 48(103)

Parsing Methods

Transformation-Based Constraint Resolution

◮ Heuristic search

◮ Very efficient

◮ Idea: first construct arbitrary dependency structure, then try
to correct errors

◮ Error correction by transformations

◮ Selection of transformations based on constraints that cause
conflicts

◮ Anytime property: parser maintains a complete analysis at any
time ⇒ can be stopped at any time and return a complete
analysis

Dependency Parsing 49(103)

Parsing Methods

Menzel et al.’s Results

◮ Evaluation on NEGRA treebank for German

◮ German more difficult to parse than English (free word order)

◮ Constituent-based parsing: labeled F measure including
grammatical functions: 53.4 [Kübler et al. 2006], labeled F
measure: 73.1 [Dubey 2005].

◮ Best CoNLL-X results: unlabeled: 90.4, labeled: 87.3
[McDonald et al. 2006].

Data Unlabeled Labeled

1000 sentences 89.0 87.0
< 40 words 89.7 87.7

Dependency Parsing 50(103)

Parsing Methods

Parsing Methods

◮ Three main traditions:
◮ Dynamic programming
◮ Constraint satisfaction
◮ Deterministic parsing

◮ Special issue:
◮ Non-projective dependency parsing

Dependency Parsing 51(103)

Parsing Methods

Deterministic Parsing

◮ Basic idea:
◮ Derive a single syntactic representation (dependency graph)

through a deterministic sequence of elementary parsing actions
◮ Sometimes combined with backtracking or repair

◮ Motivation:
◮ Psycholinguistic modeling
◮ Efficiency
◮ Simplicity

Dependency Parsing 52(103)

Parsing Methods

Covington’s Incremental Algorithm

◮ Deterministic incremental parsing in O(n2) time by trying to
link each new word to each preceding one [Covington 2001]:

PARSE(x = (w1, . . . , wn))
1 for i = 1 up to n
2 for j = i − 1 down to 1
3 LINK(wi , wj)

LINK(wi , wj) =







E ← E ∪ (i , j) if wj is a dependent of wi

E ← E ∪ (j , i) if wi is a dependent of wj

E ← E otherwise

◮ Different conditions, such as Single-Head and Projectivity, can
be incorporated into the LINK operation.

Dependency Parsing 53(103)

Parsing Methods

Shift-Reduce Type Algorithms

◮ Data structures:
◮ Stack [. . . , wi]S of partially processed tokens
◮ Queue [wj , . . .]Q of remaining input tokens

◮ Parsing actions built from atomic actions:
◮ Adding arcs (wi → wj , wi ← wj)
◮ Stack and queue operations

◮ Left-to-right parsing in O(n) time

◮ Restricted to projective dependency graphs

Dependency Parsing 54(103)

Parsing Methods

Yamada’s Algorithm

◮ Three parsing actions:

Shift
[. . .]S [wi , . . .]Q

[. . . , wi]S [. . .]Q

Left
[. . . , wi , wj]S [. . .]Q

[. . . , wi]S [. . .]Q wi → wj

Right
[. . . , wi , wj]S [. . .]Q

[. . . , wj]S [. . .]Q wi ← wj

◮ Algorithm variants:
◮ Originally developed for Japanese (strictly head-final) with only

the Shift and Right actions [Kudo and Matsumoto 2002]
◮ Adapted for English (with mixed headedness) by adding the

Left action [Yamada and Matsumoto 2003]
◮ Multiple passes over the input give time complexity O(n2)

Dependency Parsing 55(103)

Parsing Methods

Nivre’s Algorithm

◮ Four parsing actions:

Shift
[. . .]S [wi , . . .]Q

[. . . , wi]S [. . .]Q

Reduce
[. . . , wi]S [. . .]Q ∃wk : wk → wi

[. . .]S [. . .]Q

Left-Arcr
[. . . , wi]S [wj , . . .]Q ¬∃wk : wk → wi

[. . .]S [wj , . . .]Q wi
r
← wj

Right-Arcr
[. . . , wi]S [wj , . . .]Q ¬∃wk : wk → wj

[. . . , wi , wj]S [. . .]Q wi
r
→ wj

◮ Characteristics:
◮ Integrated labeled dependency parsing
◮ Arc-eager processing of right-dependents
◮ Single pass over the input gives time complexity O(n)

Dependency Parsing 56(103)

Parsing Methods

Example

[root]S [Economic news had little effect on financial markets .]Q

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic]S [news had little effect on financial markets .]Q

Shift

Dependency Parsing 57(103)

Parsing Methods

Example

[root]S Economic [news had little effect on financial markets .]Q

nmod

Left-Arcnmod

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news]S [had little effect on financial markets .]Q

nmod

Shift

Dependency Parsing 57(103)

Parsing Methods

Example

[root]S Economic news [had little effect on financial markets .]Q

sbjnmod

Left-Arcsbj

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had]S [little effect on financial markets .]Q

pred

sbjnmod

Right-Arcpred

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had little]S [effect on financial markets .]Q

pred

sbjnmod

Shift

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had]S little [effect on financial markets .]Q

pred

sbjnmod nmod

Left-Arcnmod

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had little effect]S [on financial markets .]Q

objpred

sbjnmod nmod

Right-Arcobj

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had little effect on]S [financial markets .]Q

objpred

sbjnmod nmod nmod

Right-Arcnmod

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had little effect on financial]S [markets .]Q

objpred

sbjnmod nmod nmod

Shift

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had little effect on]S financial [markets .]Q

objpred

sbjnmod nmod nmod nmod

Left-Arcnmod

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had little effect on financial markets]S [.]Q

objpred

sbjnmod nmod nmod

pc

nmod

Right-Arcpc

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had little effect on]S financial markets [.]Q

objpred

sbjnmod nmod nmod

pc

nmod

Reduce

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had little effect]S on financial markets [.]Q

objpred

sbjnmod nmod nmod

pc

nmod

Reduce

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had]S little effect on financial markets [.]Q

objpred

sbjnmod nmod nmod

pc

nmod

Reduce

Dependency Parsing 57(103)

Parsing Methods

Example

[root]S Economic news had little effect on financial markets [.]Q

objpred

sbjnmod nmod nmod

pc

nmod

Reduce

Dependency Parsing 57(103)

Parsing Methods

Example

[root Economic news had little effect on financial markets .]S []Q

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Right-Arcp

Dependency Parsing 57(103)

Parsing Methods

Classifier-Based Parsing

◮ Data-driven deterministic parsing:
◮ Deterministic parsing requires an oracle.
◮ An oracle can be approximated by a classifier.
◮ A classifier can be trained using treebank data.

◮ Learning methods:
◮ Support vector machines (SVM)

[Kudo and Matsumoto 2002, Yamada and Matsumoto 2003,

Isozaki et al. 2004, Cheng et al. 2004, Nivre et al. 2006]
◮ Memory-based learning (MBL)

[Nivre et al. 2004, Nivre and Scholz 2004]
◮ Maximum entropy modeling (MaxEnt)

[Cheng et al. 2005]

Dependency Parsing 58(103)

Parsing Methods

Feature Models

◮ Learning problem:
◮ Approximate a function from parser states, represented by

feature vectors to parser actions, given a training set of gold
standard derivations.

◮ Typical features:
◮ Tokens:

◮ Target tokens
◮ Linear context (neighbors in S and Q)
◮ Structural context (parents, children, siblings in G)

◮ Attributes:
◮ Word form (and lemma)
◮ Part-of-speech (and morpho-syntactic features)
◮ Dependency type (if labeled)
◮ Distance (between target tokens)

Dependency Parsing 59(103)

Parsing Methods

State of the Art – English

◮ Evaluation:
◮ Penn Treebank (WSJ) converted to dependency graphs
◮ Unlabeled accuracy per word (W) and per sentence (S)

◮ Deterministic classifier-based parsers
[Yamada and Matsumoto 2003, Isozaki et al. 2004]

◮ Spanning tree parsers with online training
[McDonald et al. 2005a, McDonald and Pereira 2006]

◮ Collins and Charniak parsers with same conversion

Parser W S
Charniak 92.2 45.2
Collins 91.7 43.3
McDonald and Pereira 91.5 42.1
Isozaki et al. 91.4 40.7
McDonald et al. 91.0 37.5
Yamada and Matsumoto 90.4 38.4

Dependency Parsing 60(103)

Parsing Methods

Comparing Algorithms

◮ Parsing algorithm:
◮ Nivre’s algorithm gives higher accuracy than Yamada’s

algorithm for parsing the Chinese CKIP treebank
[Cheng et al. 2004].

◮ Learning algorithm:
◮ SVM gives higher accuracy than MaxEnt for parsing the

Chinese CKIP treebank [Cheng et al. 2004].
◮ SVM gives higher accuracy than MBL with lexicalized feature

models for three languages [Hall et al. 2006]:
◮ Chinese (Penn)
◮ English (Penn)
◮ Swedish (Talbanken)

Dependency Parsing 61(103)

Parsing Methods

Parsing Methods

◮ Three main traditions:
◮ Dynamic programming
◮ Constraint satisfaction
◮ Deterministic parsing

◮ Special issue:
◮ Non-projective dependency parsing

Dependency Parsing 62(103)

Parsing Methods

Non-Projective Dependency Parsing

◮ Many parsing algorithms are restricted to projective
dependency graphs.

◮ Is this a problem?
◮ Statistics from CoNLL-X Shared Task [Buchholz and Marsi 2006]

◮ NPD = Non-projective dependencies
◮ NPS = Non-projective sentences

Language %NPD %NPS

Dutch 5.4 36.4
German 2.3 27.8
Czech 1.9 23.2
Slovene 1.9 22.2
Portuguese 1.3 18.9
Danish 1.0 15.6

Dependency Parsing 63(103)

Parsing Methods

Two Main Approaches

◮ Algorithms for non-projective dependency parsing:
◮ Constraint satisfaction methods [Tapanainen and Järvinen 1997,

Duchier and Debusmann 2001, Foth et al. 2004]
◮ McDonald’s spanning tree algorithm [McDonald et al. 2005b]
◮ Covington’s algorithm [Nivre 2006]

◮ Post-processing of projective dependency graphs:
◮ Pseudo-projective parsing [Nivre and Nilsson 2005]
◮ Corrective modeling [Hall and Novák 2005]
◮ Approximate non-projective parsing [McDonald and Pereira 2006]

Dependency Parsing 64(103)

Parsing Methods

Non-Projective Parsing Algorithms

◮ Complexity considerations:
◮ Projective (Proj)
◮ Non-projective (NonP)

Problem/Algorithm Proj NonP

Complete grammar parsing P NP hard
[Gaifman 1965, Neuhaus and Bröker 1997]

Deterministic parsing O(n) O(n2)
[Nivre 2003, Covington 2001]

First order spanning tree O(n3) O(n2)
[McDonald et al. 2005b]

Nth order spanning tree (N > 1) P NP hard
[McDonald and Pereira 2006]

Dependency Parsing 65(103)

Parsing Methods

Post-Processing

◮ Two-step approach:

1. Derive the best projective approximation of the correct
(possibly) non-projective dependency graph.

2. Improve the approximation by replacing projective arcs by
(possibly) non-projective arcs.

◮ Rationale:
◮ Most“naturally occurring”dependency graphs are primarily

projective, with only a few non-projective arcs.

◮ Approaches:
◮ Pseudo-projective parsing [Nivre and Nilsson 2005]
◮ Corrective modeling [Hall and Novák 2005]
◮ Approximate non-projective parsing [McDonald and Pereira 2006]

Dependency Parsing 66(103)

Parsing Methods

Pseudo-Projective Parsing

◮ Projectivize training data:
◮ Projective head nearest permissible ancestor of real head
◮ Arc label extended with dependency type of real head

root Z nich je jen jedna na kvalitu .

(out-of) (them) (is) (only) (one) (to) (quality)

Pred

AuxK

Atr

AuxP

Sb

AuxZ

AuxP

Adv

Dependency Parsing 67(103)

Parsing Methods

Pseudo-Projective Parsing

◮ Projectivize training data:
◮ Projective head nearest permissible ancestor of real head
◮ Arc label extended with dependency type of real head

root Z nich je jen jedna na kvalitu .

(out-of) (them) (is) (only) (one) (to) (quality)

Pred

AuxK

Atr

AuxP

Sb

AuxZ

AuxP

AuxP↑Sb

Adv

Dependency Parsing 67(103)

Parsing Methods

Pseudo-Projective Parsing

◮ Deprojectivize parser output:
◮ Top-down, breadth-first search for real head
◮ Search constrained by extended arc label

root Z nich je jen jedna na kvalitu .

(out-of) (them) (is) (only) (one) (to) (quality)

Pred

AuxK

Atr

AuxP

Sb

AuxZ

AuxP↑Sb

Adv

Dependency Parsing 67(103)

Parsing Methods

Pseudo-Projective Parsing

◮ Deprojectivize parser output:
◮ Top-down, breadth-first search for real head
◮ Search constrained by extended arc label

root Z nich je jen jedna na kvalitu .

(out-of) (them) (is) (only) (one) (to) (quality)

Pred

AuxK

Atr

AuxP

Sb

AuxZ

AuxP

AuxP↑Sb

Adv

Dependency Parsing 67(103)

Parsing Methods

Corrective Modeling

◮ Conditional probability model

P(h′i |wi , N(hi))

for correcting the head hi of word wi to h′i , restricted to the
local neighboorhood N(hi) of hi

◮ Model trained on parser output and gold standard parses
(MaxEnt estimation)

◮ Post-processing:
◮ For every word wi , replace hi by argmaxh′

i
P(h′

i |wi , N(hi)).

Dependency Parsing 68(103)

Parsing Methods

Second-Order Non-Projective Parsing

◮ The score of a dependency tree y for input sentence x is

∑

(i ,k,j)∈y

s(i , k, j)

where k and j are adjacent, same-side children of i in y .

◮ The highest scoring projective dependency tree can be
computed exactly in O(n3) time using Eisner’s algorithm.

◮ The highest scoring non-projective dependency tree can be
approximated with a greedy post-processing procedure:

◮ While improving the global score of the dependency tree,
replace an arc hi → wi by h′

i → wi , greedily selecting the
substitution that gives the greatest improvement.

Dependency Parsing 69(103)

Parsing Methods

State of the Art – Czech
◮ Evaluation:

◮ Prague Dependency Treebank (PDT)
◮ Unlabeled accuracy per word (W) and per sentence (S)

◮ Non-projective spanning tree parsing [McDonald et al. 2005b]
◮ Corrective modeling on top of the Charniak parser

[Hall and Novák 2005]
◮ Approximate non-projective parsing on top of a second-order

projective spanning tree parser [McDonald and Pereira 2006]
◮ Pseudo-projective parsing on top of a deterministic

classifier-based parser [Nilsson et al. 2006]

Parser W S
McDonald and Pereira 85.2 35.9
Hall and Novák 85.1 —
Nilsson et al. 84.6 37.7
McDonald et al. 84.4 32.3
Charniak 84.4 –

Dependency Parsing 70(103)

Parsing Methods

State of the Art – Multilingual Parsing

◮ CoNLL-X Shared Task: 12 (13) languages

◮ Organizers: Sabine Buchholz, Erwin Marsi, Yuval
Krymolowski, Amit Dubey

◮ Main evaluation metric: Labeled accuracy per word

◮ Top scores ranging from 91.65 (Japanese) to 65.68 (Turkish)

◮ Top systems (over all languages):
◮ Approximate second-order non-projective spanning tree parsing

with online learning (MIRA) [McDonald et al. 2006]
◮ Labeled deterministic pseudo-projective parsing with support

vector machines [Nivre et al. 2006]

Dependency Parsing 71(103)

Pros and Cons of Dependency Parsing

Pros and Cons of Dependency Parsing

◮ What are the advantages of dependency-based methods?

◮ What are the disadvantages?

◮ Four types of considerations:
◮ Complexity
◮ Transparency
◮ Word order
◮ Expressivity

Dependency Parsing 72(103)

Pros and Cons of Dependency Parsing

Complexity

◮ Practical complexity:
◮ Given the Single-Head constraint, parsing a sentence

x = w1, . . . , wn can be reduced to labeling each token wi with:
◮ a head word hi ,
◮ a dependency type di .

◮ Theoretical complexity:
◮ By exploiting the special properties of dependency graphs, it is

sometimes possible to improve worst-case complexity compared
to constituency-based parsing:

◮ Lexicalized parsing in O(n3) time [Eisner 1996b]

Dependency Parsing 73(103)

Pros and Cons of Dependency Parsing

Transparency

◮ Direct encoding of predicate-argument structure

She writes books

sbj obj

S

VP

NP NP

PRP VBZ NNS

She writes books

Dependency Parsing 74(103)

Pros and Cons of Dependency Parsing

Transparency

◮ Direct encoding of predicate-argument structure

◮ Fragments directly interpretable

She writes books

sbj NP NP

PRP VBZ NNS

She writes books

Dependency Parsing 74(103)

Pros and Cons of Dependency Parsing

Transparency

◮ Direct encoding of predicate-argument structure

◮ Fragments directly interpretable

◮ But only with labeled dependency graphs

She writes books

sbj NP NP

PRP VBZ NNS

She writes books

Dependency Parsing 74(103)

Pros and Cons of Dependency Parsing

Word Order

◮ Dependency structure independent of word order

◮ Suitable for free word order languages (cf. German results)

hon har sett honom

(she) (has) (seen) (him)

sbj vg obj

S

VP

NP NP

PRP VB VBN PRP

hon har sett honom

(she) (has) (seen) (him)

Dependency Parsing 75(103)

Pros and Cons of Dependency Parsing

Word Order

◮ Dependency structure independent of word order

◮ Suitable for free word order languages (cf. German results)

honom har hon sett

(him) (has) (she) (seen)

sbj

vg

obj S

VP NP

NP

PRP VB PRP VBN

honom har hon sett

(him) (has) (she) (seen)

Dependency Parsing 75(103)

Pros and Cons of Dependency Parsing

Word Order

◮ Dependency structure independent of word order

◮ Suitable for free word order languages (cf. German results)

◮ But only with non-projective dependency graphs

honom har hon sett

(him) (has) (she) (seen)

sbj

vg

obj S

VP NP

NP

PRP VB PRP VBN

honom har hon sett

(him) (has) (she) (seen)

Dependency Parsing 75(103)

Pros and Cons of Dependency Parsing

Expressivity

◮ Limited expressivity:
◮ Every projective dependency grammar has a strongly equivalent

context-free grammar, but not vice versa [Gaifman 1965].
◮ Impossible to distinguish between phrase modification and head

modification in unlabeled dependency structure [Mel’čuk 1988].

sbj verb obj adverbial V, VP or S modification?

◮ What about labeled non-projective dependency structures?

Dependency Parsing 76(103)

Practical Issues

Practical Issues

◮ Where to get the software?
◮ Dependency parsers
◮ Conversion programs for constituent-based treebanks

◮ Where to get the data?
◮ Dependency treebanks
◮ Treebanks that can be converted into dependency

representation

◮ How to evaluate dependency parsing?
◮ Evaluation scores

◮ Where to get help and information?
◮ Dependency parsing wiki

Dependency Parsing 77(103)

Practical Issues

Parsers

◮ Trainable parsers

◮ Parsers with manually written grammars

Dependency Parsing 78(103)

Practical Issues

Parsers

◮ Trainable parsers

◮ Parsers with manually written grammars

◮ Concentrate on freely available parsers

Dependency Parsing 78(103)

Practical Issues

Trainable Parsers

◮ Jason Eisner’s probabilistic dependency parser
◮ Based on bilexical grammar
◮ Contact Jason Eisner: jason@cs.jhu.edu
◮ Written in LISP

◮ Ryan McDonald’s MSTParser
◮ Based on the algorithms of

[McDonald et al. 2005a, McDonald et al. 2005b]
◮ URL:

http://www.seas.upenn.edu/~ryantm/software/MSTParser/

◮ Written in JAVA

Dependency Parsing 79(103)

http://www.seas.upenn.edu/~ryantm/software/MSTParser/

Practical Issues

Trainable Parsers (2)

◮ Joakim Nivre’s MaltParser
◮ Inductive dependency parser with memory-based learning and

SVMs
◮ URL:

http://w3.msi.vxu.se/~nivre/research/MaltParser.html

◮ Executable versions are available for Solaris, Linux, Windows,
and MacOS (open source version planned for fall 2006)

Dependency Parsing 80(103)

http://w3.msi.vxu.se/~nivre/research/MaltParser.html

Practical Issues

Parsers for Specific Languages

◮ Dekang Lin’s Minipar
◮ Principle-based parser
◮ Grammar for English
◮ URL: http://www.cs.ualberta.ca/~lindek/minipar.htm
◮ Executable versions for Linux, Solaris, and Windows

◮ Wolfgang Menzel’s CDG Parser:
◮ Weighted constraint dependency parser
◮ Grammar for German, (English under construction)
◮ Online demo:

http://nats-www.informatik.uni-hamburg.de/Papa/ParserDemo

◮ Download:
http://nats-www.informatik.uni-hamburg.de/download

Dependency Parsing 81(103)

http://www.cs.ualberta.ca/~lindek/minipar.htm
http://nats-www.informatik.uni-hamburg.de/Papa/ParserDemo
http://nats-www.informatik.uni-hamburg.de/download

Practical Issues

Parsers for Specific Languages (2)

◮ Taku Kudo’s CaboCha
◮ Based on algorithms of [Kudo and Matsumoto 2002], uses SVMs
◮ URL: http://www.chasen.org/~taku/software/cabocha/
◮ Web page in Japanese

◮ Gerold Schneider’s Pro3Gres
◮ Probability-based dependency parser
◮ Grammar for English
◮ URL: http://www.ifi.unizh.ch/CL/gschneid/parser/
◮ Written in PROLOG

◮ Daniel Sleator’s & Davy Temperley’s Link Grammar Parser
◮ Undirected links between words
◮ Grammar for English
◮ URL: http://www.link.cs.cmu.edu/link/

Dependency Parsing 82(103)

http://www.chasen.org/~taku/software/cabocha/
http://www.ifi.unizh.ch/CL/gschneid/parser/
http://www.link.cs.cmu.edu/link/

Practical Issues

Treebanks

◮ Genuine dependency treebanks

◮ Treebanks for which conversions to dependencies exist

◮ See also CoNLL-X Shared Task
URL: http://nextens.uvt.nl/~conll/

◮ Conversion strategy from constituents to dependencies

Dependency Parsing 83(103)

http://nextens.uvt.nl/~conll/

Practical Issues

Dependency Treebanks

◮ Arabic: Prague Arabic Dependency Treebank

◮ Czech: Prague Dependency Treebank

◮ Danish: Danish Dependency Treebank

◮ Portuguese: Bosque: Floresta sintá(c)tica

◮ Slovene: Slovene Dependency Treebank

◮ Turkish: METU-Sabanci Turkish Treebank

Dependency Parsing 84(103)

Practical Issues

Dependency Treebanks (2)

◮ Prague Arabic Dependency Treebank
◮ ca. 100 000 words
◮ Available from LDC, license fee

(CoNLL-X shared task data, catalogue number LDC2006E01)
◮ URL: http://ufal.mff.cuni.cz/padt/

◮ Prague Dependency Treebank
◮ 1.5 million words
◮ 3 layers of annotation: morphological, syntactical,

tectogrammatical
◮ Available from LDC, license fee

(CoNLL-X shared task data, catalogue number LDC2006E02)
◮ URL: http://ufal.mff.cuni.cz/pdt2.0/

Dependency Parsing 85(103)

http://ufal.mff.cuni.cz/padt/
http://ufal.mff.cuni.cz/pdt2.0/

Practical Issues

Dependency Treebanks (3)

◮ Danish Dependency Treebank
◮ ca. 5 500 trees
◮ Annotation based on Discontinuous Grammar [Kromann 2005]
◮ Freely downloadable
◮ URL: http://www.id.cbs.dk/~mtk/treebank/

◮ Bosque, Floresta sintá(c)tica
◮ ca. 10 000 trees
◮ Freely downloadable
◮ URL:

http://acdc.linguateca.pt/treebank/info_floresta_English.html

Dependency Parsing 86(103)

http://www.id.cbs.dk/~mtk/treebank/
http://acdc.linguateca.pt/treebank/info_floresta_English.html

Practical Issues

Dependency Treebanks (4)

◮ Slovene Dependency Treebank
◮ ca. 30 000 words
◮ Freely downloadable
◮ URL: http://nl.ijs.si/sdt/

◮ METU-Sabanci Turkish Treebank
◮ ca. 7 000 trees
◮ Freely available, license agreement
◮ URL: http://www.ii.metu.edu.tr/~corpus/treebank.html

Dependency Parsing 87(103)

http://nl.ijs.si/sdt/
http://www.ii.metu.edu.tr/~corpus/treebank.html

Practical Issues

Constituent Treebanks

◮ English: Penn Treebank

◮ Bulgarian: BulTreebank

◮ Chinese: Penn Chinese Treebank, Sinica Treebank

◮ Dutch: Alpino Treebank for Dutch

◮ German: TIGER/NEGRA, TüBa-D/Z

◮ Japanese: TüBa-J/S

◮ Spanish: Cast3LB

◮ Swedish: Talbanken05

Dependency Parsing 88(103)

Practical Issues

Constituent Treebanks (2)

◮ Penn Treebank
◮ ca. 1 million words
◮ Available from LDC, license fee
◮ URL: http://www.cis.upenn.edu/~treebank/home.html
◮ Dependency conversion rules, available from e.g. [Collins 1999]
◮ For conversion with arc labels: Penn2Malt:

http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html

◮ BulTreebank
◮ ca. 14 000 sentences
◮ URL: http://www.bultreebank.org/
◮ Dependency version available from Kiril Simov

(kivs@bultreebank.org)

Dependency Parsing 89(103)

http://www.cis.upenn.edu/~treebank/home.html
http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html
http://www.bultreebank.org/
kivs@bultreebank.org

Practical Issues

Constituent Treebanks (3)

◮ Penn Chinese Treebank
◮ ca. 4 000 sentences
◮ Available from LDC, license fee
◮ URL: http://www.cis.upenn.edu/~chinese/ctb.html
◮ For conversion with arc labels: Penn2Malt:

http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html

◮ Sinica Treebank
◮ ca. 61 000 sentences
◮ Available Academia Sinica, license fee
◮ URL:

http://godel.iis.sinica.edu.tw/CKIP/engversion/treebank.htm

◮ Dependency version available from Academia Sinica

Dependency Parsing 90(103)

http://www.cis.upenn.edu/~chinese/ctb.html
http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html
http://godel.iis.sinica.edu.tw/CKIP/engversion/treebank.htm

Practical Issues

Constituent Treebanks (4)

◮ Alpino Treebank for Dutch
◮ ca. 150 000 words
◮ Freely downloadable
◮ URL: http://www.let.rug.nl/vannoord/trees/
◮ Dependency version downloadable at

http://nextens.uvt.nl/~conll/free_data.html

◮ TIGER/NEGRA
◮ ca. 50 000/20 000 sentences
◮ Freely available, license agreement
◮ TIGER URL:

http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/

NEGRA URL:
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/

◮ Dependency version of TIGER is included in release

Dependency Parsing 91(103)

http://www.let.rug.nl/vannoord/trees/
http://nextens.uvt.nl/~conll/free_data.html
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/

Practical Issues

Constituent Treebanks (5)

◮ TüBa-D/Z
◮ ca. 22 000 sentences
◮ Freely available, license agreement
◮ URL: http://www.sfs.uni-tuebingen.de/en_tuebadz.shtml
◮ Dependency version available from SfS Tübingen

◮ TüBa-J/S
◮ Dialog data
◮ ca. 18 000 sentences
◮ Freely available, license agreement
◮ Dependency version available from SfS Tübingen
◮ URL: http://www.sfs.uni-tuebingen.de/en_tuebajs.shtml

(under construction)

Dependency Parsing 92(103)

http://www.sfs.uni-tuebingen.de/en_tuebadz.shtml
http://www.sfs.uni-tuebingen.de/en_tuebajs.shtml

Practical Issues

Constituent Treebanks (6)

◮ Cast3LB
◮ ca. 18 000 sentences
◮ URL: http://www.dlsi.ua.es/projectes/3lb/index_en.html
◮ Dependency version available from Toni Mart́ı (amarti@ub.edu)

◮ Talbanken05
◮ ca. 300 000 words
◮ Freely downloadable
◮ URL:

http://w3.msi.vxu.se/~nivre/research/Talbanken05.html

◮ Dependency version also available

Dependency Parsing 93(103)

http://www.dlsi.ua.es/projectes/3lb/index_en.html
http://w3.msi.vxu.se/~nivre/research/Talbanken05.html

Practical Issues

Conversion from Constituents to

Dependencies

◮ Conversion from constituents to dependencies is possible

◮ Needs head/non-head information

◮ If no such information is given ⇒ heuristics

◮ Conversion for Penn Treebank to dependencies: e.g.,
Magerman, Collins, Lin, Yamada and Matsumoto . . .

◮ Conversion restricted to structural conversion, no labeling

◮ Concentrate on Lin’s conversion: [Lin 1995, Lin 1998]

Dependency Parsing 94(103)

Practical Issues

Lin’s Conversion

◮ Idea: Head of a phrase governs all sisters.

◮ Uses Tree Head Table: List of rules where to find the head
of a constituent.

◮ An entry consists of the node, the direction of search, and the
list of possible heads.

Dependency Parsing 95(103)

Practical Issues

Lin’s Conversion

◮ Idea: Head of a phrase governs all sisters.

◮ Uses Tree Head Table: List of rules where to find the head
of a constituent.

◮ An entry consists of the node, the direction of search, and the
list of possible heads.

◮ Sample entries:
(S right-to-left (Aux VP NP AP PP))
(VP left-to-right (V VP))
(NP right-to-left (Pron N NP))

◮ First line: The head of an S constituent is the first Aux
daughter from the right; if there is no Aux, then the first VP,
etc.

Dependency Parsing 95(103)

Practical Issues

Lin’s Conversion - Example

(S right-to-left (Aux VP NP AP PP))
(VP left-to-right (V VP))
(NP right-to-left (Pron N NP))

Dependency Parsing 96(103)

Practical Issues

Lin’s Conversion - Example

(S right-to-left (Aux VP NP AP PP))
(VP left-to-right (V VP))
(NP right-to-left (Pron N NP))

S

NP1

PRON

I

VP1

ADV

really

VP2

V

like

NP2

ADJ

black

N

coffee

root head lex. head

Dependency Parsing 96(103)

Practical Issues

Lin’s Conversion - Example

(S right-to-left (Aux VP NP AP PP))
(VP left-to-right (V VP))
(NP right-to-left (Pron N NP))

S

NP1

PRON

I

VP1

ADV

really

VP2

V

like

NP2

ADJ

black

N

coffee

root head lex. head
S VP1 ??

Dependency Parsing 96(103)

Practical Issues

Lin’s Conversion - Example

(S right-to-left (Aux VP NP AP PP))
(VP left-to-right (V VP))
(NP right-to-left (Pron N NP))

S

NP1

PRON

I

VP1

ADV

really

VP2

V

like

NP2

ADJ

black

N

coffee

root head lex. head
VP1 VP2 ??

Dependency Parsing 96(103)

Practical Issues

Lin’s Conversion - Example

(S right-to-left (Aux VP NP AP PP))
(VP left-to-right (V VP))
(NP right-to-left (Pron N NP))

S

NP1

PRON

I

VP1

ADV

really

VP2

V

like

NP2

ADJ

black

N

coffee

root head lex. head
S VP1 like

VP1 VP2 like

VP2 V like

Dependency Parsing 96(103)

Practical Issues

Lin’s Conversion - Example (2)

◮ The head of a phrase dominates all sisters.

◮ VP1 governs NP1 ⇒ like governs I

◮ VP2 governs ADV ⇒ like governs really

Dependency Parsing 97(103)

Practical Issues

Lin’s Conversion - Example (2)

◮ The head of a phrase dominates all sisters.

◮ VP1 governs NP1 ⇒ like governs I

◮ VP2 governs ADV ⇒ like governs really

like

I really coffee

black

Dependency Parsing 97(103)

Practical Issues

From Structural to Labeled Conversion

◮ Conversion so far gives only pure dependencies from head to
dependent.

◮ Collins uses combination of constituent labels to label relation
[Collins 1999]:

◮ Idea: Combination of mother node and two subordinate nodes
gives information about grammatical functions.

◮ If headword(Yh)→ headword(Yd) is derived from rule
X → Y1 . . .Yn, the relation is <Yd , X , Yh>

Dependency Parsing 98(103)

Practical Issues

Collins’ Example
S

NP

NNS

workers

VP

VBD

dumped

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin

Dependency Parsing 99(103)

Practical Issues

Collins’ Example
S

NP

NNS

workers

VP

VBD

dumped

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin

Dependency Relation

dumped → workers <NP, S, VP>
dumped → root <S, START, START>
dumped → sacks <NP, VP, VBD>
dumped → into <PP, VP, VBD>
into → bin <NP, PP, IN>
bin → a <DT, NP, NN>

Dependency Parsing 99(103)

Practical Issues

Example with Grammatical Functions

S

NP

subj

NNS

hd

workers

VP

hd

VBD

hd

dumped

NP

obj

NNS

hd

sacks

PP

v-mod

IN

hd

into

NP

nhd

DT

nhd

a

NN

hd

bin

Dependency Parsing 100(103)

Practical Issues

Example with Grammatical Functions

S

NP

subj

NNS

hd

workers

VP

hd

VBD

hd

dumped

NP

obj

NNS

hd

sacks

PP

v-mod

IN

hd

into

NP

nhd

DT

nhd

a

NN

hd

bin

Dependency Relation

dumped → workers sbj
dumped → root punct
dumped → sacks obj
dumped → into v-mod
into → bin nhd
bin → a nhd

Dependency Parsing 100(103)

Practical Issues

Evaluation

evaluation scores:

◮ Exact match (= S)
percentage of correctly parsed sentences

◮ Attachment score (= W)
percentage of words that have the correct head

◮ For single dependency types (labels):
◮ Precision
◮ Recall
◮ Fβ measure

◮ correct root
percentage of sentences that have the correct root

Dependency Parsing 101(103)

Practical Issues

Evaluation

evaluation scores:

◮ Exact match (= S)
percentage of correctly parsed sentences

◮ Attachment score (= W)
percentage of words that have the correct head

◮ For single dependency types (labels):
◮ Precision
◮ Recall
◮ Fβ measure

◮ correct root
percentage of sentences that have the correct root

Dependency Parsing 101(103)

Practical Issues

Evaluation

evaluation scores:

◮ Exact match (= S)
percentage of correctly parsed sentences

◮ Attachment score (= W)
percentage of words that have the correct head

◮ For single dependency types (labels):
◮ Precision
◮ Recall
◮ Fβ measure

◮ correct root
percentage of sentences that have the correct root

Dependency Parsing 101(103)

Practical Issues

Evaluation

evaluation scores:

◮ Exact match (= S)
percentage of correctly parsed sentences

◮ Attachment score (= W)
percentage of words that have the correct head

◮ For single dependency types (labels):
◮ Precision
◮ Recall
◮ Fβ measure

◮ correct root
percentage of sentences that have the correct root

◮ All labeled and unlabeled

Dependency Parsing 101(103)

Practical Issues

Further Information

◮ Dependency parsing wiki
http://depparse.uvt.nl

◮ Book by Joakim: Inductive Dependency Parsing

Dependency Parsing 102(103)

http://depparse.uvt.nl

Outlook

Outlook

◮ Future trends (observed or predicted):
◮ Multilingual dependency parsing

◮ CoNLL Shared Task
◮ Comparative error analysis
◮ Typological diversity and parsing methods

◮ Non-projective dependency parsing
◮ Non-projective parsing algorithms
◮ Post-processing of projective approximations
◮ Other approaches

◮ Global constraints
◮ Grammar-driven approaches
◮ Nth-order spanning tree parsing
◮ Hybrid approaches [Foth et al. 2004]

◮ Dependency and constituency
◮ What are the essential differences?
◮ Very few theoretical results

Dependency Parsing 103(103)

References

◮ Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual
dependency parsing. In Proceedings of the Tenth Conference on Computational
Natural Language Learning.

◮ Yuchang Cheng, Masayuki Asahara, and Yuji Matsumoto. 2004. Determinstic
dependency structure analyzer for Chinese. In Proceedings of the First International
Joint Conference on Natural Language Processing (IJCNLP), pages 500–508.

◮ Yuchang Cheng, Masayuki Asahara, and Yuji Matsumoto. 2005. Machine
learning-based dependency analyzer for Chinese. In Proceedings of International
Conference on Chinese Computing (ICCC).

◮ Y. J. Chu and T. J. Liu. 1965. On the shortest arborescence of a directed graph.
Science Sinica, 14:1396–1400.

◮ Michael Collins. 1999. Head-Driven Statistical Models for Natural Language
Parsing. Ph.D. thesis, University of Pennsylvania.

◮ Michael A. Covington. 2001. A fundamental algorithm for dependency parsing. In
Proceedings of the 39th Annual ACM Southeast Conference, pages 95–102.

◮ Ralph Debusmann, Denys Duchier, and Geert-Jan M. Kruijff. 2004. Extensible
dependency grammar: A new methodology. In Proceedings of the Workshop on
Recent Advances in Dependency Grammar, pages 78–85.

Dependency Parsing 103(103)

References

◮ Amit Dubey. 2005. What to do when lexicalization fails: Parsing German with
suffix analysis and smoothing. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics, Ann Arbor, MI.

◮ Denys Duchier and Ralph Debusmann. 2001. Topological dependency trees: A
constraint-based account of linear precedence. In Proceedings of the 39th Annual
Meeting of the Association for Computational Linguistics (ACL), pages 180–187.

◮ Denys Duchier. 1999. Axiomatizing dependency parsing using set constraints. In
Proceedings of the Sixth Meeting on Mathematics of Language, pages 115–126.

◮ Denys Duchier. 2003. Configuration of labeled trees under lexicalized constraints
and principles. Research on Language and Computation, 1:307–336.

◮ J. Edmonds. 1967. Optimum branchings. Journal of Research of the National
Bureau of Standards, 71B:233–240.

◮ Jason M. Eisner. 1996a. An empirical comparison of probability models for
dependency grammar. Technical Report IRCS-96-11, Institute for Research in
Cognitive Science, University of Pennsylvania.

◮ Jason M. Eisner. 1996b. Three new probabilistic models for dependency parsing:
An exploration. In Proceedings of the 16th International Conference on
Computational Linguistics (COLING), pages 340–345.

Dependency Parsing 103(103)

References

◮ Jason M. Eisner. 2000. Bilexical grammars and their cubic-time parsing algorithms.
In Harry Bunt and Anton Nijholt, editors, Advances in Probabilistic and Other
Parsing Technologies, pages 29–62. Kluwer.

◮ Kilian Foth, Ingo Schröder, and Wolfgang Menzel. 2000. A transformation-based
parsing technique with anytime properties. In Proceedings of the Sixth
International Workshop on Parsing Technologies (IWPT), pages 89–100.

◮ Kilian Foth, Michael Daum, and Wolfgang Menzel. 2004. A broad-coverage parser
for German based on defeasible constraints. In Proceedings of KONVENS 2004,
pages 45–52.

◮ Haim Gaifman. 1965. Dependency systems and phrase-structure systems.
Information and Control, 8:304–337.

◮ Keith Hall and Vaclav Novák. 2005. Corrective modeling for non-projective
dependency parsing. In Proceedings of the 9th International Workshop on Parsing
Technologies (IWPT), pages 42–52.

◮ Johan Hall, Joakim Nivre, and Jens Nilsson. 2006. Discriminative classifiers for
deterministic dependency parsing. In Proceedings of COLING-ACL.

◮ Mary P. Harper and R. A. Helzerman. 1995. Extensions to constraint dependency
parsing for spoken language processing. Computer Speech and Language,
9:187–234.

Dependency Parsing 103(103)

References

◮ David G. Hays. 1964. Dependency theory: A formalism and some observations.
Language, 40:511–525.

◮ Peter Hellwig. 1986. Dependency unification grammar. In Proceedings of the 11th
International Conference on Computational Linguistics (COLING), pages 195–198.

◮ Peter Hellwig. 2003. Dependency unification grammar. In Vilmos Agel, Ludwig M.
Eichinger, Hans-Werner Eroms, Peter Hellwig, Hans Jürgen Heringer, and Hening
Lobin, editors, Dependency and Valency, pages 593–635. Walter de Gruyter.

◮ Richard A. Hudson. 1984. Word Grammar. Blackwell.

◮ Richard A. Hudson. 1990. English Word Grammar. Blackwell.

◮ Hideki Isozaki, Hideto Kazawa, and Tsutomu Hirao. 2004. A deterministic word
dependency analyzer enhanced with preference learning. In Proceedings of the 20th
International Conference on Computational Linguistics (COLING), pages 275–281.

◮ Timo Järvinen and Pasi Tapanainen. 1998. Towards an implementable dependency
grammar. In Sylvain Kahane and Alain Polguère, editors, Proceedings of the
Workshop on Processing of Dependency-Based Grammars, pages 1–10.

◮ Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and Arto Anttila, editors. 1995.
Constraint Grammar: A language-independent system for parsing unrestricted text.
Mouton de Gruyter.

Dependency Parsing 103(103)

References

◮ Fred Karlsson. 1990. Constraint grammar as a framework for parsing running text.
In Hans Karlgren, editor, Papers presented to the 13th International Conference on
Computational Linguistics (COLING), pages 168–173.

◮ Matthias Trautner Kromann. 2005. Discontinuous Grammar: A Dependency-Based
Model of Human Parsing and Language Learning. Doctoral Dissertation,
Copenhagen Business School.

◮ Sandra Kübler, Erhard W. Hinrichs, and Wolfgang Maier. 2006. Is it really that
difficult to parse German? In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2006, Sydney, Australia.

◮ Taku Kudo and Yuji Matsumoto. 2002. Japanese dependency analysis using
cascaded chunking. In Proceedings of the Sixth Workshop on Computational
Language Learning (CoNLL), pages 63–69.

◮ Dekang Lin. 1995. A dependency-based method for evaluating broad-coverage
parsers. In Proceedings of IJCAI-95, pages 1420–1425.

◮ Dekang Lin. 1998. A dependency-based method for evaluating broad-coverage
parsers. Natural Language Engineering, 4:97–114.

◮ Vincenzio Lombardo and Leonardo Lesmo. 1996. An Earley-type recognizer for
dependency grammar. In Proceedings of the 16th International Conference on
Computational Linguistics (COLING), pages 723–728.

Dependency Parsing 103(103)

References

◮ Hiroshi Maruyama. 1990. Structural disambiguation with constraint propagation. In
Proceedings of the 28th Meeting of the Association for Computational Linguistics
(ACL), pages 31–38.

◮ Ryan McDonald and Fernando Pereira. 2006. Online learning of approximate
dependency parsing algorithms. In Proceedings of the 11th Conference of the
European Chapter of the Association for Computational Linguistics (EACL), pages
81–88.

◮ Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005a. Online
large-margin training of dependency parsers. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL), pages 91–98.

◮ Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005b.
Non-projective dependency parsing using spanning tree algorithms. In Proceedings
of the Human Language Technology Conference and the Conference on Empirical
Methods in Natural Language Processing (HLT/EMNLP), pages 523–530.

◮ Ryan McDonald, Kevin Lerman, and Fernando Pereira. 2006. Multilingual
dependency analysis with a two-stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Language Learning (CoNLL).

◮ Igor Mel’čuk. 1988. Dependency Syntax: Theory and Practice. State University of
New York Press.

Dependency Parsing 103(103)

References

◮ Wolfgang Menzel and Ingo Schröder. 1998. Decision procedures for dependency
parsing using graded constraints. In Sylvain Kahane and Alain Polguère, editors,
Proceedings of the Workshop on Processing of Dependency-Based Grammars,
pages 78–87.

◮ Peter Neuhaus and Norbert Bröker. 1997. The complexity of recognition of
linguistically adequate dependency grammars. In Proceedings of the 35th Annual
Meeting of the Association for Computational Linguistics (ACL) and the 8th
Conference of the European Chapter of the Association for Computational
Linguistics (EACL), pages 337–343.

◮ Jens Nilsson, Joakim Nivre, and Johan Hall. 2006. Graph transformations in
data-driven dependency parsing. In Proceedings of COLING-ACL.

◮ Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective dependency parsing. In
Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL), pages 99–106.

◮ Joakim Nivre and Mario Scholz. 2004. Deterministic dependency parsing of English
text. In Proceedings of the 20th International Conference on Computational
Linguistics (COLING), pages 64–70.

◮ Joakim Nivre, Johan Hall, and Jens Nilsson. 2004. Memory-based dependency
parsing. In Hwee Tou Ng and Ellen Riloff, editors, Proceedings of the 8th
Conference on Computational Natural Language Learning (CoNLL), pages 49–56.

Dependency Parsing 103(103)

References

◮ Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen Eryiğit, and Svetoslav Marinov.
2006. Labeled pseudo-projective dependency parsing with support vector machines.
In Proceedings of the Tenth Conference on Computational Natural Language
Learning (CoNLL).

◮ Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In
Gertjan Van Noord, editor, Proceedings of the 8th International Workshop on
Parsing Technologies (IWPT), pages 149–160.

◮ Joakim Nivre. 2006. Constraints on non-projective dependency graphs. In
Proceedings of the 11th Conference of the European Chapter of the Association for
Computational Linguistics (EACL), pages 73–80.

◮ Ingo Schröder. 2002. Natural Language Parsing with Graded Constraints. Ph.D.
thesis, Hamburg University.

◮ Petr Sgall, Eva Hajičová, and Jarmila Panevová. 1986. The Meaning of the
Sentence in Its Pragmatic Aspects. Reidel.

◮ Daniel Sleator and Davy Temperley. 1991. Parsing English with a link grammar.
Technical Report CMU-CS-91-196, Carnegie Mellon University, Computer Science.

◮ Pasi Tapanainen and Timo Järvinen. 1997. A non-projective dependency parser. In
Proceedings of the 5th Conference on Applied Natural Language Processing, pages
64–71.

Dependency Parsing 103(103)

References

◮ Lucien Tesnière. 1959. Éléments de syntaxe structurale. Editions Klincksieck.

◮ Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical dependency analysis with
support vector machines. In Gertjan Van Noord, editor, Proceedings of the 8th
International Workshop on Parsing Technologies (IWPT), pages 195–206.

◮ A. M. Zwicky. 1985. Heads. Journal of Linguistics, 21:1–29.

Dependency Parsing 103(103)

	Introduction
	Motivation and Contents
	Basic Concepts of Dependency Syntax

	Parsing Methods
	Dynamic Programming
	Constraint Satisfaction
	Deterministic Parsing
	Non-Projective Dependency Parsing

	Pros and Cons of Dependency Parsing
	Practical Issues
	Parsers
	Treebanks
	Evaluation

	Outlook
	Appendix
	References

