
Cours de logique
TD 3

Lambda-calcul, preuves et programmes

Polytech Marseille - 3A
Filière Informatique

Séance 1
Nous allons dans cette séance nous intéresser au λ-calcul pur vu comme langage de programmation (et à

son expressivité).

Exercice 1 (Codage des booléens). On rappelle le codage des booléens vu en cours :

⊤ = λx.λy.x

⊥ = λx.λy.x

if − then− else = λp.λa.λb.(p) a b

(i) Montrez que (if − then− else) ⊤ a0 b0 →∗
β a0 et ((if − then− else) ⊥ a0 b0 →∗

β b0.
(ii) Pourquoi est-ce bien le comportement attendu ?
(iii) Ecrire des λ-termes codant la négation (NOT), la conjonction (ET) et la disjonction (OU). Comme

pour tout programme, différentes solutions existent. Vous essaierez de trouver les termes les plus
compacts possibles.

Exercice 2 (Codage des couples). L’encodage des coupes se fait au moyen de 3 fonctions : l’une constituant
un couple à partir de deux arguments (⟨·, ·⟩), et deux fonctions de projection renvoyant le premier et second
élément du coupe :

⟨·, ·⟩ = λa.λb.λp.(p) a b

π1 = λp.(p) ⊤
π2 = λp.(p) ⊥

(i) A quelle opération booléenne l’opération ⟨·, ·⟩ ressemble-t-elle ?
(ii) Prouvez que la composition de ces fonctions correspond bien à un comportement de couple.

Exercice 3 (Codage des entiers). Tout n ∈ N, est codé par le λ-terme :

n̄ = λf.λx. (f) (f) . . . (f)︸ ︷︷ ︸
n fois, noté f(n)

x

1



On donne alors les fonctions suivantes :

incr = λn.λfλx.(f) (n) f x

egal0 = λn.(n) (λb.⊥) ⊤
add = λn.λm.((m) incr) n

mult = λn.λm.(((m) add) n) 0̄

iter = λn.λf.λx0.(n) f x0

(i) Montrez que :
(incr) n̄ →∗

β n+ 1

(ii) Montrez que :
(egal0) 0̄ →∗

β ⊤ et egal0 n̄ →∗
β ⊥ (pour n > 0)

(iii) Montrez par récurrence que :
(add) n̄ m̄ →∗

β n+m

(iv) Montrez que iter est un itérateur sur les entiers, donc :

(iter) n̄ f x0 →∗
β fn(x0)

(v) On définit alors le terme :

decr = λn.(π1) ((iter) n (λc.⟨(π2)c, (incr)(π2)c⟩) ⟨0, 0⟩)

A votre avis, que calcule-t-il et comment ?
(vi) (Opt) Montrez par récurrence que :

mult n̄ m̄ →∗
β n×m

Exercice 4 (Récursivité). Pour qu’un langage soit Turing-complet, il faut qu’il puisse itérer du code ; et en
l’occurrence, quand on manipule des fonctions, il faut que le langage permette la récursivité.

On considère le λ-terme suivant :

Θ =

λz.λx.(x) ((z) z x)︸ ︷︷ ︸
Z

λz.λx.(x) ((z) z x)︸ ︷︷ ︸
Z

(i) Montrez que Θ →β λx.(x)((Z)Zx) = λx.(x)((Θ)x).
(ii) En déduire que pour tout λ-terme f : (Θ)f →∗

β (f)((Θ)f).
(iii) Enfin, si :

t = λf.λn.((if − then− else) ((egal0) n) 1̄ ((mult) n ((f) (decr) n))

puis :
fun = (Θ) t

que calculent (fun) 1̄ ou (fun) 3̄ ?

2



Séance 2
Nous allons dans cette séance nous intéresser au typage du lambda-calcul et à l’isomorphisme de Curry-

Howard (donc l’équivalence preuves/programmes).
Nous nous placerons dans le cadre d’un système de typage du second ordre (donc intégrant les connec-

teurs de la logique propositionnelle, mais aussi le quantificateur ∀ du second ordre (donc sur les variables
propositionnelles). Les types (ie. les formules) sont donc définis de la manière suivante :

type ::= X,Y, . . . (variables propositionnelles)
| τ ⇒ σ
| ∀X.τ (quantificateur du second ordre)

On considère alors les ensembles suivants de règles de typage (et leurs équivalents comme règles de
déduction naturelle) :

Groupe structurel

var
Γ, x : σ ⊢ x : σ

Groupe logique

Γ, x : σ ⊢ t : τ ⇒intro
Γ ⊢ λx.t : σ ⇒ τ

Γ ⊢ t1 : σ ⇒ τ Γ ⊢ t2 : σ ⇒élim
Γ ⊢ (t1)t2 : τ

Γ ⊢ t : σ X ̸∈ Γ
∀introΓ ⊢ t : ∀X.σ

Γ ⊢ t : ∀X.σ ∀élim
Γ ⊢ t : σ[τ/X]

Exercice 5. Dans cet exercice on s’intéresse aux entiers de Peano.

n̄ = λf.λx. (f) (f) . . . (f)︸ ︷︷ ︸
n fois, noté f(n)

x

On rappelle la définition des fonctions classiques sur les entiers :

incr = λn.λfλx.(f) (n) f x

egal0 = λn.(n) (λb.⊥) ⊤
add = λn.λm.((m) incr) n

mult = λn.λm.(((m) add) n) 0̄

iter = λn.λf.λx0.(n) f x0

(i) Montrez que n̄ : ∀X.((X ⇒ X) ⇒ X ⇒ X. On appellera N ce type.
(ii) Montrez que incr : N ⇒ N.
(iii) En déduire que add : N ⇒ N ⇒ N.

3



On associe ainsi des preuves aux lambda-termes typables ; les fonctions codées par ces termes fournissent
une "version calculatoire" des preuves (produisant leur conclusion à partir des hypothèses). C’est l’un des
sens de Curry-Howard.

Exercice 6. On s’intéresse ensuite à l’autre sens de l’isomorphisme de Curry-Howard. Considérons les trois
preuves suivantes de la déduction naturelle :

var
X ⇒ X,X ⊢ X ⇒intro,⇒intro

⊢ (X ⇒ X) ⇒ X ⇒ X
∀intro⊢ ∀X.((X ⇒ X) ⇒ X ⇒ X)

var
X ⇒ X,X ⊢ X ⇒ X

var
X ⇒ X,X ⊢ X ⇒élim

X ⇒ X,X ⊢ X ⇒intro,⇒intro
⊢ (X ⇒ X) ⇒ X ⇒ X

∀intro⊢ ∀X.((X ⇒ X) ⇒ X ⇒ X)

var
X ⇒ X,X ⊢ X ⇒ X

var
X ⇒ X,X ⊢ X ⇒ X

var
X ⇒ X,X ⊢ X ⇒élim

X ⇒ X,X ⊢ X ⇒élim
X ⇒ X,X ⊢ X ⇒intro,⇒intro

⊢ (X ⇒ X) ⇒ X ⇒ X
∀intro⊢ ∀X.((X ⇒ X) ⇒ X ⇒ X)

Quels sont les lambda-termes associés ? Donc que "calculent" ces preuves ?

Exercice 7. On peut généraliser la construction des entiers à n’importe quel type inductif. Etant donné un
type truc(X) défini inductivement :

truc(X) ::= Cas1(X, truc(X))
| Cas2(int, X)
| Cas3

Une donnée de ce type est un opérateur qui attend une fonction pour chaque cas et construit la donnée avec
ces fonctions :

Cas1(a, t) = λc1.λc2.λc3.(c1) a ((t) c1 c2 c3)
Cas2(n, a) = λc1.λc2.λc3(c2) n a
Cas3 = λc1.λc2.λc3.c3

(i) Décrire le type Liste comme un type inductif (on baptisera "Cons" et "Empty" les deux cas)
(ii) En déduire un codage des listes (vous ferez apparaître les fonctions du type abstrait de données Listes

vues en cours d’algorithmique : creer_liste_vide et ajouter).
(iii) Obtenez-vous des termes typables ? Quel est le type d’une liste ?
(iv) Est-il facile, dans le λ-calcul pur, de définir les autres fonctions du TAD (tete, queue, est_liste_vide ?)
(v) En revanche, écrivez une fonction calculant la somme des éléments stockés dans une liste.

4


