Modélisation géométrique Courbures discrètes

Alexandra Bac

Université Aix-Marseille

October 11, 2018

Plan,

- Discrétisation des courbures sur un maillage
 - Première approximation des courbures
 - Borelli, Boix : triangles géodésiques
 - Meyer, Desbrun et al. : aires de Voronoï
 - Taubin : approximer le tenseur de courbures
 - Approche via une surface continue
- Courbures d'un nuage de points
- 3 Autres approches

Qu'est-ce que ça veut dire ?

Sur un maillage, il n'y a que de la continuité, rien n'est dérivable ...

Normales, courbures:

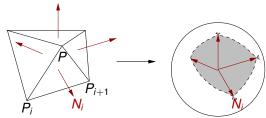
- On suppose que le maillage approxime une surface lisse
- Courbures du maillage ≡ celle de la surface lisse.

Courbure Gaussienne

On est tentés d'utiliser le theorema Egregium de Gauss :

$$K_p = lim_{U \to P} \frac{Aire(N(U))}{Aire(U)}$$

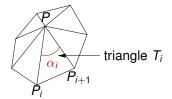
en prenant pour voisinage U le cercle des premiers voisins (ou une partie)



Courbure Gaussienne

Cette aire sur la sphère de Gauss se calcule comme :

$$2\pi - \sum \alpha_i$$
 (Défaut angulaire)

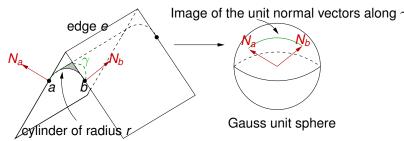


Q'où l'approximation de la courbure Gaussienne au sommet P:

$$\mathcal{K}_{p} = rac{2\pi - \sum lpha_{i}}{\sum \mathit{Aire}\left(\mathcal{T}_{i}
ight)}$$

Courbure moyenne

L'idée est d'approcher chaque arête par un cylindre de rayon r:



On voit que:

- en chaque point du cylindre, $H_p = \frac{1}{r}$
- ② d'où $\int_a^b H(x)dx = \frac{1}{2}\alpha$ (où α est l'angle diédral entre les deux faces)

Courbure moyenne

D'où l'approximation de la courbure moyenne le long de l'arête e :

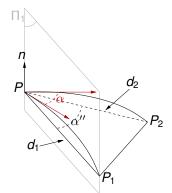
$$H(e) = \frac{1}{2} \cdot \alpha \cdot long(e)$$

Ces formules ne sont que des approximations et bien entendu : elles ne convergent pas !

Pourquoi les triangles géodésiques ?

Pour obtenir une meilleure approximation du *theorema Egregium* ...

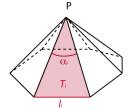
On montre que:



$$\alpha - \alpha'' = \frac{\textit{d}_1 \textit{d}_2 \textit{k}_1 \textit{k}_2}{4 \sin \alpha''} - \frac{\textit{d}_1^2 \textit{k}_1^2 - \textit{d}_2^2 \textit{k}_2^2}{8 \tan \alpha''} + \mathcal{O}(\textit{d}^3)$$

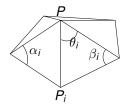
Approximation de la courbure gaussienne

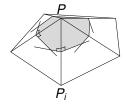
$$K_p = \frac{2\pi - \sum \alpha_i}{\frac{1}{2} \sum \operatorname{Aire}(T_i) - \frac{1}{8} \sum \operatorname{cotan}(\alpha_i) I_i^2}$$



Courbure gaussienne

Meyer, Desbrun et al. se basent sur les cellules de Voronoï.





Mais:

- pour des angles obtus, pas de cellules de Voronoï
- Airemixte:
 - cellules de Voronoï quand c'est possible
 - barycentres sinon

Courbure moyenne

$$H_P \cdot N_P = \frac{1}{2 \text{ Aire}_{\text{mixte}}} \sum_i (\cot \alpha_i + \cot \beta_i) (P - P_i)$$

Donc cette formule fournit aussi une approximation de N_P .



Courbure Gaussienne

Et la courbure Gaussienne est donnée par :

$$K(P) = \frac{2\pi - \sum_{i} \theta_{i}}{Aire_{mixte}}$$

Courbures principales et tenseur de courbure

Etant donné que :

$$K_p = \kappa_1 \cdot \kappa_2$$
 $H_P = \frac{\kappa_1 + \kappa_2}{2}$

Il est bien connu que κ_1 et κ_2 sont les deux racines du polynôme :

$$X^2 - 2 \cdot H_P X + K_P$$

La détermination des directions principales est plus délicate.

Convergence

Ces sont des approximations. La convergences n'est pas garantie :

- dépend de la triangulation
 - plus elle est régulière, meilleure est la convergence
 - idéal : régulière, valence 6
 - sur une triangulation irrégulière, non garantie
- au mieux, convergence en norme $\mathcal{L}-1$ pour une triangulation quelconque

Approximation du tenseur de courbures

Rappelons la formule d'Euler : soit $\vec{t}_{ heta} = \cos(\theta) d_1 + \sin(\theta) d_2 \in T_P$

$$\kappa_{\vec{t}_{\theta}} = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta$$

On définit alors :

$$M = rac{1}{2\pi} \int_{-\pi}^{\pi} \kappa_{ec{t}_{ heta}} t_{ heta} t_{ heta}^t \mathrm{d} heta$$

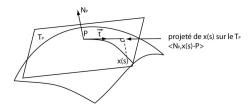
Les trois vecteurs propres de cette matrice sont :

- La normale N_P
- Les deux directions principales d₁ et d₂.

Approximation de $\kappa_{ec{t}_{ heta}}$

Si $\vec{t} \in T_P$, et que x est une courbe issue de P et de tangente \vec{t} en P on montre que :

$$\kappa_{\vec{t}} = \lim_{s \to 0} \frac{2N^t(x(s) - P)}{\|x(s) - P\|^2}$$



Approximation de M

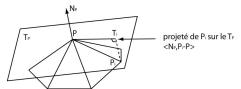
Pour chaque voisin P_i de P, on approxime :

• le vecteur tangent, projeté de PP_i sur T_P par :

$$T_i = \frac{(I - N_P N_P^t)(P_i - P)}{\|(I - N_P N_P^t)(P_i - P)\|}$$

la courbure dans la direction T_i par :

$$\kappa_i = \frac{2N_P^t(P_i - P)}{||P_i - P||^2}$$



Approximation de M

Puis:

$$M = \sum_{i} \omega_{i} \kappa_{i} T_{i} T_{i}^{t}$$

où ω_i est proportionnel à l'aire des triangles contenant l'arête PP_i .

Vecteurs/valeurs propres de cette matrice :

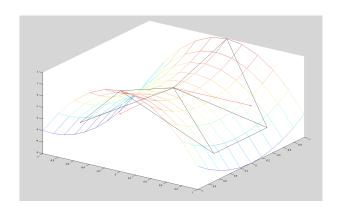
- La normale N_P (pour $\lambda = 0$)
- Les deux directions principales (pour $\lambda = \kappa_1$ et κ_2)

Approche via une surface continue

On va utiliser les courbures d'une surface continue approximant localement le maillage.

- Soit P un sommet et $\{P_i\}_{i\in I}$ ses voisins
- Approximation aux moindres carrés :
 - surface paramétrique quadratique ou cubique
 - ou surface implicite
- Les courbures courbures du maillage en P sont définies comme celles de la surface lisse

Approche via une surface continue

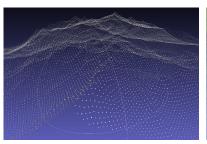


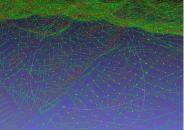
Plan

- Discrétisation des courbures sur un maillage
 - Première approximation des courbures
 - Borelli, Boix : triangles géodésiques
 - Meyer, Desbrun et al. : aires de Voronoï
 - Taubin : approximer le tenseur de courbures
 - Approche via une surface continue
- Courbures d'un nuage de points
- 3 Autres approches

Qu'est-ce que ça veut dire ?

- Nuage de points échantillonné sur une surface
- Peut-on s'approcher des courbures de la surface ?

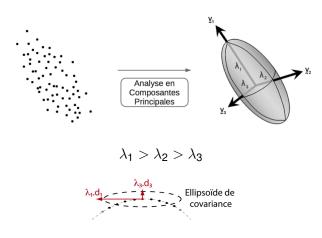




Revenons à la définition continue

- Courbure dans la direction $\vec{t} \in T_P$: variation de la normale
- Courbures principales : plus fortes variations des normales
- Donc :
 - N_P: direction d'étalement minimum du nuage de points au voisinage de P
 - Les deux directions principales lui sont orthogonales
- → Analyse en Composantes principales (ACP)

Analyse en composantes principales



Algorithme

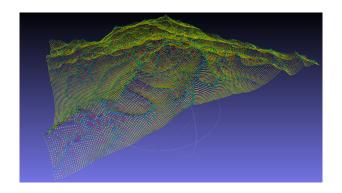
Etant donné un point P₀

- Calculer $\{P_i\}_{i \in \{1...n\}}$ les voisins de P_0 (k-voisins ou ε -voisins)
- Analyse ACP de ce nuage :
 - Soit :

$$Z = \frac{1}{n} \sum_{i=0}^{n} (P_i - \bar{P})(P_i - \bar{P})^t$$

- où \bar{P} est le barycentre des P_i .
- Z admet 3 valeurs propres : $\lambda 1 \ge \lambda_2 \ge \lambda_3$ et leurs directions propres associées d_1, d_2, d_3 , à l'ordre 1 :
 - d₃ est une approximation de N_P
 - d₁ et d₂ sont des approximations des directions principales et λ₁ est liée à κ₁² (λ₂ liée à κ₂²).

Approche par ACP



Plan

- Discrétisation des courbures sur un maillage
 - Première approximation des courbures
 - Borelli, Boix : triangles géodésiques
 - Meyer, Desbrun et al. : aires de Voronoï
 - Taubin : approximer le tenseur de courbures
 - Approche via une surface continue
- Courbures d'un nuage de points
- 3 Autres approches

Approches via surfaces continues

Les autres approches sont basées sur l'approximation locale par des surfaces continues :

- Approximation locale par des sphères algébriques (APSS voir Meshlab)
- Approximation par des surfaces MLS (nécessite une estimation de la normale)
- ...