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Homology

K cubical complex, R ring (e.g., Z, Z2)

Chain complex of K

· · ·C3
d3−−−→ C2

d2−−−→ C1
d1−−−→ C0

d0−−−→ 0

where dqdq+1 = 0⇒ im(dq+1) ⊂ ker(dq)

q-dimensional homology group
Hq(K ) := ker(dq)/ im(dq+1) = Z

βq ⊕ T

q-dimensional Betti number: βq
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β0 = # connected components (0-holes)

β1 = # tunnels or handles (1-holes)

β2 = # cavities (2-holes)

Betti numbers are

Topological invariants → classification

Shape descriptors → understanding
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Reduction

Effective homology theory [Sergeraert, 1992]

Reduction

Triplet ρ = (h, f , g) of graded homomorphisms3 between two chain
complexes (C, d) and (C′, d ′)

Both chain complexes have isomorphic homology groups
3with some conditions (cf. Definition 2.18)
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Reduction

A reduction is perfect if d ′ = 0. Hence

C′ ∼= H(C)

g(C′) = homology generators

f ∗(C′) = cohomology generators

d(x) = 0⇒ d(y) = x for y = h(x)
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Introduction

A perfect DGVF

Acyclic matching

The arrows can be deduced
from P and S

It induces a perfect reduction

|Cq| = βq
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The HDVF

Definitions and theorems

“Forget the cycles, focus on the reduction”

HDVF (Definition 3.1)

A homological discrete vector field (HDVF) X = (P , S) on a CW
complex K is a partition K = P ⊔ S ⊔ C such that d(S)|P is an
invertible matrix (in R)

We can always represent a HDVF as a discrete vector field (cf.
Proposition 3.8)
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The HDVF

Definitions and theorems

Theorem 3.9

Let K be a CW complex endowed with a HDVF X . Then X

induces the reduction

(h, f , g) : (C, d)⇒ (R [C ] , d ′)

where the operators h, f , g and the reduced boundary d ′ are given
by

H

0

0

0

0

0

0

00

P S C

P

Sh = f = F 0

P S

I g = G

0P

S

I

d′ = D

C

C

C

C

C

C

C

H = (d(S)|P)
−1

F = −d(S)|C · H
G = −H · d(C )|P

D = d(C )|C + F · d(C )|P
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The HDVF

Computing a HDVF

Proposition 3.12

K CW complex, X = (P , S) HDVF, σ, τ critical cells. If 〈d ′(τ), σ〉
is a unit then X ′ = (P ∪ {σ} , S ∪ {τ}) is a HDVF.

τ

σ

τ

σ
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The HDVF

Computing a HDVF

Algorithm 1: Compute a HDVF

Input: A CW complex K

Output: A HDVF X

1 repeat

2 Find two critical cells σ, τ such that 〈d ′(τ), σ〉 is a unit;
3 Add (σ, τ) to X ;
4 Update the reduced boundary matrix D;

5 until idempotency;

Theorem 3.15

Algorithm 1 can be computed within O(n3) operations.
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The HDVF

Deforming a HDVF

Proposition 3.19

Let K be a CW complex endowed with a HDVF X . Let σ ∈ P ,
τ ∈ S and γ, γ′ ∈ C . Thus,

1 A(X , γ, γ′) is a HDVF if 〈d ′(γ′), γ〉 is a unit

2 R(X , σ, τ) is a HDVF if 〈h(σ), τ〉 is a unit

3 M(X , σ, γ) is a HDVF if 〈f (σ), γ〉 is a unit

4 W(X , τ, γ) is a HDVF if 〈g(γ), τ〉 is a unit

5 MW(X , σ, τ) is a HDVF if 〈dh(σ), τ〉 and 〈hd(τ), σ〉 are units
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Proposition 3.21

Every DGVF is a HDVF.

Proposition 3.22

Every iterated DGVF4 is a HDVF.

Proposition 3.23

Let K be a CW complex. Then,

1 Algorithm 1 performs a partial diagonalization of the boundary
matrices of K ;

2 Algorithm 1 computes a perfect HDVF whenever R is a field.

Thus, we can compute persistent homology with the HDVF

4[Dlotko and Wagner, 2012]
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Computing Betti numbers on 3D cubical complexes

Introduction

We want to compute the Betti numbers of binary volumes

It seems that:

β0 = # connected components

β2 = # bounded connected
components of the complement

β1 ?

[Delfinado and Edelsbrunner, 1995], [Dey and Guha, 1998]: 3D
simplicial complexes
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Computing Betti numbers on 3D cubical complexes

Algorithm

Ingredients

(1) β0 is the number of connected components

(2) Duality

(3) Euler-Poincaré formula
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Computing Betti numbers on 3D cubical complexes

Algorithm

Ingredient (1)

Let K be a 3D cubical complex. Consider the graph G0(K )

b

b

b b

b

b b

b b

bb

b b

b

Proposition 4.3

β0(K ) = number of connected components in G0(K )
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Computing Betti numbers on 3D cubical complexes

Algorithm

Ingredient (2)

Proposition 4.4

Let K ⊂ L be two 3D cubical complexes such that
β(L) = (1, 0, 0, 0). Then,

βq(K ) =

{

β1(L− K ) + 1 if q = 0

βq+1(L− K ) else

Thus, β2(K ) = β3(L− K )
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Computing Betti numbers on 3D cubical complexes

Algorithm

Ingredient (2)

Let K ⊂ L be two 3D cubical complexes. Consider the graph
G3(L− K )

b

b

b b

b

b b

b b

bb

b b

b

b

b b

b b b

b

ǫ

ǫ

ǫ

Proposition 4.5

β3(L− K ) = number of connected components in G3(L− K )
minus one.
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Computing Betti numbers on 3D cubical complexes

Algorithm

Ingredient (3)

Euler-Poincaré Formula

χ(K ) = |K0| − |K1|+ |K2| − |K3|
= β0(K )− β1(K ) + β2(K )

Thus, β1(K ) = β0(K ) + β2(K )− χ(K )

46 / 85



Computational Homology Applied to Discrete Objects

Computing Betti numbers on 3D cubical complexes

Algorithm

Computing the Betti numbers

1 β0 ← number of connected components of G0(K )

2 β2 ← number of connected components of G3(L− K ) - 1

3 β1 ← β0 + β2 − χ(K )

Linear time and space complexity

We propose two versions for implementing this method
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Sequential algorithm: BFS, iterative
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Computing Betti numbers on 3D cubical complexes

Results

Comparison against CAPD::RedHom5 library

Size RedHom VB-s VB-r VB-rp

513 0.1842 0.0026 0.0026 0.0023
1013 1.268 0.0142 0.0148 0.0091
2013 10.78 0.1309 0.1232 0.0552
3013 40.89 0.4303 0.4176 0.1583
4013 101.26 1.436 0.983 0.3092
5013 — 3.609 1.977 0.5494

Table: Execution time (in seconds) versus the size of the cubical complex.

Space is the problem, not time.

5[Juda and Mrozek, 2014]
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Introduction

Representing a hole

Do homology generators really represent holes?
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Geometry + Topology
↓ ↓

Signed distance transform Persistent homology
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Measuring Holes

Definition

Signed distance transform

Let O be a discrete object,

sdtO(x) =

{

−d(x ,Oc) if x ∈ O

d(x ,O) if x /∈ O

Figure: Sublevel sets of the signed distance form
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Measuring Holes

Definition

Persistent homology

Given a filtration F , we can define its set of persistence intervals
through its persistent homology groups.

These intervals tell the lifetime of the holes in the filtration

They are represented as a set of points PD(F ) in R
2
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height: 5

β0: 1

β1: 0

β2: 0

Persistence intervals:

Dimension 0:

Dimension 1:

Dimension 2:
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Measuring Holes

Definition

Example

height:

β0: 1

β1: 2

β2: 1

Persistence intervals:

Dimension 0: (10, 13), (0,∞)

Dimension 1: (7,∞), (13,∞)

Dimension 2: (17,∞)
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Measuring Holes

Definition

Thickness and breadth (Definition 5.1)

Let O be a discrete object and F the filtration defined by the
sublevel sets of its signed distance transform. Let
TB(O) = {(−x , y) ∈ PD(F ) | x ≤ 0, y ≥ 0}. Its intervals are the
thickness-breadth pairs of O

There is a thickness-breadth pair (t, b) for each hole of O

t is the thickness of the hole and b, its breadth
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Measuring Holes

Definition

Theorem 5.2

Let X and Y be two 3D discrete objects. Let us call

δ = dH(X ,Y ) + dH(Z
3 \ X ,Z3 \ Y ) + 2

√
3

Thus, for every thickness-breadth pair pX = (x , y) of X such that
x , y > δ, there exists another thickness-breadth pair pY = (x ′, y ′)
of Y such that

||pX − pY ||∞ ≤ δ
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Let be (t, b) a TB-pair and (σ, τ) its pair of cells

The thickness ball of (t, b) is the ball of radius t centered at σ

The breadth ball of (t, b) is the ball of radius b centered at τ

69 / 85



Computational Homology Applied to Discrete Objects

Measuring Holes

Thickness-breadth balls

Thickness and breadth ball

Let be (t, b) a TB-pair and (σ, τ) its pair of cells

The thickness ball of (t, b) is the ball of radius t centered at σ

The breadth ball of (t, b) is the ball of radius b centered at τ

69 / 85



Computational Homology Applied to Discrete Objects

Measuring Holes

Thickness-breadth balls

Thickness and breadth ball

Let be (t, b) a TB-pair and (σ, τ) its pair of cells

The thickness ball of (t, b) is the ball of radius t centered at σ

The breadth ball of (t, b) is the ball of radius b centered at τ

69 / 85



Computational Homology Applied to Discrete Objects

Measuring Holes

Thickness-breadth balls

Thickness and breadth ball

Let be (t, b) a TB-pair and (σ, τ) its pair of cells

The thickness ball of (t, b) is the ball of radius t centered at σ

The breadth ball of (t, b) is the ball of radius b centered at τ

69 / 85



Computational Homology Applied to Discrete Objects

Measuring Holes

Thickness-breadth balls

Breadth ball

Homology generator

Close hole

70 / 85



Computational Homology Applied to Discrete Objects

Measuring Holes

Thickness-breadth balls

Breadth ball

Homology generator

Close hole

70 / 85



Computational Homology Applied to Discrete Objects

Measuring Holes

Thickness-breadth balls

Breadth ball

Homology generator

Close hole

70 / 85



Computational Homology Applied to Discrete Objects

Measuring Holes

Thickness-breadth balls

Thickness ball

Cohomology generator

Open hole
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Measuring Holes

Applications

(co)homology generators

“A good homology generator should be close to a breadth ball”

Algorithms

Algorithm 6: TB pair 7→ homology generator

Algorithm 7: TB pair 7→ cohomology generator
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Applications

(co)homology generators

Algorithm 6 (homology generator)

Discrete object

Breadth balls

Filtration

A similar (dual) approach produces cohomology generators!
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Thickness balls (and cohomology generators) seem to tell
where to break a hole

Breadth balls (and homology generators) seem to tell where to
fill a hole
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Measuring Holes

Applications

Opening and closing holes

K cubical complex, x cycle, S set of cubes

Opening the cycle x

S opens the cycle x if

1 K − S is a cubical complex

2 [x ] /∈ im(ι)

3 ι : H(K − S)→ H(K ) is injective
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Measuring Holes

Applications

Opening and closing holes

K cubical complex, x cycle, S set of cubes

Closing the cycle x

S closes the cycle x if

1 K ∪ S is a cubical complex

2 [x ] ∈ ker(ι)

3 ι : H(K )→ H(K ∪ S) is surjective
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Measuring Holes

Applications

Opening and closing holes

Algorithms

Algorithm 8: TB pair 7→ hole opening

Algorithm 9: TB pair 7→ hole closing without surjectivity

condition
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Conclusion

Perspectives:

1 HDVF

Every CW complex admits a perfect HDVF?
Use the operations for comparing HDVFs
Compute zigzag persistent homology with HDVFs

2 ViteBetti

Apply it directly on the discrete object
Try component labeling algorithms from digital geometry
context
Process complex by slices

3 Thickness and breadth

To find real world applications
To formalize the geometric intuition
Algorithm for closing holes
Simplicial complexes
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