Aldo Gonzalez-Lorenzo^{1,2}

¹Aix-Marseille Université, CNRS, LSIS UMR 7296 (France) ²Universidad de Sevilla, IMUS (Spain)

November 24, 2016

1/85

- 1 Introduction and Preliminaries
- 2 The Homological Discrete Vector Field
- 3 Fast Computation of Betti Numbers on 3D Cubical Complexes
- 4 Measuring Holes

LIntroduction and Preliminaries

Geometry:

- Volume
- Diameter
- Curvature
- Holes!

LIntroduction and Preliminaries

- Volume
- Diameter
- Curvature
- Holes!

LIntroduction and Preliminaries

- Volume
- Diameter
- Curvature
- Holes!

LIntroduction and Preliminaries

- Volume
- Diameter
- Curvature
- Holes!

LIntroduction and Preliminaries

- Volume
- Diameter
- Curvature
- Holes!

LIntroduction and Preliminaries

Number of holes: 6? 3?

LIntroduction and Preliminaries

Number of holes: 6? 3?

LIntroduction and Preliminaries

Number of holes: 5

- Introduction and Preliminaries
 - Complexes

Sections

1 Introduction and Preliminaries

- Complexes
- Homology
- Reduction

2 The Homological Discrete Vector Field

- 3 Fast Computation of Betti Numbers on 3D Cubical Complexes
- 4 Measuring Holes

5 Conclusion

Introduction and Preliminaries

Complexes

Simplicial complex

Union¹ of points, edges, triangles, tetrahedra, ... (simplices)

Introduction and Preliminaries

Complexes

Simplicial complex

Union¹ of **points**, edges, triangles, tetrahedra, ... (simplices)

Introduction and Preliminaries

Complexes

Simplicial complex

Union¹ of points, edges, triangles, tetrahedra, ... (simplices)

Introduction and Preliminaries

Complexes

Simplicial complex

Union¹ of points, edges, triangles, tetrahedra, ... (simplices)

Introduction and Preliminaries

Complexes

Simplicial complex

Union¹ of points, edges, triangles, tetrahedra, ... (simplices)

Introduction and Preliminaries

Complexes

Cubical complex

Union² of points, edges, squares, cubes, ... (cubes)

Introduction and Preliminaries

Complexes

Cubical complex

Union² of **points**, edges, squares, cubes, ... (cubes)

Introduction and Preliminaries

- Complexes

Cubical complex

Union² of points, edges, squares, cubes, ... (cubes)

Introduction and Preliminaries

Complexes

Cubical complex

Union² of points, edges, squares, cubes, ... (cubes)

Introduction and Preliminaries

Complexes

Cubical complex

Union² of points, edges, squares, **cubes**, ... (cubes)

Introduction and Preliminaries

Complexes

Discrete object

A *n*D discrete object is a subset of \mathbb{Z}^n

We usually choose a connectivity relation such as the 2n or the $(3^n - 1)$ -connectivity.

Introduction and Preliminaries

Complexes

Discrete object

A *n*D discrete object is a subset of \mathbb{Z}^n

We usually choose a connectivity relation such as the 2n or the $(3^n - 1)$ -connectivity.

Introduction and Preliminaries

Complexes

Discrete object

A *n*D discrete object is a subset of \mathbb{Z}^n

We usually choose a connectivity relation such as the 2n or the $(3^n - 1)$ -connectivity.

Introduction and Preliminaries

Complexes

We can transform a discrete object into a cubical complex in two ways, one for each connectivity relation.

Introduction and Preliminaries

Complexes

We can transform a discrete object into a cubical complex in two ways, one for each connectivity relation.

- Introduction and Preliminaries

Sections

1 Introduction and Preliminaries

- Complexes
- Homology
- Reduction

2 The Homological Discrete Vector Field

- 3 Fast Computation of Betti Numbers on 3D Cubical Complexes
- 4 Measuring Holes

5 Conclusion

LIntroduction and Preliminaries

Homology

Blue: 1-cube Red: its boundary (faces)

LIntroduction and Preliminaries

Homology

Blue: 2-cube Red: its boundary (faces)

Introduction and Preliminaries

Homology

Blue: 1-chain Red: its boundary

Introduction and Preliminaries

L_Homology

Blue: 1-chain (1-cycle) Red: its boundary $(= \emptyset)$

Introduction and Preliminaries

Homology

Blue: 2-chain Red: its boundary (1-cycle)

Introduction and Preliminaries

Blue: 1-chain (1-cycle, but not boundary) Red: its boundary $(= \emptyset)$

Introduction and Preliminaries

Homology

- K cubical complex, ℜ ring (e.g., ℤ, ℤ₂)
- Chain complex of K

$$\cdots \mathsf{C}_3 \xrightarrow{d_3} \mathsf{C}_2 \xrightarrow{d_2} \mathsf{C}_1 \xrightarrow{d_1} \mathsf{C}_0 \xrightarrow{d_0} \mathsf{0}$$

where
$$d_q d_{q+1} = 0 \Rightarrow \operatorname{im}(d_{q+1}) \subset \operatorname{ker}(d_q)$$

• *q*-dimensional homology group $H_q(K) := \ker(d_q) / \operatorname{im}(d_{q+1}) = \mathbb{Z}^{\beta_q} \oplus \mathbb{T}$

• q-dimensional Betti number: β_q

Introduction and Preliminaries

Homology

- $\beta_0 = \#$ connected components (0-holes)
- $\beta_1 = \#$ tunnels or handles (1-holes)
- $\beta_2 = \#$ cavities (2-holes)

Betti numbers are

- $\bullet \ \ \mathsf{Topological invariants} \to \mathsf{classification}$
- Shape descriptors \rightarrow understanding

LIntroduction and Preliminaries

Homology

$$eta_0=$$
 2, $eta_1=$ 2, $eta_2=$ 1, $eta_3=$ 0, \dots
- Introduction and Preliminaries
 - Reduction

Sections

1 Introduction and Preliminaries

- Complexes
- Homology
- Reduction

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

Introduction and Preliminaries

Reduction

Effective homology theory [Sergeraert, 1992]

Reduction

Triplet $\rho = (h, f, g)$ of graded homomorphisms³ between two chain complexes (C, d) and (C', d')

Both chain complexes have isomorphic homology groups

³with some conditions (cf. Definition 2.18)

Introduction and Preliminaries

Reduction

A reduction is perfect if d' = 0. Hence

•
$$C' \cong H(C)$$

- g(C') = homology generators
- *f*^{*}(C') = cohomology generators

•
$$d(x) = 0 \Rightarrow d(y) = x$$
 for $y = h(x)$

 \Box The HDVF

-Introduction

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

Introduction

- Definitions and theorems
- Computing a HDVF
- Deforming a HDVF
- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

 \square The HDVF

-Introduction

- (CW-) complex
- Connectivity graph
- Matching \mathcal{V}
- Morse graph (no cycles)
- V is a discrete gradient vector field (DGVF)

 \Box The HDVF

- Introduction

- (CW-) complex
- Connectivity graph
- Matching V
- Morse graph (no cycles)
- V is a discrete gradient vector field (DGVF)

 \Box The HDVF

- Introduction

- (CW-) complex
- Connectivity graph
- Matching \mathcal{V}
- Morse graph (no cycles)
- V is a discrete gradient vector field (DGVF)

 \square The HDVF

- Introduction

- (CW-) complex
- Connectivity graph
- Matching \mathcal{V}
- Morse graph (no cycles)
- V is a discrete gradient vector field (DGVF)

 \square The HDVF

- Introduction

- (CW-) complex
- Connectivity graph
- Matching \mathcal{V}
- Morse graph (no cycles)
- V is a discrete gradient vector field (DGVF)

- \Box The HDVF
 - -Introduction

- Acyclic matching
- The arrows can be deduced from P and S
- It induces a reduction
- $\blacksquare |C_q| \ge \beta_q$

- \Box The HDVF
 - -Introduction

P: primary cells

- Acyclic matching
- The arrows can be deduced from P and S
- It induces a reduction
- $|C_q| \ge \beta_q$

 \Box The HDVF

-Introduction

S: secondary cells

- Acyclic matching
- The arrows can be deduced from *P* and *S*
- It induces a reduction
- $|C_q| \ge \beta_q$

 \Box The HDVF

-Introduction

C: critical cells

- Acyclic matching
- The arrows can be deduced from *P* and *S*
- It induces a reduction
- $|C_q| \ge \beta_q$

- \Box The HDVF
 - -Introduction

- A perfect DGVF
 - Acyclic matching
 - The arrows can be deduced from *P* and *S*
 - It induces a perfect reduction
 - $|C_q| = \beta_q$

└─ The HDVF

Introduction

So

- \blacksquare Algebra \rightarrow graph theory
- $\blacksquare \ {\rm Homology} \ {\rm computation} \rightarrow \\ {\rm optimization} \ {\rm problem} \\$

- Finding optimal DGVF is NP
- No possible perfect DGVF always

 \Box The HDVF

-Introduction

So

- \blacksquare Algebra \rightarrow graph theory
- $\blacksquare \ {\rm Homology} \ {\rm computation} \rightarrow \\ {\rm optimization} \ {\rm problem} \\$

- Finding optimal DGVF is NP
- No possible perfect DGVF always

 \Box The HDVF

-Introduction

So

- \blacksquare Algebra \rightarrow graph theory

- Finding optimal DGVF is NP
- No possible perfect DGVF always

 \Box The HDVF

-Introduction

So

- \blacksquare Algebra \rightarrow graph theory

- Finding optimal DGVF is NP
- No possible perfect DGVF always

 \Box The HDVF

-Introduction

So

- \blacksquare Algebra \rightarrow graph theory

- Finding optimal DGVF is NP
- No possible perfect DGVF always

 \Box The HDVF

-Introduction

So

- \blacksquare Algebra \rightarrow graph theory

- Finding optimal DGVF is NP
- No possible perfect DGVF always

 \square The HDVF

Definitions and theorems

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

Introduction

Definitions and theorems

- Computing a HDVF
- Deforming a HDVF
- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

 \Box The HDVF

Definitions and theorems

Boundary matrix

Matrix of the (linear) boundary operator d

		s_1	s_2	s_3	s_4	s_5	s_6	s_7
	s_1	10	0	0	1	1	0	0
	s_2	0	0	0	1	0	1	0
	s_3	0	0	0	0	1	1	0
d =	s_4	0	0	0	0	0	0	1
	s_5	0	0	0	0	0	0	1
	s_6	0	0	0	0	0	0	1
	s_7	10	0	0	0	0	0	0/

 \Box The HDVF

Definitions and theorems

Boundary matrix

Matrix of the (linear) boundary operator d

		s_1	s_2	s_3	s_4	s_5	s_6	s_7
d =	s_1	/0	0	0	1	1	0	0 \
	s_2	0	0	0	1	0	1	0
	s_3	0	0	0	0	1	1	0
	s_4	0	0	0	0	0	0	1
	s_5	0	0	0	0	0	0	1
	s_6	0	0	0	0	0	0	1
	s_7	0/	0	0	0	0	0	0.

 \Box The HDVF

Definitions and theorems

Boundary matrix

Matrix of the (linear) boundary operator d

		s_4	s_6	s_7
	s_1	(1)	0	0
$d(S) _P =$	s_2	1	1	0
	s_5	$\setminus 0$	0	1/

 \square The HDVF

Definitions and theorems

"Forget the cycles, focus on the reduction"

HDVF (Definition 3.1)

A <u>homological discrete vector field</u> (HDVF) X = (P, S) on a CW complex K is a partition $K = P \sqcup S \sqcup C$ such that $d(S)_{|P}$ is an invertible matrix (in \mathfrak{R})

We can always represent a HDVF as a discrete vector field (cf. Proposition 3.8)

└─ The HDVF

Definitions and theorems

 \square The HDVF

Definitions and theorems

Theorem 3.9

Let K be a CW complex endowed with a HDVF X. Then X induces the reduction

$$(h, f, g) : (\mathsf{C}, d) \Rightarrow (\mathfrak{R}[\mathsf{C}], d')$$

where the operators h, f, g and the reduced boundary d' are given by

$$\begin{array}{cccc} & & & H = (d(S)_{|P})^{-1} \\ & & & \\$$

-The HDVF

└─ Computing a HDVF

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

- Introduction
- Definitions and theorems

Computing a HDVF

- Deforming a HDVF
- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

 \Box The HDVF

Computing a HDVF

Proposition 3.12

K CW complex, X = (P, S) HDVF, σ, τ critical cells. If $\langle d'(\tau), \sigma \rangle$ is a unit then $X' = (P \cup \{\sigma\}, S \cup \{\tau\})$ is a HDVF.

└─ The HDVF

Computing a HDVF

Algorithm 1: Compute a HDVF

Input: A CW complex K

Output: A HDVF X

1 repeat

- 2 Find two critical cells σ , τ such that $\langle d'(\tau), \sigma \rangle$ is a unit;
- 3 Add (σ, τ) to X;
- 4 Update the reduced boundary matrix *D*;

5 until idempotency;

Theorem 3.15

Algorithm 1 can be computed within $\mathcal{O}(n^3)$ operations.

└─ The HDVF

Computing a HDVF

Algorithm 2: Compute a HDVF

Input: A CW complex K

Output: A HDVF X

1 repeat

- 2 Find two critical cells σ , τ such that $\langle d'(\tau), \sigma \rangle$ is a unit;
- 3 Add (σ, τ) to X;
- 4 Update the reduced boundary matrix *D*;

5 until idempotency;

Theorem 3.15

Algorithm 1 can be computed within $\mathcal{O}(n^3)$ operations.

-The HDVF

└─ Deforming a HDVF

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

- Introduction
- Definitions and theorems
- Computing a HDVF
- Deforming a HDVF
- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

- The HDVF	
L Deforming a HDVF	
	P S
↓ W	W:
· · · · · · · · · · · · · · · · · · ·	U
•> •> •	

- The HDVF	
L Deforming a HDVF	
	$P \iff S$ MW:
⊷ ⊷	C

 \Box The HDVF

└─ Deforming a HDVF

Proposition 3.19

Let K be a CW complex endowed with a HDVF X. Let $\sigma \in P$, $\tau \in S$ and $\gamma, \gamma' \in C$. Thus,

- **1** A (X, γ, γ') is a HDVF if $\langle d'(\gamma'), \gamma \rangle$ is a unit
- **2** $\mathbb{R}(X, \sigma, \tau)$ is a HDVF if $\langle h(\sigma), \tau \rangle$ is a unit
- 3 $M(X, \sigma, \gamma)$ is a HDVF if $\langle f(\sigma), \gamma \rangle$ is a unit
- 4 $\mathbb{W}(X, \tau, \gamma)$ is a HDVF if $\langle g(\gamma), \tau \rangle$ is a unit
- 5 MW (X, σ, τ) is a HDVF if $\langle dh(\sigma), \tau \rangle$ and $\langle hd(\tau), \sigma \rangle$ are units

 \Box The HDVF

Relation with other methods in computational homology

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

- Introduction
- Definitions and theorems
- Computing a HDVF
- Deforming a HDVF
- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

 \Box The HDVF

Relation with other methods in computational homology

Proposition 3.21

Every DGVF is a HDVF.

Proposition 3.22

Every iterated DGVF⁴ is a HDVF.

Proposition 3.23

Let K be a CW complex. Then,

- Algorithm 1 performs a partial diagonalization of the boundary matrices of K;
- 2 Algorithm 1 computes a perfect HDVF whenever $\mathfrak R$ is a field.

Thus, we can compute persistent homology with the HDVF

⁴[Dlotko and Wagner, 2012]

 \Box The HDVF

Relation with other methods in computational homology

Proposition 3.21

Every DGVF is a HDVF.

Proposition 3.22

Every iterated $DGVF^4$ is a HDVF.

Proposition 3.23

Let K be a CW complex. Then,

- Algorithm 1 performs a partial diagonalization of the boundary matrices of K;
- 2 Algorithm 1 computes a perfect HDVF whenever $\mathfrak R$ is a field.

Thus, we can compute persistent homology with the HDVF

⁴[Dlotko and Wagner, 2012]

 \Box The HDVF

Relation with other methods in computational homology

Proposition 3.21

Every DGVF is a HDVF.

Proposition 3.22

Every iterated DGVF⁴ is a HDVF.

Proposition 3.23

Let K be a CW complex. Then,

- Algorithm 1 performs a partial diagonalization of the boundary matrices of K;
- **2** Algorithm 1 computes a perfect HDVF whenever \mathfrak{R} is a field.

Thus, we can compute persistent homology with the HDVF

⁴[Dlotko and Wagner, 2012]

 \Box The HDVF

Conclusion

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

- Introduction
- Definitions and theorems
- Computing a HDVF
- Deforming a HDVF
- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

 \Box The HDVF

Conclusion

Conclusion:

HDVF: combinatorial structure for computing homology

- Visually representable
- More powerful than DGVF
- Cubical complexity

 \Box The HDVF

Conclusion

Conclusion:

- HDVF: combinatorial structure for computing homology
- Visually representable
- More powerful than DGVF
- Cubical complexity

 \Box The HDVF

Conclusion

Conclusion:

- HDVF: combinatorial structure for computing homology
- Visually representable
- More powerful than DGVF
- Cubical complexity

 \sqcup The HDVF

Conclusion

Conclusion:

- HDVF: combinatorial structure for computing homology
- Visually representable
- More powerful than DGVF
- Cubical complexity

Computing Betti numbers on 3D cubical complexes

- Introduction

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes Introduction

- Algorithm
- Results
- Conclusion

4 Measuring Holes

-Introduction

We want to compute the Betti numbers of binary volumes

It seems that:

- $\beta_0 = \#$ connected components
- β₂ = # bounded connected components of the complement

$$\beta_1$$
 ?

[Delfinado and Edelsbrunner, 1995], [Dey and Guha, 1998]: 3D simplicial complexes

Computing Betti numbers on 3D cubical complexes

Algorithm

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

- Introduction
- Algorithm
- Results
- Conclusion

4 Measuring Holes

Computing Betti numbers on 3D cubical complexes

Algorithm

Ingredients

(1) β_0 is the number of connected components

- (2) Duality
- (3) Euler-Poincaré formula

Ingredient (1)

Let K be a 3D cubical complex. Consider the graph $G_0(K)$

Proposition 4.3

 $\beta_0(K) =$ number of connected components in $G_0(K)$

Computing Betti numbers on 3D cubical complexes

Algorithm

Proposition 4.4

Let $K \subset L$ be two 3D cubical complexes such that $\beta(L) = (1, 0, 0, 0)$. Then,

$$eta_{q}(K) = egin{cases} eta_1(L-K)+1 & ext{if } q=0\ eta_{q+1}(L-K) & ext{else} \end{cases}$$

Thus, $\beta_2(K) = \beta_3(L-K)$

Computing Betti numbers on 3D cubical complexes

Algorithm

Ingredient (2)

Let $K \subset L$ be two 3D cubical complexes. Consider the graph $G_3(L - K)$

Proposition 4.5

 $\beta_3(L - K) =$ number of connected components in $G_3(L - K)$ minus one.

Computing Betti numbers on 3D cubical complexes

Algorithm

Euler-Poincaré Formula

$$\chi(K) = |K_0| - |K_1| + |K_2| - |K_3|$$

= $\beta_0(K) - \beta_1(K) + \beta_2(K)$

Thus, $\beta_1(K) = \beta_0(K) + \beta_2(K) - \chi(K)$

Computing Betti numbers on 3D cubical complexes

Algorithm

Computing the Betti numbers

1
$$\beta_0 \leftarrow$$
 number of connected components of $G_0(K)$

2
$$\beta_2 \leftarrow$$
 number of connected components of $G_3(L - K)$ - 1

$$\beta_1 \leftarrow \beta_0 + \beta_2 - \chi(K)$$

Linear time and space complexity

• We propose two versions for implementing this method

Computational Homology Applied to Discrete Objects Computing Betti numbers on 3D cubical complexes Algorithm

Sequential algorithm: BFS, iterative

Computational Homology Applied to Discrete Objects Computing Betti numbers on 3D cubical complexes Algorithm

Sequential algorithm: BFS, iterative

Computational Homology Applied to Discrete Objects Computing Betti numbers on 3D cubical complexes Algorithm

Sequential algorithm: BFS, iterative

Computing Betti numbers on 3D cubical complexes

Results

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

- Introduction
- Algorithm

Results

Conclusion

4 Measuring Holes

Computing Betti numbers on 3D cubical complexes

Results

Comparison against CAPD::RedHom⁵ library

Size	RedHom	VB-s	VB-r	VB-rp
51 ³	0.1842	0.0026	0.0026	0.0023
101 ³	1.268	0.0142	0.0148	0.0091
201 ³	10.78	0.1309	0.1232	0.0552
301 ³	40.89	0.4303	0.4176	0.1583
401 ³	101.26	1.436	0.983	0.3092
501 ³	_	3.609	1.977	0.5494

Table: Execution time (in seconds) versus the size of the cubical complex.

Space is the problem, not time.

⁵[Juda and Mrozek, 2014]

Computing Betti numbers on 3D cubical complexes

Conclusion

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

- Introduction
- Algorithm
- Results
- Conclusion

4 Measuring Holes

Computing Betti numbers on 3D cubical complexes

Conclusion

Conclusion:

Simple algorithm for Betti numbers relying on connected components computation

- Linear time complexity
- Combinatorial and constructive proofs
- Implementation published under GNU GPL v3
- More effective than available algorithms

Computing Betti numbers on 3D cubical complexes

Conclusion

- Simple algorithm for Betti numbers relying on connected components computation
- Linear time complexity
- Combinatorial and constructive proofs
- Implementation published under GNU GPL v3
- More effective than available algorithms

Computing Betti numbers on 3D cubical complexes

Conclusion

- Simple algorithm for Betti numbers relying on connected components computation
- Linear time complexity
- Combinatorial and constructive proofs
- Implementation published under GNU GPL v3
- More effective than available algorithms

Computing Betti numbers on 3D cubical complexes

Conclusion

- Simple algorithm for Betti numbers relying on connected components computation
- Linear time complexity
- Combinatorial and constructive proofs
- Implementation published under GNU GPL v3
- More effective than available algorithms

Computing Betti numbers on 3D cubical complexes

Conclusion

- Simple algorithm for Betti numbers relying on connected components computation
- Linear time complexity
- Combinatorial and constructive proofs
- Implementation published under GNU GPL v3
- More effective than available algorithms

└─ Measuring Holes

-Introduction

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

Introduction

- Definition
- Thickness-breadth balls
- Applications
- Conclusion

└─ Measuring Holes

Introduction

- We can know how many holes there are in an object
- We cannot know where or how they are

└─ Measuring Holes

Introduction

Size of a hole

The 1st one is *bigger* than the 2nd one

The 2nd one is *thicker* than the 1st one

└─ Measuring Holes

Introduction

Size of a hole

The 1st one is *bigger* than the 2nd one

The 2nd one is *thicker* than the 1st one

└─ Measuring Holes

Introduction

Size of a hole

The 1st one is *bigger* than the 2nd one

The 2nd one is *thicker* than the 1st one

└─ Measuring Holes

Introduction

Representing a hole

Cohomology

└─ Measuring Holes

Introduction

Representing a hole

Homology

Cohomology

└─ Measuring Holes

Introduction

Representing a hole

Homology

Cohomology

└─ Measuring Holes

L Introduction

Representing a hole

Do homology generators really represent holes?

└─ Measuring Holes

-Introduction

$\begin{array}{ccc} \text{Geometry} & + & \text{Topology} \\ \downarrow & & \downarrow \\ \text{Signed distance transform} & & \text{Persistent homology} \end{array}$

- └─ Measuring Holes
 - Definition

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

Introduction

Definition

- Thickness-breadth balls
- Applications
- Conclusion

└─ Measuring Holes

Definition

Signed distance transform

Let O be a discrete object,

$$sdt_O(x) = egin{cases} -d(x,O^c) & ext{if } x \in O \ d(x,O) & ext{if } x \notin O \end{cases}$$

Figure: Sublevel sets of the signed distance form

└─ Measuring Holes

Definition

Persistent homology

Given a filtration F, we can define its set of persistence intervals through its persistent homology groups.

- These intervals tell the lifetime of the holes in the filtration
- They are represented as a set of points PD(F) in \mathbb{R}^2
└─ Measuring Holes

Definition

Example

Persistence intervals:

- Dimension 0:
- Dimension 1:
- Dimension 2:

└─ Measuring Holes

Definition

Example

Persistence intervals:

- Dimension 0:
- Dimension 1:
- Dimension 2:

height: 7
β₀: 1
β₁: 1
β₂: 0

└─ Measuring Holes

Definition

Example

Persistence intervals:

- Dimension 0:
- Dimension 1:
- Dimension 2:

height: 11
β₀: 2
β₁: 1
β₂: 0

└─ Measuring Holes

Definition

Example

Persistence intervals:

- Dimension 0: (10, 13)
- Dimension 1:
- Dimension 2:

height: 13
β₀: 1
β₁: 2
β₂: 0

└─ Measuring Holes

Definition

Persistence intervals:

- Dimension 0: (10, 13)
- Dimension 1:
- Dimension 2:

height: 17
β₀: 1
β₁: 2
β₂: 1

Measuring Holes

Definition

Example

height:
β₀: 1
β₁: 2
β₂: 1

Persistence intervals:

- Dimension 0: (10, 13), (0, ∞)
- Dimension 1: (7, ∞), (13, ∞)
- Dimension 2: $(17, \infty)$

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Thickness and breadth (Definition 5.1)

Let *O* be a discrete object and *F* the filtration defined by the sublevel sets of its signed distance transform. Let $TB(O) = \{(-x, y) \in PD(F) \mid x \le 0, y \ge 0\}$. Its intervals are the thickness-breadth pairs of *O*

- There is a thickness-breadth pair (t, b) for each hole of O
- *t* is the <u>thickness</u> of the hole and *b*, its <u>breadth</u>

└─ Measuring Holes

– Definition

Thickness-breadth diagram

Thickness-breadth pairs can be represented like persistence diagrams

-Measuring Holes

Definition

Thickness-breadth diagram

Thickness-breadth pairs can be represented like persistence diagrams

-Measuring Holes

- Definition

Thickness-breadth diagram

Thickness-breadth pairs can be represented like persistence diagrams

Definition

Theorem 5.2

Let X and Y be two 3D discrete objects. Let us call

$$\delta = d_H(X, Y) + d_H(\mathbb{Z}^3 \setminus X, \mathbb{Z}^3 \setminus Y) + 2\sqrt{3}$$

Thus, for every thickness-breadth pair $p_X = (x, y)$ of X such that $x, y > \delta$, there exists another thickness-breadth pair $p_Y = (x', y')$ of Y such that

$$||\boldsymbol{p}_{\boldsymbol{X}} - \boldsymbol{p}_{\boldsymbol{Y}}||_{\infty} \leq \delta$$

- └─ Measuring Holes
 - └─ Thickness-breadth balls

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

- Introduction
- Definition
- Thickness-breadth balls
- Applications
- Conclusion

Computational Homology Applied to Discrete Objects

- └─ Measuring Holes
 - -Thickness-breadth balls

- The thickness ball of (t, b) is the ball of radius t centered at σ
- The breadth ball of (t, b) is the ball of radius b centered at τ

- └─ Measuring Holes
 - -Thickness-breadth balls

- The thickness ball of (t, b) is the ball of radius t centered at σ
- The breadth ball of (t, b) is the ball of radius b centered at τ

- └─ Measuring Holes
 - -Thickness-breadth balls

- The thickness ball of (t, b) is the ball of radius t centered at σ
- The breadth ball of (t, b) is the ball of radius b centered at τ

- └─ Measuring Holes
 - -Thickness-breadth balls

- The thickness ball of (t, b) is the ball of radius t centered at σ
- The breadth ball of (t, b) is the ball of radius b centered at τ

└─ Measuring Holes

└─ Thickness-breadth balls

Breadth ball

- Homology generator
- Close hole

└─ Measuring Holes

└─ Thickness-breadth balls

Breadth ball

Homology generator

Close hole

└─ Measuring Holes

└─ Thickness-breadth balls

- Breadth ball
- Homology generator
- Close hole

- └─ Measuring Holes
 - └─ Thickness-breadth balls

- Thickness ball
- Cohomology generator
- Open hole

└─ Measuring Holes

Applications

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

- Introduction
- Definition
- Thickness-breadth balls
- Applications
- Conclusion

Measuring Holes

Applications

(co)homology generators

"A good homology generator should be close to a breadth ball"

Algorithms

- Algorithm 6: TB pair → homology generator
- Algorithm 7: TB pair → cohomology generator

└─ Measuring Holes

Applications

(co)homology generators

Algorithm 6 (homology generator)

Discrete objectBreadth balls

Filtration

└─ Measuring Holes

Applications

(co)homology generators

Algorithm 6 (homology generator)

Discrete objectBreadth ballsFiltration

└─ Measuring Holes

Applications

(co)homology generators

Algorithm 6 (homology generator)

- Discrete objectBreadth balls
- Filtration

└─ Measuring Holes

Applications

(co)homology generators

Algorithm 6 (homology generator)

Discrete object
Breadth balls
Filtration

└─ Measuring Holes

Applications

(co)homology generators

Algorithm 6 (homology generator)

Discrete object
 Breadth balls
 Filtration

└─ Measuring Holes

Applications

(co)homology generators

Algorithm 6 (homology generator)

Discrete object
Breadth balls
Filtration

└─ Measuring Holes

Applications

(co)homology generators

Algorithm 6 (homology generator)

Discrete object
Breadth balls
Filtration
└─ Measuring Holes

Applications

(co)homology generators

Algorithm 6 (homology generator)

Discrete object
Breadth balls
Filtration

Measuring Holes

Applications

(co)homology generators

Algorithm 6 (homology generator)

Discrete object
Breadth balls
Filtration

A similar (dual) approach produces cohomology generators!

<u>Measuring</u> Holes

Applications

(co)homology generators — examples

└─ Measuring Holes

Applications

(co)homology generators — examples

└─ Measuring Holes

Applications

Opening and closing holes

Thickness balls (and cohomology generators) seem to tell where to break a hole

Breadth balls (and homology generators) seem to tell where to fill a hole

└─ Measuring Holes

Applications

Opening and closing holes

- Thickness balls (and cohomology generators) seem to tell where to break a hole
- Breadth balls (and homology generators) seem to tell where to fill a hole

└─ Measuring Holes

Applications

Opening and closing holes

K cubical complex, x cycle, S set of cubes

Opening the cycle x

S opens the cycle x if

1 K - S is a cubical complex

2
$$[x] \notin \operatorname{im}(\iota)$$

3
$$\iota: H(K-S) \to H(K)$$
 is injective

└─ Measuring Holes

Applications

Opening and closing holes

K cubical complex, x cycle, S set of cubes

Closing the cycle x

- S closes the cycle x if
 - **1** $K \cup S$ is a cubical complex

2
$$[x] \in \operatorname{ker}(\iota)$$

3 $\iota: H(K) \to H(K \cup S)$ is surjective

└─ Measuring Holes

Applications

Opening and closing holes

Algorithms

- Algorithm 8: TB pair \mapsto hole opening
- Algorithm 9: TB pair → hole closing without surjectivity condition

└─ Measuring Holes

Applications

Opening and closing holes — examples

— Measuring Holes

Applications

Opening and closing holes — examples

<u>Measuring</u> Holes

Applications

Opening and closing holes — examples

- └─ Measuring Holes
 - Conclusion

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

- Introduction
- Definition
- Thickness-breadth balls
- Applications
- Conclusion

Conclusion

Conclusion:

Topological-geometrical signature of objects

- Robust to noise ⇒ suitable for real applications
- Alternative visualization of holes
- Heuristics for small homology and cohomology generators
- Heuristics for opening and closing holes

Conclusion

Conclusion:

- Topological-geometrical signature of objects
- Robust to noise \Rightarrow suitable for real applications
- Alternative visualization of holes
- Heuristics for small homology and cohomology generators
- Heuristics for opening and closing holes

Conclusion

Conclusion:

- Topological-geometrical signature of objects
- Robust to noise \Rightarrow suitable for real applications
- Alternative visualization of holes
- Heuristics for small homology and cohomology generators
- Heuristics for opening and closing holes

- Conclusion

Conclusion:

- Topological-geometrical signature of objects
- Robust to noise \Rightarrow suitable for real applications
- Alternative visualization of holes
- Heuristics for small homology and cohomology generators
- Heuristics for opening and closing holes

- 2 The Homological Discrete Vector Field
- 3 Fast Computation of Betti Numbers on 3D Cubical Complexes
- 4 Measuring Holes

Perspectives:

- 1 HDVF
 - Every CW complex admits a perfect HDVF?
 - Use the operations for comparing HDVFs
 - Compute zigzag persistent homology with HDVFs
- 2 ViteBetti
 - Apply it directly on the discrete object
 - Try component labeling algorithms from digital geometry context
 - Process complex by slices
- 3 Thickness and breadth
 - To find real world applications
 - To formalize the geometric intuition
 - Algorithm for closing holes
 - Simplicial complexes

Perspectives:

- 1 HDVF
 - Every CW complex admits a perfect HDVF?
 - Use the operations for comparing HDVFs
 - Compute zigzag persistent homology with HDVFs
- 2 ViteBetti
 - Apply it directly on the discrete object
 - Try component labeling algorithms from digital geometry context
 - Process complex by slices
- 3 Thickness and breadth
 - To find real world applications
 - To formalize the geometric intuition
 - Algorithm for closing holes
 - Simplicial complexes

Perspectives:

- 1 HDVF
 - Every CW complex admits a perfect HDVF?
 - Use the operations for comparing HDVFs
 - Compute zigzag persistent homology with HDVFs
- 2 ViteBetti
 - Apply it directly on the discrete object
 - Try component labeling algorithms from digital geometry context
 - Process complex by slices
- 3 Thickness and breadth
 - To find real world applications
 - To formalize the geometric intuition
 - Algorithm for closing holes
 - Simplicial complexes

Perspectives:

- 1 HDVF
 - Every CW complex admits a perfect HDVF?
 - Use the operations for comparing HDVFs
 - Compute zigzag persistent homology with HDVFs
- 2 ViteBetti
 - Apply it directly on the discrete object
 - Try component labeling algorithms from digital geometry context
 - Process complex by slices
- 3 Thickness and breadth
 - To find real world applications
 - To formalize the geometric intuition
 - Algorithm for closing holes
 - Simplicial complexes

Thanks

Merci

Grazie

Gracias