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L Homology

m K cubical complex, R ring (e.g., Z, Z>)

m Chain complex of K

d3 do dq do

- C3 C G Co 0

where dqdgy1 = 0 = im(dg41) C ker(dg)
m g-dimensional homology group

Hy(K) = ker(dg)/im(dg11) = Z% @ T
m g-dimensional Betti number: 34
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L Homology

m [y = # connected components (0-holes)
m 31 = # tunnels or handles (1-holes)
m [ = # cavities (2-holes)
Betti numbers are
m Topological invariants — classification

m Shape descriptors — understanding



Computational Homology Applied to Discrete Objects
L

—Introduction and Preliminaries

L Homology

/30:2161:2152:]-,/8320,...
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LReduction
Effective homology theory [Sergeraert, 1992]

Triplet p = (h, f, g) of graded homomorphisms® between two chain
complexes (C, d) and (C', d")

do dy do
Cz Cl C[) 0
h1 ho
g2 || f2 gl |f1 9o || fo
df d} d;,
c, ¢ c 0

Both chain complexes have isomorphic homology groups

3with some conditions (cf. Definition 2.18)
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L Reduction

A reduction is perfect if d’ = 0. Hence
m (' = H(C)
m g(C') = homology generators

m *(C') = cohomology generators
m d(x) =0= d(y) =x for y = h(x)
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Discrete Morse theory [Forman,
1998

m (CW-) complex

m Connectivity graph

m Matching V

m Morse graph (no cycles)
[

V is a discrete gradient
vector field (DGVF)
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A perfect DGVF
m Acyclic matching

m The arrows can be deduced
from P and S

m It induces a perfect reduction
m |Gyl =By
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Boundary matrix

Matrix of the (linear) boundary operator d

S1

S1 S22 S3 S84 S5 S ST
s1 /0 0 0 1 1 0 0
s2(0 0 0 1 0 1 0
ss{o o 0o 0o 1 1 0

d= s, {0 0 0 0 0 0 1
ss{0 0 0 0 0 1
ss{0 0 0 0 0 0 1
s7\0 0 0 0 0 0 0

52 S6 S3
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Matrix of the (linear) boundary operator d

S1

84 56 ST

s1 /1 0 0

d(S)p= sy <1 1 0>
s \0 0 1
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L Definitions and theorems

“Forget the cycles, focus on the reduction”

HDVF (Definition 3.1)

A homological discrete vector field (HDVF) X = (P, S) on a CW
complex K is a partition K = P LU S U C such that d(S)p is an
invertible matrix (in 2R)

We can always represent a HDVF as a discrete vector field (cf.
Proposition 3.8)
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Theorem 3.9

Let K be a CW complex endowed with a HDVF X. Then X
induces the reduction

(h,f,g):(C,d) = (R[C],d)

where the operators h, f, g and the reduced boundary d’ are given

by
2o ‘ H = (d(S)p)™
- o ] = o] = o el & = =elEe - W
clo]ofo L G:_Hd(c)|P

D =d(C)jc + F-d(C)p
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Proposition 3.12

K CW complex, X = (P, S) HDVF, o, 7 critical cells. If (d'(7),0)
is a unit then X’ = (PU{c},SU{r}) is a HDVF.

' i

i_lo i_!
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L Computing a HDVF

Algorithm 1: Compute a HDVF

Input: A CW complex K

Output: A HDVF X

repeat
Find two critical cells o, 7 such that (d'(7), o) is a unit;
Add (o, 7) to X;
Update the reduced boundary matrix D;

until idempotency;

a B WN =
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L Computing a HDVF

Algorithm 2: Compute a HDVF
Input: A CW complex K
Output: A HDVF X

repeat

1

2 Find two critical cells o, 7 such that (d'(7), o) is a unit;
3 Add (o, 7) to X;
4

5

Update the reduced boundary matrix D;
until idempotency;

Theorem 3.15

Algorithm 1 can be computed within O(n®) operations.
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Proposition 3.19

Let K be a CW complex endowed with a HDVF X. Let o € P,
7€ S and v,7 € C. Thus,

,7,7") is a HDVF if (d'(v),~) is a unit

A(X

R(X,0,7) is a HDVF if (h(o), ) is a unit
M(X,0,7) is a HDVF if

W(X,T,"}/) is a HDVF if

{
MW(X,o,7) is a HDVF if

(h(o),7)
(f(o),7) is a unit
g(7), ) is a unit

(dh(o),7) and (hd(7),0) are units
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LRela\tion with other methods in computational homology

Proposition 3.21
Every DGVF is a HDVF.

Proposition 3.22
Every iterated DGVF* is a HDVF.

Proposition 3.23

Let K be a CW complex. Then,

Algorithm 1 performs a partial diagonalization of the boundary
matrices of K;

Algorithm 1 computes a perfect HDVF whenever R is a field.

Thus, we can compute persistent homology with the HDVF

*[Dlotko and Wagner, 2012]
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m Cubical complexity
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LIntroduction

We want to compute the Betti numbers of binary volumes

It seems that:
m 5y = # connected components

m [y = # bounded connected
components of the complement

m (7

[Delfinado and Edelsbrunner, 1995], [Dey and Guha, 1998]: 3D
simplicial complexes
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LCon-nputing Betti numbers on 3D cubical complexes

LAlgorithm

Ingredients

(1) PBo is the number of connected components
(2) Duality
(3) Euler-Poincaré formula
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Ingredient (1)

Let K be a 3D cubical complex. Consider the graph Go(K)

Proposition 4.3

Bo(K) = number of connected components in Go(K)
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LComputing Betti numbers on 3D cubical complexes

LAlgorithm

Ingredient (2)

Proposition 4.4

Let K C L be two 3D cubical complexes such that
B(L) =(1,0,0,0). Then,

Bi(L—K)+1 ifg=0

BalK) = {BqH(L —K) else

ThUS, ﬁQ(K) = 53(L — K)

44 /85
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LComputing Betti numbers on 3D cubical complexes

LAlgorithm

Ingredient (2)

Let K C L be two 3D cubical complexes. Consider the graph
Gs(L — K)

Proposition 4.5

B3(L — K) = number of connected components in G3(L — K)
minus one.

45 /85
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LComputing Betti numbers on 3D cubical complexes

LAlgorithm

Ingredient (3)

Euler-Poincaré Formula

X(K) = |Ko| — |Ki| + |K2| — |K3]
= Bo(K) — B1(K) + p2(K)

Thus, f1(K) = Bo(K) + B2(K) — x(K)

46 /85
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L Algorithm
3

Computing the Betti numbers

Bo < number of connected components of Gy(K)

B2 < number of connected components of G3(L — K) - 1
B1 < Bo + B2 — x(K)

m Linear time and space complexity

m We propose two versions for implementing this method
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LComputing Betti numbers on 3D cubical complexes

L Results

Comparison against CAPD: :RedHom® library

Size || RedHom | VB-s VB-r | VB-rp
513 || 0.1842 | 0.0026 | 0.0026 | 0.0023
1013 || 1.268 | 0.0142 | 0.0148 | 0.0091
2013 || 10.78 | 0.1309 | 0.1232 | 0.0552
3013 || 40.89 | 0.4303 | 0.4176 | 0.1583
4013 || 101.26 | 1.436 | 0.983 | 0.3092
5013 — 3.609 | 1.977 | 0.5494

Table: Execution time (in seconds) versus the size of the cubical complex.

Space is the problem, not time.

®[Juda and Mrozek, 2014]
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Conclusion:

m Simple algorithm for Betti numbers relying on connected
components computation

m Linear time complexity

m Combinatorial and constructive proofs

m Implementation published under GNU GPL v3
]

More effective than available algorithms



Computational Homology Applied to Discrete Objects
LMeasuring Holes

L Introduction

Sections

Measuring Holes

m Introduction

54 /85



Computational Homology Applied to Discrete Objects

L Measuring Holes

L Introduction

m We can know how many holes there are in an object

m We cannot know where or how they are
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Representing a hole

Do homology generators really represent holes?
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Geometry + Topology
1 4

Signed distance transform Persistent homology
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Signed distance transform

Let O be a discrete object,

—d(x,0°) ifxe€O
d(x,0) ifx¢O

IN-N-N

Figure: Sublevel sets of the signed distance form

Sdto(X) = {
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Given a filtration F, we can define its set of persistence intervals
through its persistent homology groups.

m These intervals tell the lifetime of the holes in the filtration

m They are represented as a set of points PD(F) in R?
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Example

Persistence intervals:
m Dimension 0:
m Dimension 1:

m Dimension 2:

height: 5
Bo: 1
p1: 0
B2: 0
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Example

height: 13
Bo: 1
P 2
B2: 0

Persistence intervals:
m Dimension 0: (10, 13)
m Dimension 1:

m Dimension 2:
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L Definition

Example

height: 17
Bo: 1
b1 2
B2 1

Persistence intervals:
m Dimension 0: (10, 13)
m Dimension 1:

m Dimension 2:
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LMeasuring Holes

L Definition

Example

m height:
m Gy 1
m b 2
m G 1

Persistence intervals:
m Dimension 0: (10, 13), (0, c0)
m Dimension 1: (7,00), (13, 00)
m Dimension 2: (17, 00)
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Persistent homology with signed distance transform
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Thickness and breadth (Definition 5.1)

Let O be a discrete object and F the filtration defined by the
sublevel sets of its signed distance transform. Let

TB(O) ={(—x,y) € PD(F) | x <0,y > 0}. Its intervals are the
thickness-breadth pairs of O

m There is a thickness-breadth pair (¢, b) for each hole of O
m t is the thickness of the hole and b, its breadth
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Thickness-breadth dia

Thickness-breadth pairs can be represented like persistence
diagrams

20 25
1

15
|

Breadth

Thickness
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Theorem 5.2

Let X and Y be two 3D discrete objects. Let us call

§=du(X,Y)+du(Z3\ X,Z3\ Y) +2V3

Thus, for every thickness-breadth pair px = (x,y) of X such that
X,y > 0, there exists another thickness-breadth pair py = (x',y’)
of Y such that

llpx = pylloo <0
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Sections

Measuring Holes

m Thickness-breadth balls
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m Thickness ball
m Cohomology generator
m Open hole
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(co)homology generators

“A good homology generator should be close to a breadth ball”

Algorithms

m Algorithm 6: TB pair — homology generator

m Algorithm 7: TB pair — cohomology generator
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(co)homology generators

Algorithm 6 (homology generator)

m Filtration

A similar (dual) approach produces cohomology generators!

74 /85
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where to break a hole
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Opening and closing holes

K cubical complex, x cycle, S set of cubes

Opening the cycle x

S opens the cycle x if

K — S is a cubical complex
[x] & im(¢)
t: H(K — S) — H(K) is injective
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LApplications

Opening and closing holes

K cubical complex, x cycle, S set of cubes

Closing the cycle x

S closes the cycle x if

K US is a cubical complex
[x] € ker(¢)
t: H(K) — H(K US) is surjective
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LApplications

Opening and closing holes

Algorithms

m Algorithm 8: TB pair — hole opening

m Algorithm 9: TB pair — hole closing without surjectivity
condition
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Conclusion:

Topological-geometrical signature of objects

Robust to noise = suitable for real applications
Alternative visualization of holes

Heuristics for small homology and cohomology generators
Heuristics for opening and closing holes
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Context Contributions

Discrete object

Cubical complex ViteBetti

l

Homol
omology Thickness - breadth
L, Reduction
HDVF
L . DGVF
|, Persistent homology
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Perspectives:
HDVF

m Every CW complex admits a perfect HDVF?

m Use the operations for comparing HDVFs

m Compute zigzag persistent homology with HDVFs
ViteBetti

m Apply it directly on the discrete object

m Try component labeling algorithms from digital geometry

context

m Process complex by slices
Thickness and breadth

m To find real world applications

m To formalize the geometric intuition

m Algorithm for closing holes

m Simplicial complexes

Thanks Merci Grazie Gracias
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