Computational Homology Applied to Discrete Objects

Aldo Gonzalez-Lorenzo ${ }^{1,2}$

${ }^{1}$ Aix-Marseille Université, CNRS, LSIS UMR 7296 (France)
${ }^{2}$ Universidad de Sevilla, IMUS (Spain)

November 24, 2016

Aix $*$ Marseille université

Structure

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

Geometry:
■ Volume

- Diameter
- Curvature

Topology:

 - Volume - Diameter - Curvature - Holes!

Topology:

Topology:

- Volume - Diameter - Cumature

Topology:

- Volume
- Diameter
- Cumature

■ Holes!

Number of holes: 6? 3?

Number of holes: 6? 3?

Number of holes: 5

-Complexes

Sections

1 Introduction and Preliminaries

- Complexes
- Homology
- Reduction

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

Simplicial complex

Union ${ }^{1}$ of points, edges, triangles, tetrahedra, ... (simplices)

${ }^{1}$ with some conditions (cf. Definition 2.14)

Simplicial complex

Union ${ }^{1}$ of points, edges, triangles, tetrahedra, ... (simplices)

${ }^{1}$ with some conditions (cf. Definition 2.14)

Simplicial complex

Union ${ }^{1}$ of points, edges, triangles, tetrahedra, ... (simplices)

${ }^{1}$ with some conditions (cf. Definition 2.14)

Simplicial complex

Union ${ }^{1}$ of points, edges, triangles, tetrahedra, ... (simplices)

${ }^{1}$ with some conditions (cf. Definition 2.14)

Simplicial complex

Union ${ }^{1}$ of points, edges, triangles, tetrahedra, ... (simplices)

${ }^{1}$ with some conditions (cf. Definition 2.14)

L Introduction and Preliminaries
Complexes

Cubical complex

Union ${ }^{2}$ of points, edges, squares, cubes, ... (cubes)

${ }^{2}$ with some conditions (cf. Definition 2.17)

L Introduction and Preliminaries
Complexes

Cubical complex

Union ${ }^{2}$ of points, edges, squares, cubes, ... (cubes)

${ }^{2}$ with some conditions (cf. Definition 2.17)

L Introduction and Preliminaries
Complexes

Cubical complex

Union ${ }^{2}$ of points, edges, squares, cubes, ... (cubes)

${ }^{2}$ with some conditions (cf. Definition 2.17)

L Introduction and Preliminaries
Complexes

Cubical complex

$U_{n i o n}{ }^{2}$ of points, edges, squares, cubes, ... (cubes)

${ }^{2}$ with some conditions (cf. Definition 2.17)

L Introduction and Preliminaries
Complexes

Cubical complex

Union ${ }^{2}$ of points, edges, squares, cubes, ... (cubes)

${ }^{2}$ with some conditions (cf. Definition 2.17)

Discrete object

A $n \mathrm{D}$ discrete object is a subset of \mathbb{Z}^{n}

We usually choose a connectivity relation such as the $2 n$ or the ($3^{n}-1$)-connectivity.

Discrete object

A $n \mathrm{D}$ discrete object is a subset of \mathbb{Z}^{n}

We usually choose a connectivity relation such as the $2 n$ or the ($3^{n}-1$)-connectivity.

Discrete object

A $n \mathrm{D}$ discrete object is a subset of \mathbb{Z}^{n}

We usually choose a connectivity relation such as the $2 n$ or the $\left(3^{n}-1\right)$-connectivity.

We can transform a discrete object into a cubical complex in two ways, one for each connectivity relation.

We can transform a discrete object into a cubical complex in two ways, one for each connectivity relation.

Computational Homology Applied to Discrete Objects
L Introduction and Preliminaries
LHomology

Sections

1 Introduction and Preliminaries

- Complexes

■ Homology
n Reduction

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

- Introduction and Preliminaries

LHomology
Blue: 1-cube
Red: its boundary (faces)

- Introduction and Preliminaries

-Homology
Blue: 2-cube
Red: its boundary (faces)

Computational Homology Applied to Discrete Objects

-Introduction and Preliminaries

-Homology
Blue: 1-chain
Red: its boundary

Computational Homology Applied to Discrete Objects

$L_{\text {Introduction and Preliminaries }}$
-Homology
Blue: 1-chain (1-cycle)
Red: its boundary $(=\emptyset)$

Computational Homology Applied to Discrete Objects

- Introduction and Preliminaries

-Homology
Blue: 2-chain
Red: its boundary (1-cycle)

Computational Homology Applied to Discrete Objects

L Introduction and Preliminaries

-Homology
Blue: 1-chain (1-cycle, but not boundary)
Red: its boundary $(=\emptyset)$

■ K cubical complex, \mathfrak{R} ring (e.g., $\mathbb{Z}, \mathbb{Z}_{2}$)

- Chain complex of K

$$
\cdots C_{3} \xrightarrow{d_{3}} C_{2} \xrightarrow{d_{2}} C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{d_{0}} 0
$$

where $d_{q} d_{q+1}=0 \Rightarrow \operatorname{im}\left(d_{q+1}\right) \subset \operatorname{ker}\left(d_{q}\right)$

- q-dimensional homology group
$H_{q}(K):=\operatorname{ker}\left(d_{q}\right) / \operatorname{im}\left(d_{q+1}\right)=\mathbb{Z}^{\beta_{q}} \oplus \mathbb{T}$
- q-dimensional Betti number: β_{q}
- $\beta_{0}=\#$ connected components (0-holes)
- $\beta_{1}=\#$ tunnels or handles (1-holes)
- $\beta_{2}=\#$ cavities (2-holes)

Betti numbers are

- Topological invariants \rightarrow classification

■ Shape descriptors \rightarrow understanding

L Introduction and Preliminaries

- Homology

$$
\beta_{0}=2, \beta_{1}=2, \beta_{2}=1, \beta_{3}=0, \ldots
$$

Computational Homology Applied to Discrete Objects
L Introduction and Preliminaries
Reduction

Sections

1 Introduction and Preliminaries

- Complexes
- Homology
- Reduction

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

Effective homology theory [Sergeraert, 1992]

Reduction

Triplet $\rho=(h, f, g)$ of graded homomorphisms ${ }^{3}$ between two chain complexes (C, d) and ($\mathrm{C}^{\prime}, d^{\prime}$)

Both chain complexes have isomorphic homology groups

A reduction is perfect if $d^{\prime}=0$. Hence

- $\mathrm{C}^{\prime} \cong H(\mathrm{C})$
- $g\left(\mathrm{C}^{\prime}\right)=$ homology generators
- $f^{*}\left(\mathrm{C}^{\prime}\right)=$ cohomology generators

■ $d(x)=0 \Rightarrow d(y)=x$ for $y=h(x)$

- Introduction

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

- Introduction
- Definitions and theorems
- Computing a HDVF
- Deforming a HDVF
- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

Discrete Morse theory [Forman, 1998]

- (CW-) complex

Discrete Morse theory [Forman, 1998]

- (CW-) complex
- Connectivity graph
- Matching V - Morse graph (no cycles) - \mathcal{V} is a discrete gradient vector field (DGVF)

Discrete Morse theory [Forman, 1998]

- (CW-) complex
- Connectivity graph
- Matching \mathcal{V}
- Morse graph (no cycles)
- \mathcal{V} is a discrete gradient vector field (DGVF)

Discrete Morse theory [Forman, 1998]

- (CW-) complex
- Connectivity graph
- Matching \mathcal{V}
- Morse graph (no cycles)

Discrete Morse theory [Forman, 1998]

- (CW-) complex
- Connectivity graph
- Matching \mathcal{V}
- Morse graph (no cycles)
- \mathcal{V} is a discrete gradient vector field (DGVF)

A DGVF
 - Acyclic matching

- The arrows can be deduced from P and S - It induces a reduction

A DGVF
 - Acyclic matching

- The arrows can be deduced from P and S - It induces a reduction
P : primary cells

A DGVF

- Acyclic matching
- The arrows can be deduced from P and S
S : secondary cells

A DGVF

- Acyclic matching
- The arrows can be deduced from P and S
- It induces a reduction
- $\left|C_{q}\right| \geq \beta_{q}$

C: critical cells

A perfect DGVF

- Acyclic matching
- The arrows can be deduced from P and S
- It induces a perfect reduction
- $\left|C_{q}\right|=\beta_{q}$

So

- Algebra \rightarrow graph theory
- Homology computation \rightarrow optimization problem

So

- Algebra \rightarrow graph theory

■ Homology computation \rightarrow optimization problem
But

- Finding optimal DGVF is NP
- No possible perfect DGVF always

So

- Algebra \rightarrow graph theory
- Homology computation \rightarrow optimization problem
But
- Finding optimal DGVF is NP
- No possible perfect DGVF always

So

- Algebra \rightarrow graph theory

■ Homology computation \rightarrow optimization problem
But

- Finding optimal DGVF is NP
- No possible perfect DGVF always

So

- Algebra \rightarrow graph theory

■ Homology computation \rightarrow optimization problem
But

- Finding optimal DGVF is NP
- No possible perfect DGVF always

So

- Algebra \rightarrow graph theory
- Homology computation \rightarrow optimization problem
But
- Finding optimal DGVF is NP
- No possible perfect DGVF always

$\square_{\text {Definitions and theorems }}$

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

- Introduction
- Definitions and theorems
- Computing a HDVF
- Deforming a HDVF
- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

Boundary matrix

Matrix of the (linear) boundary operator d

$$
d=\begin{aligned}
& \\
& s_{1} \\
& s_{2} \\
& s_{3} \\
& s_{3} \\
& s_{4} \\
& s_{5} \\
& s_{6} \\
& s_{7}
\end{aligned}\left(\begin{array}{ccccccc}
s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & s_{6} & s_{7} \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Boundary matrix

Matrix of the (linear) boundary operator d

Boundary matrix

Matrix of the (linear) boundary operator d

"Forget the cycles, focus on the reduction"

HDVF (Definition 3.1)

A homological discrete vector field (HDVF) $X=(P, S)$ on a CW complex K is a partition $K=P \sqcup S \sqcup C$ such that $d(S)_{\mid P}$ is an invertible matrix (in \mathfrak{R})

We can always represent a HDVF as a discrete vector field (cf. Proposition 3.8)

Computational Homology Applied to Discrete Objects

-The HDVF

Definitions and theorems
Example: a HDVF with two cycles in the Morse graph

Computational Homology Applied to Discrete Objects

-The HDVF

Definitions and theorems
Example: a HDVF with two cycles in the Morse graph

Computational Homology Applied to Discrete Objects

-The HDVF

Definitions and theorems
Example: a HDVF with two cycles in the Morse graph

Computational Homology Applied to Discrete Objects

-The HDVF

Definitions and theorems
Example: a HDVF with two cycles in the Morse graph

Computational Homology Applied to Discrete Objects

-The HDVF

Definitions and theorems
Example: a HDVF with two cycles in the Morse graph

Theorem 3.9

Let K be a CW complex endowed with a HDVF X. Then X induces the reduction

$$
(h, f, g):(C, d) \Rightarrow\left(\Re[C], d^{\prime}\right)
$$

where the operators h, f, g and the reduced boundary d^{\prime} are given by

$$
\begin{aligned}
H & =\left(d(S)_{\mid P}\right)^{-1} \\
F & =-d(S)_{\mid C} \cdot H \\
G & =-H \cdot d(C)_{\mid P} \\
D & =d(C)_{\mid C}+F \cdot d(C)_{\mid P}
\end{aligned}
$$

- Computing a HDVF

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

- Introduction
- Definitions and theorems
- Computing a HDVF
- Deforming a HDVF
- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

Proposition 3.12

K CW complex, $X=(P, S)$ HDVF, σ, τ critical cells. If $\left\langle d^{\prime}(\tau), \sigma\right\rangle$ is a unit then $X^{\prime}=(P \cup\{\sigma\}, S \cup\{\tau\})$ is a HDVF.

Algorithm 1: Compute a HDVF
 Input: A CW complex K
 Output: A HDVF X

1 repeat
2 Find two critical cells σ, τ such that $\left\langle d^{\prime}(\tau), \sigma\right\rangle$ is a unit;
3 Add (σ, τ) to X;
4 Update the reduced boundary matrix D;
5 until idempotency;
Theorem 3.15
Algorithm 1 can be computed within $\mathcal{O}\left(n^{3}\right)$ operations

Algorithm 2: Compute a HDVF
 Input: A CW complex K
 Output: A HDVF X

1 repeat
2 Find two critical cells σ, τ such that $\left\langle d^{\prime}(\tau), \sigma\right\rangle$ is a unit;
3 Add (σ, τ) to X;
Update the reduced boundary matrix D;
5 until idempotency;

Theorem 3.15
Algorithm 1 can be computed within $\mathcal{O}\left(n^{3}\right)$ operations.

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

- Introduction
- Definitions and theorems
- Computing a HDVF
- Deforming a HDVF
- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

Computational Homology Applied to Discrete Objects

L The HDVF

- Deforming a HDVF

Computational Homology Applied to Discrete Objects

L The HDVF

- Deforming a HDVF

Computational Homology Applied to Discrete Objects

L The HDVF

- Deforming a HDVF

Computational Homology Applied to Discrete Objects

L The HDVF

- Deforming a HDVF

W:

Computational Homology Applied to Discrete Objects

LThe HDVF

- Deforming a HDVF

MW
MW:

Proposition 3.19

Let K be a CW complex endowed with a HDVF X. Let $\sigma \in P$, $\tau \in S$ and $\gamma, \gamma^{\prime} \in C$. Thus,
$1 \mathrm{~A}\left(X, \gamma, \gamma^{\prime}\right)$ is a HDVF if $\left\langle d^{\prime}\left(\gamma^{\prime}\right), \gamma\right\rangle$ is a unit
$2 \mathrm{R}(X, \sigma, \tau)$ is a HDVF if $\langle h(\sigma), \tau\rangle$ is a unit
$3 \mathrm{M}(X, \sigma, \gamma)$ is a HDVF if $\langle f(\sigma), \gamma\rangle$ is a unit
$4 \mathrm{~W}(X, \tau, \gamma)$ is a HDVF if $\langle g(\gamma), \tau\rangle$ is a unit
$5 \operatorname{MW}(X, \sigma, \tau)$ is a HDVF if $\langle d h(\sigma), \tau\rangle$ and $\langle h d(\tau), \sigma\rangle$ are units
$\square_{\text {Relation with other methods in computational homology }}$

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

- Introduction
- Definitions and theorems
- Computing a HDVF
- Deforming a HDVF
- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

Computational Homology Applied to Discrete Objects

L The HDVF
Relation with other methods in computational homology

Proposition 3.21

Every DGVF is a HDVF.

Proposition 3.22

Fvery iterated DGV/ ${ }^{4}$ is a HDVF

Proposition 3.23

let K he a $C M I$ cornplex. Then
1 Algorithm 1 performs a partial diagonalization of the boundary matrices of K;
2. Algorithm 1 computes a perfect HDVF whenever \mathcal{R} is a field

Thus, we can compute persistent homology with the HDVF

Proposition 3.21

Every DGVF is a HDVF.

Proposition 3.22

Every iterated DGVF ${ }^{4}$ is a HDVF.

Proposition 3.23
I et K be a $C W$ complex. Then,
1 Algorithm 1 performs a partial diagonalization of the boundary
matrices of K
๑ Δ gorithm 1 computes a perfect HDVF whenever \mathfrak{R} is a field.
Thus, we can compute persistent homology with the HDVF
${ }^{4}$ [Dlotko and Wagner, 2012]

Proposition 3.21

Every DGVF is a HDVF.

Proposition 3.22

Every iterated DGVF ${ }^{4}$ is a HDVF.

Proposition 3.23

Let K be a CW complex. Then,
1 Algorithm 1 performs a partial diagonalization of the boundary matrices of K;
2 Algorithm 1 computes a perfect HDVF whenever \mathfrak{R} is a field.
Thus, we can compute persistent homology with the HDVF

[^0]
Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

- Introduction
- Definitions and theorems
- Computing a HDVF

■ Deforming a HDVF

- Relation with other methods in computational homology
- Conclusion

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

Conclusion:
■ HDVF: combinatorial structure for computing homology - Visually representable - More powerful than DGVF - Cubical comnlexity

Conclusion:
■ HDVF: combinatorial structure for computing homology
■ Visually representable

- More powerful than DGVF - Cubical complexity

Conclusion:
■ HDVF: combinatorial structure for computing homology

- Visually representable
- More powerful than DGVF
- Cubical complexity

Conclusion:
■ HDVF: combinatorial structure for computing homology
■ Visually representable

- More powerful than DGVF
- Cubical complexity

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes - Introduction

- Algorithm
- Results
- Conclusion

4 Measuring Holes

5 Conclusion

We want to compute the Betti numbers of binary volumes

It seems that:

- $\beta_{0}=\#$ connected components
- $\beta_{2}=\#$ bounded connected components of the complement
- β_{1} ?
[Delfinado and Edelsbrunner, 1995], [Dey and Guha, 1998]: 3D simplicial complexes

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

- Introduction
- Algorithm
- Results
- Conclusion

4 Measuring Holes

5 Conclusion

Ingredients

(1) β_{0} is the number of connected components
(2) Duality
(3) Euler-Poincaré formula

Let K be a 3D cubical complex. Consider the graph $G_{0}(K)$

Proposition 4.3
$\beta_{0}(K)=$ number of connected components in $G_{0}(K)$

Ingredient (2)

Proposition 4.4

Let $K \subset L$ be two 3D cubical complexes such that $\beta(L)=(1,0,0,0)$. Then,

$$
\beta_{q}(K)= \begin{cases}\beta_{1}(L-K)+1 & \text { if } q=0 \\ \beta_{q+1}(L-K) & \text { else }\end{cases}
$$

Thus, $\beta_{2}(K)=\beta_{3}(L-K)$

L Computing Betti numbers on 3D cubical complexes

- Algorithm

Ingredient (2)
Let $K \subset L$ be two 3D cubical complexes. Consider the graph $G_{3}(L-K)$

Proposition 4.5
$\beta_{3}(L-K)=$ number of connected components in $G_{3}(L-K)$ minus one.

L Computing Betti numbers on 3D cubical complexes $\left\llcorner_{\text {Algorithm }}\right.$

Ingredient (3)

Euler-Poincaré Formula

$$
\begin{aligned}
\chi(K) & =\left|K_{0}\right|-\left|K_{1}\right|+\left|K_{2}\right|-\left|K_{3}\right| \\
& =\beta_{0}(K)-\beta_{1}(K)+\beta_{2}(K)
\end{aligned}
$$

Thus, $\beta_{1}(K)=\beta_{0}(K)+\beta_{2}(K)-\chi(K)$

Computing the Betti numbers

$1 \beta_{0} \leftarrow$ number of connected components of $G_{0}(K)$
$2 \beta_{2} \leftarrow$ number of connected components of $G_{3}(L-K)-1$
$3 \beta_{1} \leftarrow \beta_{0}+\beta_{2}-\chi(K)$

- Linear time and space complexity
- We propose two versions for implementing this method

Sequential algorithm: BFS, iterative

Recursive algorithm: divide-and-conquer, union-find data set, partial parallelization

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

- Introduction
- Algorithm
- Results
- Conclusion

4 Measuring Holes

5 Conclusion

Comparison against CAPD: :RedHom ${ }^{5}$ library

Size	RedHom	VB-s	VB-r	VB-rp
51^{3}	0.1842	0.0026	0.0026	0.0023
101^{3}	1.268	0.0142	0.0148	0.0091
201^{3}	10.78	0.1309	0.1232	0.0552
301^{3}	40.89	0.4303	0.4176	0.1583
401^{3}	101.26	1.436	0.983	0.3092
501^{3}	-	3.609	1.977	0.5494

Table: Execution time (in seconds) versus the size of the cubical complex.

Space is the problem, not time.

[^1]
Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

- Introduction
- Algorithm
- Results
- Conclusion

4 Measuring Holes

5 Conclusion

Conclusion:
■ Simple algorithm for Betti numbers relying on connected components computation

- Linear time complexity
- Combinatorial and constructive proofs
- Implementation muhlished under GNII GPL v3
- More effective than available algorithms

Conclusion:
■ Simple algorithm for Betti numbers relying on connected components computation

■ Linear time complexity

- Combinatorial and constructive proofs
- Implementation published under GNU GPL v3
- More effective than available algorithms

Conclusion:
■ Simple algorithm for Betti numbers relying on connected components computation

- Linear time complexity
- Combinatorial and constructive proofs
- Implementation published under GNU GPL v3
- More effective than available algorithms

Conclusion:
■ Simple algorithm for Betti numbers relying on connected components computation

- Linear time complexity
- Combinatorial and constructive proofs

■ Implementation published under GNU GPL v3

- More effective than available algorithms

Conclusion:
■ Simple algorithm for Betti numbers relying on connected components computation
■ Linear time complexity

- Combinatorial and constructive proofs

■ Implementation published under GNU GPL v3

- More effective than available algorithms

Computational Homology Applied to Discrete Objects
L Measuring Holes
L Introduction

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

- Introduction
- Definition
- Thickness-breadth balls
- Applications
- Conclusion
- We can know how many holes there are in an object
- We cannot know where or how they are

Computational Homology Applied to Discrete Objects

L Measuring Holes
L Introduction

Size of a hole

The 1st one is bigger than the 2nd one

The 2nd one is thicker than the 1st one

Size of a hole

The 1st one is bigger than the 2nd one

The 2nd one is thicker than the 1st one

Computational Homology Applied to Discrete Objects

L Measuring Holes
L Introduction

Size of a hole

The 1st one is bigger than the 2nd one

The 2nd one is thicker than the 1st one

- Introduction

Representing a hole

Homology

Cohomology

L Introduction

Representing a hole

Homology

Cohomology

L Introduction

Representing a hole

Homology

Cohomology

Representing a hole

Do homology generators really represent holes?

Computational Homology Applied to Discrete Objects
L Measuring Holes
LDefinition

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

- Introduction
- Definition
- Thickness-breadth balls
- Applications
- Conclusion

Signed distance transform

Let O be a discrete object,

$$
s d t_{O}(x)= \begin{cases}-d\left(x, O^{c}\right) & \text { if } x \in O \\ d(x, O) & \text { if } x \notin O\end{cases}
$$

Figure: Sublevel sets of the signed distance form

Persistent homology

Given a filtration F, we can define its set of persistence intervals through its persistent homology groups.

- These intervals tell the lifetime of the holes in the filtration

■ They are represented as a set of points $P D(F)$ in \mathbb{R}^{2}
$\left\llcorner_{\text {Definition }}\right.$

Example

- height: 5
 - $\beta_{0}: 1$
 - $\beta_{1}: 0$
 - $\beta_{2}: 0$

Persistence intervals:
■ Dimension 0:

- Dimension 1 :

■ Dimension 2:
$\left\llcorner_{\text {Definition }}\right.$

Example

■ height: 7

- $\beta_{0}: 1$
- $\beta_{1}: 1$
- $\beta_{2}: 0$

Persistence intervals:
■ Dimension 0:

- Dimension 1:
- Dimension 2 :
$\left\llcorner_{\text {Definition }}\right.$

Example

■ height: 11

- $\beta_{0}: 2$
- $\beta_{1}: 1$
- $\beta_{2}: 0$

Persistence intervals:
■ Dimension 0:

- Dimension 1 :

■ Dimension 2:
$\left\llcorner_{\text {Definition }}\right.$

Example

■ height: 13

- $\beta_{0}: 1$
- $\beta_{1}: 2$
- $\beta_{2}: 0$

Persistence intervals:

- Dimension 0: $(10,13)$
- Dimension 1 :
- Dimension 2:

Computational Homology Applied to Discrete Objects

L Measuring Holes
$\left\llcorner_{\text {Definition }}\right.$

Example

■ height: 17

- $\beta_{0}: 1$
- $\beta_{1}: 2$
- $\beta_{2}: 1$

Persistence intervals:

- Dimension 0: $(10,13)$
- Dimension 1 :

■ Dimension 2:

Computational Homology Applied to Discrete Objects

L Measuring Holes
$\left\llcorner_{\text {Definition }}\right.$
Example

- height:
- $\beta_{0}: 1$
- $\beta_{1}: 2$
- $\beta_{2}: 1$

Persistence intervals:
■ Dimension 0: $(10,13),(0, \infty)$

- Dimension 1: $(7, \infty),(13, \infty)$
- Dimension 2: $(17, \infty)$
θ

Persistent homology with signed distance transform

Persistent homology with signed distance transform

Persistent homology with signed distance transform

Persistent homology with signed distance transform

Computational Homology Applied to Discrete Objects
Measuring Holes
-Definition

Persistent homology with signed distance transform

Computational Homology Applied to Discrete Objects
L Measuring Holes
L Definition

Persistent homology with signed distance transform

Thickness and breadth (Definition 5.1)

Let O be a discrete object and F the filtration defined by the sublevel sets of its signed distance transform. Let $T B(O)=\{(-x, y) \in P D(F) \mid x \leq 0, y \geq 0\}$. Its intervals are the thickness-breadth pairs of O

- There is a thickness-breadth pair (t, b) for each hole of O
- t is the thickness of the hole and b, its breadth

Thickness-breadth diagram

Thickness-breadth pairs can be represented like persistence diagrams

Computational Homology Applied to Discrete Objects

L Measuring Holes
$\left\llcorner_{\text {Definition }}\right.$

Thickness-breadth diagram

Thickness-breadth pairs can be represented like persistence diagrams

Thickness-breadth diagram

Thickness-breadth pairs can be represented like persistence diagrams

Theorem 5.2

Let X and Y be two 3D discrete objects. Let us call

$$
\delta=d_{H}(X, Y)+d_{H}\left(\mathbb{Z}^{3} \backslash X, \mathbb{Z}^{3} \backslash Y\right)+2 \sqrt{3}
$$

Thus, for every thickness-breadth pair $p_{X}=(x, y)$ of X such that $x, y>\delta$, there exists another thickness-breadth pair $p_{Y}=\left(x^{\prime}, y^{\prime}\right)$ of Y such that

$$
\left\|p_{X}-p_{Y}\right\|_{\infty} \leq \delta
$$

Computational Homology Applied to Discrete Objects
L Measuring Holes
-Thickness-breadth balls

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

- Introduction
- Definition
- Thickness-breadth balls
- Applications
- Conclusion

Thickness and breadth ball

Let be (t, b) a TB-pair and (σ, τ) its pair of cells

- The thickness ball of (t, b) is the ball of radius t centered at σ
- The breadth ball of (t, b) is the ball of radius b centered at τ

Thickness and breadth ball

Let be (t, b) a TB-pair and (σ, τ) its pair of cells

- The thickness ball of (t, b) is the ball of radius t centered at σ
- The breadth ball of (t, b) is the ball of radius b centered at τ

Thickness and breadth ball

Let be (t, b) a TB-pair and (σ, τ) its pair of cells

- The thickness ball of (t, b) is the ball of radius t centered at σ
- The breadth ball of (t, b) is the ball of radius b centered at τ

Thickness and breadth ball

Let be (t, b) a TB-pair and (σ, τ) its pair of cells

- The thickness ball of (t, b) is the ball of radius t centered at σ
- The breadth ball of (t, b) is the ball of radius b centered at τ

LThickness-breadth balls

- Breadth ball
- Homology generator

- Thickness-breadth balls
- Breadth ball

■ Homology generator

-Thickness-breadth balls

- Breadth ball
- Homology generator
- Close hole

Computational Homology Applied to Discrete Objects

L Measuring Holes
-Thickness-breadth balls

- Thickness ball
- Cohomology generator
- Open hole

Computational Homology Applied to Discrete Objects
L Measuring Holes
-Applications

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

- Introduction
- Definition
- Thickness-breadth balls
- Applications
- Conclusion
$\left\llcorner_{\text {Applications }}\right.$

(co)homology generators

"A good homology generator should be close to a breadth ball"

Algorithms

- Algorithm 6: TB pair \mapsto homology generator
- Algorithm 7: TB pair \mapsto cohomology generator

Computational Homology Applied to Discrete Objects

L Measuring Holes
-Applications

(co)homology generators

Algorithm 6 (homology generator)

■ Discrete object

Computational Homology Applied to Discrete Objects

L Measuring Holes
$\left\llcorner_{\text {Applications }}\right.$

(co)homology generators

Algorithm 6 (homology generator)

- Breadth balls

Computational Homology Applied to Discrete Objects

LMeasuring Holes

- Applications

(co)homology generators

Algorithm 6 (homology generator)

- Discrete object
- Breadth halls
- Filtration

Computational Homology Applied to Discrete Objects

L Measuring Holes

- Applications

(co)homology generators

Algorithm 6 (homology generator)

- Discrete object
- Rreadth halls
- Filtration

Computational Homology Applied to Discrete Objects

L Measuring Holes
-Applications

(co)homology generators

Algorithm 6 (homology generator)

- Discrete object

- Filtration

Computational Homology Applied to Discrete Objects

L Measuring Holes
-Applications

(co)homology generators

Algorithm 6 (homology generator)

- Discrete object

- Breadth halls

- Filtration

Computational Homology Applied to Discrete Objects

LMeasuring Holes
-Applications

(co)homology generators

Algorithm 6 (homology generator)

- Discrete object

- Breadth halls

- Filtration

Computational Homology Applied to Discrete Objects

L Measuring Holes

- Applications

(co)homology generators

Algorithm 6 (homology generator)

- Discrete object

- Breadth halls

- Filtration

(co)homology generators

Algorithm 6 (homology generator)

- Filtration

A similar (dual) approach produces cohomology generators!

Computational Homology Applied to Discrete Objects

ᄂ Measuring Holes
$\left\llcorner_{\text {Applications }}\right.$

(co)homology generators - examples

Computational Homology Applied to Discrete Objects

L Measuring Holes
$\left\llcorner_{\text {Applications }}\right.$

(co)homology generators - examples

- Applications

Opening and closing holes

- Thickness balls (and cohomology generators) seem to tell where to break a hole
- Breadth balls (and homology generators) seem to tell where to fill a hole
$\left\llcorner_{\text {Applications }}\right.$

Opening and closing holes

- Thickness balls (and cohomology generators) seem to tell where to break a hole
- Breadth balls (and homology generators) seem to tell where to fill a hole

Opening and closing holes

K cubical complex, x cycle, S set of cubes

Opening the cycle x

S opens the cycle x if
$1 K-S$ is a cubical complex
$2[x] \notin \operatorname{im}(\iota)$
$3 \iota: H(K-S) \rightarrow H(K)$ is injective

Opening and closing holes

K cubical complex, x cycle, S set of cubes
Closing the cycle x
S closes the cycle x if
$1 K \cup S$ is a cubical complex
$2[x] \in \operatorname{ker}(\iota)$
$3 \iota: H(K) \rightarrow H(K \cup S)$ is surjective

Opening and closing holes

Algorithms

- Algorithm 8: TB pair \mapsto hole opening
- Algorithm 9: TB pair \mapsto hole closing without surjectivity condition

Computational Homology Applied to Discrete Objects

L Measuring Holes
$\left\llcorner_{\text {Applications }}\right.$

Opening and closing holes - examples

Computational Homology Applied to Discrete Objects

L Measuring Holes
-Applications

Opening and closing holes - examples

Computational Homology Applied to Discrete Objects

L Measuring Holes
LApplications

Opening and closing holes - examples

Computational Homology Applied to Discrete Objects
L Measuring Holes
Conclusion

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

- Introduction
- Definition
- Thickness-breadth balls
- Applications
- Conclusion

Computational Homology Applied to Discrete Objects

L Measuring Holes
Conclusion

Conclusion:

- Topological-geometrical signature of objects
- Robust to noise \Rightarrow suitable for real applications - Alternative visualization of holes - Heuristics for small homology and cohomology generators - Heuristics for opening and closing holes

Conclusion:

- Topological-geometrical signature of objects

■ Robust to noise \Rightarrow suitable for real applications

- Alternative visualization of holes
- Heuristics for small homology and cohomology generators
- Heuristics for opening and closing holes

Conclusion:

- Topological-geometrical signature of objects

■ Robust to noise \Rightarrow suitable for real applications

- Alternative visualization of holes
- Heuristics for small homology and cohomology generators - Heuristics for opening and closing holes

Conclusion:

- Topological-geometrical signature of objects
- Robust to noise \Rightarrow suitable for real applications
- Alternative visualization of holes

■ Heuristics for small homology and cohomology generators

- Heuristics for opening and closing holes

Sections

1 Introduction and Preliminaries

2 The Homological Discrete Vector Field

3 Fast Computation of Betti Numbers on 3D Cubical Complexes

4 Measuring Holes

5 Conclusion

Context

Contributions

```
Discrete object
    \downarrow
Cubical complex
    |
Homology
\begin{tabular}{|l}
\(\longrightarrow\) Reduction \\
\(\longrightarrow\) DGVF \\
\(\longrightarrow\) Persistent homology
\end{tabular}
```


Context

Contributions

Discrete object

 Cubical complex

Homology

Context

Contributions

Context

Contributions

Discrete object

Cubical complex

Homology

ViteBetti

Thickness - breadth

HDVF

Perspectives:
1 HDVF

- Every CW complex admits a perfect HDVF?
- Use the operations for comparing HDVFs
- Compute zigzag persistent homology with HDVFs

2 ViteBetti

- Apply it directly on the discrete object
- Try component labeling algorithms from cligital geometry
- Process complex by slices

33 Thickness and breadth

- To find real world applications
- To formalize the geometric intuition
- Algorithm for closing holes
- Simplicial complexes

Perspectives:
1 HDVF

- Every CW complex admits a perfect HDVF?
- Use the operations for comparing HDVFs
- Compute zigzag persistent homology with HDVFs

2 ViteBetti

- Apply it directly on the discrete object
- Try component labeling algorithms from digital geometry context
- Process complex by slices
- To find real world applications
- To formalize the geometric intuition
- Algorithm for closing holes
- Simplicial complexes

Perspectives:
1 HDVF

- Every CW complex admits a perfect HDVF?
- Use the operations for comparing HDVFs
- Compute zigzag persistent homology with HDVFs

2 ViteBetti

- Apply it directly on the discrete object
- Try component labeling algorithms from digital geometry context
- Process complex by slices

3 Thickness and breadth

- To find real world applications
- To formalize the geometric intuition
- Algorithm for closing holes
- Simplicial complexes

Perspectives:
1 HDVF

- Every CW complex admits a perfect HDVF?
- Use the operations for comparing HDVFs
- Compute zigzag persistent homology with HDVFs

2 ViteBetti

- Apply it directly on the discrete object
- Try component labeling algorithms from digital geometry context
- Process complex by slices

3 Thickness and breadth

- To find real world applications
- To formalize the geometric intuition
- Algorithm for closing holes
- Simplicial complexes

Thanks
Merci
Grazie
Gracias

[^0]: ${ }^{4}$ [Dlotko and Wagner, 2012]

[^1]: ${ }^{5}$ [Juda and Mrozek, 2014]

