
Journées du Groupe de Travail en Modélisation Géométrique 2018, Aix-en-Provence

Rasterized 3D Combinatorial Maps

Aldo Gonzalez-Lorenzo 1, Guillaume Damiand 1, Florent Dupont 1, and Jarek Rossignac 2

1Univ Lyon, CNRS, LIRIS UMR5205, F-69622, France
2School of Interative Computing, Georgia Institute of Technology, Atlanta, USA

Résumé
Les cartes combinatoires sont une structure de données pour représenter la topologie d’objets subdivisés en cel-
lules. Elles permettent de décrire et manipuler des objets sans aucune contrainte sur le type de cellules, mais
elles sont coûteuses en mémoire. Le rasterized planar face complex (rPFC) est une structure de données compacte
récemment introduite qui permet d’encoder une carte combinatoire 2D dans une image tout en conservant sa
topologie.
Dans cet article nous explorons comment étendre cette structure de données en trois dimensions. Nous redéfinis-
sons le rPFC sous un nouveau formalisme qui permet cette généralisation et nous discutons plusieurs implémen-
tations fournissant différents compromis temps/espace mémoire.

Mots-clés : Volumic mesh, Combinatorial maps, Com-
pact representation, Topology preserving rasterization

1. Introduction

While there exist compact and efficient data structures for
surface, tetrahedral and hexahedral meshes [Wei85, Män88,
dB00, GS85, Wei88, Ros01, DL87, Bri89, DRE∗15], repre-
senting a volumetric object subdivided in volumes with ar-
bitrary topology remains a challenging task.

The type of objects we wish to treat is a 3D oriented
quasi-manifold, that is a subdivision of the 3D space in vol-
umes (or polyhedra) that are glued by their faces. An explicit
way of representing such object would be to index the ver-
tices (pointing to their coordinates), the facets (or polygons),
which are ordered sequences of vertices, and the volumes,
which are (unordered) sequences of facets. The incidence re-
lation between the cells is implicitly described in this struc-
ture, but its computation has linear complexity in the number
of elements in the object, so we should explicitly represent
at least some parts of it. If the number of faces and cofaces
is not fixed, the overhead in space memory for this explicit
representation can become enormous.

A different approach for representing a 3D quasi-manifold
is the 3D combinatorial map [DL14]. Instead of distinguish-
ing between the cells and their incidence relations, both con-
cepts are merged using darts and three operators βi (i ∈
[1,3]) between darts. Though this approach may seem in-

tricate at first, it actually reduces the representation of the
cells and their incidence relation by encoding them as three
arrays of integers (plus sometimes one more array for map-
ping each dart to its vertex coordinates). The weakness of
this approach is the large number of darts compared to the
number of cells and its resulting high memory cost, which
prevents us from processing huge models.

The motivation for this work is to deal with large and
topologically complex 3D models. In order to conceive a
compact representation, we encode a 3D combinatorial map
as a 3D picture (a grid of voxels), where each voxel contains
a piece of information that allows the traversal of its darts.
This was achieved for the two-dimensional case in a recent
work by Damiand and Rossignac [DR17] with the so-called
rasterized Planar Face Complex (rPFC). This data structure
encodes a 2D combinatorial map (or equivalently, a half-
edge data structure) in an image, where each pixel contains
a word using 6 different symbols that encodes the intersec-
tions of the 2-map with the boundary of the pixel.

Intuitively, if we intersect the neighborhood of a vertex
in a planar graph with a circumference (a square, in our
case), each edge becomes a vertex and each face becomes
an edge. We can retrieve the original topology of the neigh-
borhood from this information, and the position of the ver-
tex is bounded by the area of the circumference. The rPFC is
based on this idea, but it also supports several vertices in the
same pixel (as long as they are not connected by an edge)
and edges that do not have an endpoint inside the pixel.

2 Gonzalez-Lorenzo, Damiand, Dupont, and Rossignac / Rasterized 3D Combinatorial Maps

This paper presents our current work on extending the
rPFC to three dimensions, which we call rasterized 3D com-
binatorial map, or 3-rmap for short. The main idea can be
seen as follows: we intersect the neighborhood of each ver-
tex with the boundary of a voxel, which is a 2-manifold and
can be encoded with a rPFC. We show that we can achieve
this by generalizing the concepts already present in the rPFC
except for two points: (1) there is one extra condition on
the intersection between the 3D combinatorial map and the
voxel grid; and (2) there are two new symbols in the words.
Moreover, these conditions are hard to satisfy in practice (for
the 3D models that we have tested), so it is necessary to con-
sider a hierarchical voxel grid instead of a regular grid.

The paper is organized as follows. In Section 2, we review
the definition of the 3D combinatorial map and the rasterized
planar face complex. In Section 3, we introduce the raster-
ized 3D combinatorial map. In Section 4, we discuss four
implementations with different trade-offs between memory
space and execution time and illustrate them with two exam-
ples. Section 5 concludes.

2. Preliminaries

2.1. 3D combinatorial map

A three-dimensional combinatorial map (or 3-map, for
short) is a tuple (D,β1,β2,β3) such that (1) D is a finite
set of darts; (2) β1 is a permutation on D; (3) β2 and β3 are
involutions on D; and (4) β1 ◦ β3 is an involution. It rep-
resents a subdivision of a closed orientable 3-dimensional
space. We usually denote β0 := (β1)

−1.

Each dart d ∈ D corresponds to a sequence of incident
cells (v,e,f,c), where v is a vertex (or 0-cell), e is an edge
(1-cell), f is a face (2-cell) and c is a volume (3-cell). There
are much more darts than cells in a 3-map, but this repre-
sentation encodes the boundary and coboundary relation be-
tween the cells and can be used for cells of arbitrary topology
(number of faces and cofaces).

A dart can be represented as an arrow over its edge, with
the source being its vertex. The face of the dart is unequiv-
ocally determined by the orientation of the faces of the vol-
ume. Figure 1(left) illustrates a tetrahedron and 6 of its 12
darts.

The operator β1 maps a dart to the next dart in the same
face and volume, following its orientation. Hence, it only
changes its vertex and its edge. The operator β2 switches the
face to the other face of the same volume that is incident to
the edge. It also switches the vertex to respect the orienta-
tion of the face. Finally, β3 switches the volume incident to
the face and the vertex. Thus, each βi only affects the vertex
and the i-cell of the dart. The three operators are illustrated
in Figure 1(right).

A 3-map is a topological description, without any infor-
mation about the embedding of the cells. In this paper, we

Figure 1: Left: a tetrahedron (black) and six of its darts
(red). Each dart has been moved inside its face for better vis-
ibility. Right: a 3-map with two volumes (separated to better
see the different darts). The darts represented are d (red),
β1(d) (blue), β2(d) (green) and β3(d) (orange).

assume that the vertices are assigned coordinates in R3 and
the cells are linear interpolations of its vertices. We assume
that the cells only intersect themselves along lower dimen-
sion cells.

2.2. Rasterized planar face complex

The rasterized Planar Face Complex (rPFC) is a compact
representation for 2D combinatorial maps (or equivalently,
half-edge data structure or doubly connected edge list) in-
troduced by Damiand and Rossignac in [DR17]. The main
idea is to intersect the 2-map with a grid of pixels and derive
a sequence of symbols for each pixel that allows the recon-
struction of its topology, while the location of the vertices is
bounded by the size of the pixels.

Given a 2-map, we consider a regular grid of pixels. We
assume that (1) there is no intersection between the edges
(resp., vertices) of the 2-map and the vertices (resp., edges)
of the pixels and (2) no edge of the 2-map is contained in a
single pixel.

Given a pixel P = (i, j), we denote each intersection of
an edge of the 2-map with any of its four faces a crossing.
Each crossing corresponds to an edge having a vertex inside
the pixel (type 0) or not (type 1). In the first case, there may
be other crossings related to the same vertex inside the pixel.
In the second case, there is exactly one other crossing for the
same edge. Note that there is a bijection between the darts of
the 2-map and the crossings of type 0 in the rPFC.

We sort the crossings following the clock-wise orientation
of the boundary of the pixel starting from the bottom-left
vertex of the pixel and we assign a symbol to each crossing
c in the following way:

• Let c be of type 0. If it is the first crossing related to the
vertex, its symbol is ‘(’. If it is the last, it is ‘)’. Other-
wise, its is ‘Y’. If it is the only edge incident to that vertex,
its symbol is ‘=’.

• Let c be of type 1. Its symbol is ‘[’ if it is the first cross-
ings, or ‘]’ if it is the second one.

Hence, we define the pixel-word associated to the pixel P as

Gonzalez-Lorenzo, Damiand, Dupont, and Rossignac / Rasterized 3D Combinatorial Maps 3

Figure 2: Three consecutive pixels with words
“(++YY+)+”, “[(+Y+)Y](+)+” and “(YY+=+)++”.

the concatenation of the symbols of its crossings, with four
additional symbols ‘+’ to separate each edge of the pixel.
Note that, since the underlying graph is planar, the pixel-
word is well parenthesized. We can identify a crossing in a
pixel by its pixel P and its position i in its pixel-word. To
illustrate this, Figure 2 depicts three pixels with their respec-
tive pixel-words. The crossings encoding the edges of the
triangular face in the middle are (1,1;4), (1,2;6) and (1,3;2).

There are three basic operations defined on the rPFC. Let
(P,i) be a crossing. next(P,i) returns the previous cross-
ing related to the same vertex. Similarly, previous(P,i) re-
turns the next crossing related to the same vertex. Finally,
convert(P,i) returns the same crossing in its adjacent pixel.
By combining these three operations, we can obtain the op-
erators β1 and β2 of the 2-map.

Note that we can use a single closing symbol instead of
two, and then figure out the type of the crossing by examin-
ing the pixel-word. In all, the rPFC consists of a matrix of
(usually short) words using only 6 symbols, which can be
encoded using an entropy coding (such as a Huffman or an
arithmetic coding) for compactness.

We refer the reader to the original work [DR17] for further
details, notably on the algorithms for the functions next,
previous and convert.

3. Definitions for the Rasterized 3D Combinatorial Map

Consider the subdivided object in Figure 3(left). By inter-
secting it with the boundary of a voxel placed at its center,
we obtain a planar graph embedded in the boundary of the
voxel, depicted in Figure 3(right). It has 5 vertices, 8 edges
and 5 faces. Note that each of these i-cells corresponds to an
(i+1)-cell of the subdivided object. This graph can be rep-
resented as a 2D combinatorial map and even as a rPFC. For
instance, the pixel-word of the front face is “(+Y+)++”. The
crossing in the top edge corresponds to the dart d= (v,e,f),
where e is the edge making the crossing and v is the ver-
tex contained in the pixel. Its face f can only be the face
on the right side of e. Moreover, the same crossing (in this
voxel) corresponds to a dart in the subdivided object. The
i-cell (i≥ 1) of the dart is the cell identified with the (i−1)-

Figure 3: A subdivided object (left) and the 2-map represen-
tation of its intersection with a voxel (right). The darts cor-
responding to the second crossing of the word of the front
pixel are shown in red.

Figure 4: A triangle having a non-connected intersection
with the boundary of a voxel. If such a configuration exists
between a 3-map and a voxel grid, then condition C3 is not
satisfied and they are not in general position.

cell of the dart d in the 2-map. Its vertex is the vertex of the
edge contained in the voxel.

It is possible to implement the operators βi of the 3-map
by traversing the crossings of each voxel as in a rPFC, and
by moving along adjacent voxels (similarly to the function
convert in the rPFC). We formally describe the 3-rmap and
its operations in this section.

3.1. Voxel grid

Let [x1,xn]× [y1,yn]× [z1,zn] be a voxel grid. Each voxel
contains six faces (or pixels), and each face contains four
edges. We say that a 3-map is in general position with re-
spect to a voxel grid if it satisfies the following conditions:

C1 A 0-/1-/2-cell does not intersect a face/edge/vertex of
the voxel grid.

C2 A voxel does not contain any 1-cell in its interior.
C3 The intersection of a 2-cell with the boundary of a voxel

is empty or connected.

Conditions C1 and C2 are plain generalizations of the
conditions of a rPFC. Condition C3 is novel and the anal-
ogous condition in 2D (the intersection of a face with the
boundary of a pixel is empty or connected) is not necessary.
Figure 4 shows an example in which condition C3 is not sat-
isfied.

Note that a voxel grid can be interpreted as a 3-map, which

4 Gonzalez-Lorenzo, Damiand, Dupont, and Rossignac / Rasterized 3D Combinatorial Maps

Figure 5: Different intersections of a 2-cell with the bound-
ary of a voxel. Top: crossings of type 0 and 1 (in blue). Bot-
tom: a pair of crossings of type 2.

we call supporting 3-map of the 3-rmap. Each dart is of the
form (v′,e′,f ′, c′), where v′ is a vertex incident to an edge
e′, which belongs to a pixel f ′ in the boundary of a voxel c′.
It is easy to define the operators βi of the supporting 3-map
implicitly, so that they do not need to be build in memory.

3.2. Crossings and words

Intuitively, a crossing in a 3-rmap is the intersection of a 2-
cell with a dart of the voxel grid. It is the intersection of a
2-cell f with the edge e′ of a pixel f ′ of a voxel c′ (that is,
e′ < f ′ < c′). We can classify a crossing in three classes:

• A crossing is of type 0 if the 2-cell f has an incident 1-cell
e < f that intersects the pixel f ′ and an incident 0-cell v
contained in the voxel c′. It is related to the crossings of
the other 2-cells incident to e that intersect an edge of the
same pixel f ′.
• A crossing is of type 1 if the 2-cell f has an incident 1-cell
e < f that intersects the pixel f ′, but it does not have an
incident 0-cell v in the voxel c′. Similarly, it is related to
the crossings of the other 2-cells incident to e that inter-
sect an edge of the pixel f ′.
• A crossing is of type 2 if the 2-cell f does not have an

incident 1-cell e < f intersecting the pixel f ′. It is related
to the crossing of the 2-cell f with another edge of the
pixel f ′.

These three types of crossings are illustrated in Figure 5.

Like in the rPFC, we sort the crossings in the edges of
each pixel following any fixed order on the edges of each
face of the voxels. Then, the symbol of a crossing c depends
on its type:

• Type 0. If it is the first crossing related to the 1-cell, its
symbol is ‘(’. If it is the last, it is ‘)’. Otherwise, its is ‘Y’.
If it is the only 2-cell incident to that 1-cell, its symbol is
‘=’.
• Type 1. If it is the first crossing related to the 1-cell, its

symbol is ‘{’. If it is the last, it is ‘}’. Otherwise, its is ‘Y’.
If it is the only 2-cell incident to that 1-cell, its symbol is
‘#’.

• Type 2. Its symbol is ‘[’ if it is the first crossings, or ‘]’
if it is the second one.

Hence, we build an edge-word by joining the symbols of
the crossings in each edge and adding the symbol ‘+’ at the
end. Hence, we can identify a crossing by its edge e′, its
pixel f ′, its voxel c′ and its position i in its edge-word.

A pixel-word is the concatenation of four edge-words.
Note that, like in the rPFC, we can simplify the three closing
symbols to a unique symbol.

3.3. Rasterized darts and operators βi

Let d = (v,e,f,c) be a dart of the 3-map. We define its as-
sociated rasterized dart as the pair

ρ(d) = (d′, i) = (v′,e′,f ′, c′; i) (1)

where d′ is a dart of the supporting 3-map and i is an inte-
ger. Actually, c′ is the voxel that contains the vertex v; f ′

is the pixel of c′ that contains the intersection of e with the
boundary of c′; and e′ is the edge of f ′ that contains the in-
tersection of f with the boundary of f ′. The vertex of d′ is
derived from the other cells. Lastly, the index i is the posi-
tion of the crossing of f in the edge-word of d′.

A rasterized dart is a crossing of type 0 in the 3-rmap. We
use it to link the operators in the 3-rmap with the operators
in the 3-map.

We now introduce the operators of the 3-rmap for travers-
ing its rasterized darts. Let (d′, i) be a crossing (of any type).
The edge-word associated to d′ is w(d′), and its length is
|w(d′)|. We define:

conv[3](d′, i) = (β3(d
′), |w(d′)|− i)

conv[2](d′, i) = (β2(d
′), |w(d′)|− i)

where β3 and β2 are the operators on the supporting 3-map
(see Section 2.1 for their definition). conv[3] maps a cross-
ing to the crossing made by the same intersection, but in the
opposite voxel. conv[2] is like the function convert in the
rPFC, since it maps a crossing with its corresponding cross-
ing in the opposite pixel.

Also, we define the functions type[0] and type[1] that re-
turn true iff a crossing is of type 0 or 1, respectively. This
can be computed by examining its pixel-word.

We now introduce the following notation. Let (f1,f2,f3)
be a triplet of functions, then F (x) := (f1,f2,f3)(x) is com-
puted as follows:
y← f1(x);
if(f2(y)) return F (f3(y));
else return y;

Gonzalez-Lorenzo, Damiand, Dupont, and Rossignac / Rasterized 3D Combinatorial Maps 5

Now we can define the following operators

β3[3] = (conv[3], type[0],β2[2])

β2[3] = β1[2]◦β2[2]◦β3[3]

β1[3] = β2[2]◦β3[3]

β0[3] = β3[3]◦β2[2]

β2[2] = (conv[2], type[1],next)

β1[2] = next◦β2[2]

β0[2] = β2[2]◦previous

The operators βi[2] correspond to applying βi in the 2-
map on the boundary of each voxel, and thus they generalize
the operators of a rPFC. conv[2] is used for moving between
pixels of the same voxel. β2[2] is recursive to skip crossings
of type 2 which do not correspond with darts in the 2-map,
and it is used by β1[2] and β0[2].

All the operators βi[3] call the operators βi[2]. conv[3]
allows us to move from one voxel to its adjacent voxel (along
the face of the crossing). β3[3] implements the operator β3
in the 3-map, and it skips the crossings of type 1.

We can prove that βi[3] ◦ρ = ρ ◦βi. This means that we
can encode a 3-map (in general position) with a 3-rmap with-
out loss of information.

3.4. A voxel grid is not enough

Given a 3-map, it is easy to find a voxel grid that satisfies
conditions C1 and C2. C1 is usually satisfied, and if not,
it suffices to translate the voxel grid by an arbitrarily small
vector. For C2, it suffices to choose a sufficiently small grid
size.

Surprisingly, C3 is much harder to satisfy. Our experi-
ments show that decreasing the grid size does not guarantee
that we find a voxel grid in general position. Hence, it is nec-
essary to consider a more elaborate supporting 3-map.

The most simple solution seems to be a hierarchical voxel
grid, where each voxel, pixel and edge can be recursively
subdivided into 8 voxels, 4 pixels and 2 edges, respectively.
Starting from a fixed voxel grid, we can prove that by recur-
sively subdividing the voxels that do not satisfy C2 or C3,
we eventually obtain a voxel grid in regular position in a fi-
nite number of steps. Then, we subdivide each face and edge
so that the cells of the supporting 3-map are topologically
coherent, that is they only intersect themselves along cells
of lower dimension.

This has two impacts on the previous exposition of the
3-rmap in Section 3. First, the crossings (and thus the raster-
ized darts) must explicitly tell the sub-voxel, sub-pixel and
sub-edge. This can be done using a Morton code. Second, the
traversal of the supporting 3-map in conv[3] and conv[2] is
a bit more intricate because we must know the structure of
the hierarchical voxel grid.

In practice, we can avoid subdividing the edges by altering

the definition of conv[2]. In a nutshell, we need to inspect
the length of some neighboring edge-words to compute the
index of the crossing.

A relevant advantage of using a hierarchical voxel grid is
that we can adapt the detail of the 3-rmap to that of the ob-
ject. This can avoid having many empty voxels, which saves
memory space, and also having one edge intersecting many
voxels, which reduces the execution time for traversing the
rasterized darts.

4. Compact Implementations

In order to navigate through the rasterized darts of the 3-
rmap, we need fast access to the symbol of any crossing and
to the structure of the hierarchical voxel grid. Following the
previous section, a crossing is of the form (e,p,cp,v,cv; i)
where v ∈ N3 are the coordinates of the (not-subdivided)
voxel in the regular voxel grid, cv ∈ [0,7]∗ is the Morton
code encoding the subdivided voxel, p ∈ [0,5] is the face
of the voxel, cp ∈ [0,3]∗ is the Morton code of the pixel,
e ∈ [0,3] is the edge of the pixel and i is the position of the
crossing in its edge-word.

We recall that the voxel-words are made of 8 different
symbols (cf. Section 3.2), so we can encode each symbol
with 3 bits.

We use two compact constant-access containers. The
fixed-length container is a vector of sequences of bits, which
is encoded in an array of bits plus its number of elements and
the size of the entries. The variable-length container needs an
extra vector with the position of each entry.

In the rest of this section we describe four strategies for
compact representations of the 3-rmap with different trade-
offs between memory space and time complexity for queries
in its structure, and we compare them with two 3D models.

4.1. V1: Explicit structure

According to the structure of a crossing in a hierarchical
voxel grid, it is clear that the edge-words can be stored in a
3D array of octrees of arrays of quadtrees of arrays of words.

A quadtree (or octree) can be encoded in a vector in the
following way: each entry corresponds to a node of the
quadtree following the breadth-first order. It contains a bit
to tell if it is an internal node or a leaf, and the index in the
vector of its first child (divided by four), or the key of the
leaf.

Then, all the edge-words can be encoded in a single fixed-
length vector. Note that the size of this structure is influenced
by the number of edge-words and the length of the longest
edge-word.

4.2. V2: Octree and dictionary of voxel-words

We can encode a quadtree of pixel-words in a single super-
pixel-word: traverse the subdivided pixels following the

6 Gonzalez-Lorenzo, Damiand, Dupont, and Rossignac / Rasterized 3D Combinatorial Maps

depth-first order and put a special symbol ‘p’ for the inter-
nal nodes, or a pixel-word for the leaves. Then, we define a
voxel-word as the concatenation of its six super-pixel-words.

A 3-rmap contains as many voxel-words as voxels there
are in the hierarchical voxel grid, and many of them usually
coincide. Our second implementation consists of a dictio-
nary of voxel-words and an octree. All the different voxel-
words are stored in a vector. To save up memory space, we
encode them with a Huffman code [CLRS09, §16.3]. Infre-
quent voxel-words have longer codes, so we implement the
dictionary of voxel-words in a variable-length vector. We im-
plement the octree in a fixed-length vector, where each leaf
contains the index of its voxel-word.

This implementation is more compact than V1 if there
are many repeated voxel-words, whereas the access to a
given edge-word has linear-time complexity in the size of
its voxel-word.

4.3. V3: Octree and dictionary of voxel-words with
encoded pixel-words

The previous implementation can be extended a bit further.
The number of different pixel-words in the voxel-words of
the dictionary of V2 is relatively small, and the pixel-words
appear with varying frequencies. Thus, we can encode the
pixel-words (and the one-symbol word ‘p’) with a Huff-
man code to save memory space for the dictionary of voxel-
words.

The binary tree to decode the Huffman code is stored in a
variable-length vector. Then, each voxel-word is a sequence
of bits (the concatenation of the codes of its pixel-words).
The dictionary of voxel-words is implemented in a variable-
length vector.

This implementation is more compact than V2 if the num-
ber of different pixel-words is small enough compared to
their average length.

4.4. V4: Only one word

We can define super-voxel-words in a similar way as for
the super-pixel-words, by adding yet another symbol ‘v’ for
subdivided voxels. Hence, we can write all the edge-words
in a single word (the concatenation of all the super-voxel-
words in the raster order) and compress it with a Huffman
code.

This implementation can be advantageous if the entropy
of the word is small enough. However, the access to the sym-
bol of a crossing is linear in the size of the word.

4.5. Memory comparison

We illustrate the storage cost of each implementation by esti-
mating them for the two volumic meshes in Figure 6: HOUSE

and BUILDING. The former has 384 vertices, 1470 edges,
112 faces and 47 volumes. The latter is significantly larger,
since it has 2628 vertices, 10226 edges, 7814 faces and 298

Figure 6: The two volumic meshes considered for the exper-
iments: HOUSE and BUILDING.

V1 V2 V3 V4
HOUSE 24444 779 691 1423
BUILDING 750791 21324 20499 36263

Table 1: Memory space (in kB) of each implementation for
the two models.

volumes. The results are shown in Table 1. An early conclu-
sion is that the most compact implementation is V3. We now
discuss our results in more detail.

The 3-rmap of HOUSE was computed from an initial voxel
grid with only one voxel. Its edge-words are very short, hav-
ing at most three symbols.

The fixed-length vector of V1 has 8.5 million entries, with
28% of them encoding indices of the vector and the rest,
edge-words. Hence, we need more space for storing an in-
dex (24 bits) than an edge-word (9 bits), so we waste 15 bits
of memory for each edge-word.

The fixed-length vector of V2 that encodes the octree
of voxels only contains 290865 entries (29 times less than
V1), while the dictionary has 6992 voxel-words. There are
254507 voxel-words in the 3-rmap (with repetitions), with
lengths from 24 to 1558 symbols. There is still a small
gap between the indices for the internal nodes of the oc-
tree (16 bits) and the indices for the dictionary (13 bits). The
size of the dictionary is 161.7 kB, that is 20.7% of the to-
tal. Note that other (less compact) possibilities for encoding
the dictionary of voxel-words are: fixed-length vector with-
out coding (6583 kB), variable-length vector without cod-
ing (435 kB) and fixed-length vector with Huffman coding
(1896 kB).

The dictionary of voxel-words together with the binary

Gonzalez-Lorenzo, Damiand, Dupont, and Rossignac / Rasterized 3D Combinatorial Maps 7

tree for the Huffman code in V3 occupy 72.2 kB + 1 kB
(55% less then V2). There are 92 different pixel-words with
lengths ranging from 4 to 10 symbols.

The word in V4 has 8.9 million symbols with an entropy
of 0.79 bits/symbol. It occupies 1423 kB (against 4455 kB
without Huffman encoding).

The results on BUILDING are similar. The only difference
with respect to HOUSE is that the dictionary of voxel-words
in V2 involves only 6.6% of the total memory space, and
thus the gain of V3 is less important.

V1 offers constant-time access to the symbol of any cross-
ing. On the other hand, V4 contains the same information
without the explicit structure of the hierarchical voxel grid,
so it has linear-time access to the symbols. Thus, both ver-
sions can be seen as the extrema of the trade-off between
memory space and time for a 3-rmap. Interestingly, both V2
and V3 propose an intermediate time complexity, while their
memory space is inferior to that of V4 thanks to the indexing
of the voxel-words.

5. Conclusion

This work shows that it is possible to extend the rasterized
planar face complex data structure to 3D, and probably to
higher dimensions. The immediate advantage of this repre-
sentation of subdivided objects is that it partitions the object
into blocks of information that can be streamed during its
traversal.

The two differences with respect to the rasterized planar
face complex are:

1. We need two more symbols for the edge-words.
2. We need to work on a hierarchical voxel grid, where each

voxel can be recursively divided into 8 sub-voxels, and
each pixel (voxel face) can be recursively divided into 4
sub-pixels.

In a hierarchical voxel grid, we have to explicitly repre-
sent its structure to apply the functions conv[3] and conv[2]
for navigating through the voxels and pixels. However, this
overhead in memory is usually canceled out by the reduced
number of empty voxel-words.

We plan to reduce the subdivision of the voxels by adapt-
ing the refinement scheme to each case. Instead of always
dividing a voxel into eight identical sub-voxels, we can set
different sizes to avoid later subdivisions in its sub-voxels.

We also intend to validate our approach with a larger data
set and compare the time complexity of the different imple-
mentations. A later perspective is to generalize this work to
any dimension.

Références

[Bri89] BRISSON E.: Representing geometric structures
in d dimensions: topology and order. In Proc. of ACM

Symposium Computational Geometry (Saarbrücken, Ger-
many, June 1989), pp. 218–227.

[CLRS09] CORMEN T. H., LEISERSON C. E., RIVEST

R. L., STEIN C.: Introduction to Algorithms, 3rd Edition.
MIT Press, 2009.

[dB00] DE BERG M.: Computational geometry: algo-
rithms and applications, 2nd Edition. Springer, 2000.

[DL87] DOBKIN D., LASZLO M.: Primitives for the ma-
nipulation of three-dimensional subdivisions. In Proc.
of Symposium on Computational Geometry (Waterloo,
Canada, June 1987), pp. 86–99.

[DL14] DAMIAND G., LIENHARDT P.: Combinatorial
Maps: Efficient Data Structures for Computer Graphics
and Image Processing. A K Peters/CRC Press, septembre
2014.

[DR17] DAMIAND G., ROSSIGNAC J.: Rasterized planar
face complex. Computer-Aided Design. Vol. 90 (2017),
146–156.

[DRE∗15] DYEDOV V., RAY N., EINSTEIN D. R., JIAO

X., TAUTGES T. J.: AHF: array-based half-facet
data structure for mixed-dimensional and non-manifold
meshes. Eng. Comput. (Lond.). Vol. 31, Num. 3 (2015),
389–404.

[GS85] GUIBAS L. J., STOLFI J.: Primitives for the ma-
nipulation of general subdivisions and computation of
Voronoi diagrams. ACM Trans. Graph.. Vol. 4, Num. 2
(1985), 74–123.

[Män88] MÄNTYLÄ M.: An Introduction to Solid Model-
ing. Computer Science Press, 1988.

[Ros01] ROSSIGNAC J.: 3D compression made simple:
Edgebreaker with Zip&Wrap on a corner-table. In 2001
International Conference on Shape Modeling and Appli-
cations (SMI 2001), 7-11 May 2001, Genoa, Italy (2001),
p. 278.

[Wei85] WEILER K.: Edge-based data structures for solid
modelling in curved-surface environments. Computer
Graphics and Applications. Vol. 5, Num. 1 (1985), 21–40.

[Wei88] WEILER K.: The radial edge structure: a topolog-
ical representation for non-manifold geometric boundary
modeling. In Geometric Modeling for CAD Applications.
Elsevier Science, 1988, pp. 217–254.

