Deux mesures géométriques pour les trous dans les objets discrets

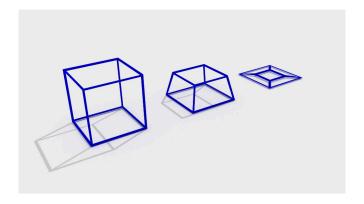
Aldo Gonzalez-Lorenzo

LSIS - Équipe G-Mod - GT G-Dis

17 novembre 2015

Structure

1 Le problème


2 Notre approche/algorithme

Le problème

Le problème

Que peut-on dire de la géométrie des trous, vu qu'ils n'existent pas ?

Combien de trous y a-t-il ?

On a besoin d'un formalisme

Topologie --- homotopie, homologie

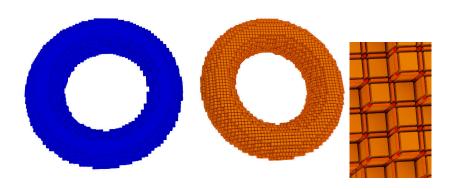


Figure : Équivalence de topologie, homotopie et homologie

Topologie algorithmique \longrightarrow homotopie, homologie

Objet discret \longrightarrow complexe cubique

Groupes d'homologie:

$$H_q = \ker (d_q)/\mathrm{im} (d_{q+1})$$

On a:

- $H_0 \longrightarrow \beta_0 = \dim(H_0) =$ "nombre de composantes connexes"
- $H_1 \longrightarrow \beta_1 = \dim(H_1) =$ "nombre de tunnels ou anses"
- $H_2 \longrightarrow \beta_2 = \dim(H_2) =$ "nombre de cavités"

La dimension est unique, mais pas la "base".

Un exemple : le tore

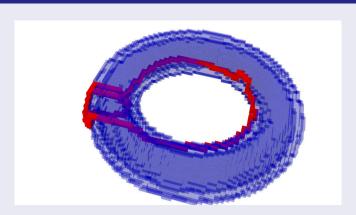


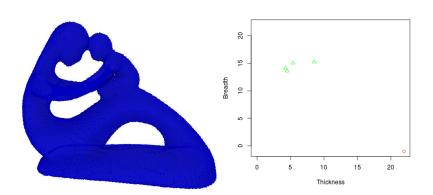
Figure : $\beta_0=1, \beta_1=2, \beta_2=1$

Le problème

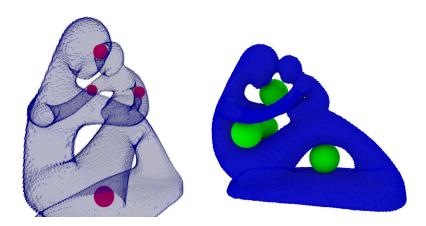
Donc,

- On peut calculer le nombre de trous ;
- Pourtant, on ne peut rien dire sur sa forme.

Structure


1 Le problème

2 Notre approche/algorithme


- Objet discret
- 2 Complexe cubique
- 3 Transformée de distances signée et persistance homologique
- 4 Diagramme TB

Transformée de distances Persistance homologique Source: http://dgtal.org

Le thickness-breadth diagram (diagramme de épaisseur-ampleur)

Le thickness-breadth diagram (diagramme de épaisseur-ampleur)

Plus d'exemples sur

http://aldo.gonzalez-lorenzo.perso.luminy.univ-amu.fr/measures.html

Merci!