Opening holes in Discrete Objects with Digital Homotopy Aldo Gonzalez-Lorenzo Alexandra Bac Jean-Luc Mari Aix-Marseille Université, CNRS, LSIS UMR 7296 (France) 20 september 2017 ## Structure - 1 Motivation - 2 Definition - 3 Algorithms - 4 Conclusion Opening and closing holes with homology Closing holes in discrete objects #### Opening and closing holes with homology #### Closing holes in discrete objects Pattern Recognition Letters 23 (2002) 523-531 www.elsevier.com/locate/pat #### A three-dimensional holes closing algorithm Zouina Aktouf, Gilles Bertrand, Laurent Perroton * Pattern Recognition 43 (2010) 3548-3559 Contents lists available at ScienceDirect Pattern Recognition journal homepage: www.elsevier.com/locate/pr Hole filling in 3D volumetric objects Marcin Janaszewski ^{a,*}, Michel Couprie ^b, Laurent Babout ^a Pattern Recognition Letters 32 (2011) 2231-2238 Contents lists available at ScienceDirect Pattern Recognition Letters journal homepage: www.elsevier.com/locate/patrec Marcin lanaszewski **. Michał Postolski **. Laurent Babout * #### A little bit of opening holes Contents lists available at ScienceDirect Journal of Neuroscience Methods journal homogogo: www.elsovier.com/lecate/jnoumoth Topology-corrected segmentation and local intensity estimates for improved partial volume classification of brain cortex in MRI $\,$ Andrea Rueda^{a,b}, Oscar Acosta^{a,d,e,c}, Michel Couprie^c, Pierrick Bourgeat^a, Jurgen Fripp^a, Nicholas Dowson^a, Eduardo Romero^b, Olivier Salvado^a #### Structure - 1 Motivation - 2 Definition - 3 Algorithms - 4 Conclusion ■ Simple point ■ Contractible object ■ Simple point ■ Contractible object #### Homotopic opening Let X be a discrete object. $Y \subset X$ is a homotopic opening if X - Y is contractible #### Structure - 1 Motivation - 2 Definition - 3 Algorithms - 4 Conclusion ``` Input: X \subset \mathbb{Z}^d Output: Homotopic opening for X C \leftarrow \{x\} , for x \in X; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do \begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array} return X - C; ``` ``` Input: X \subset \mathbb{Z}^d Output: Homotopic opening for X C \leftarrow \{x\} , for x \in X; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do \begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array} return X - C; ``` ``` Input: X \subset \mathbb{Z}^d Output: Homotopic opening for X C \leftarrow \{x\} , for x \in X; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do \begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array} return X - C; ``` ``` Input: X \subset \mathbb{Z}^d Output: Homotopic opening for X C \leftarrow \{x\} , for x \in X; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do \begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array} return X - C; ``` ``` Input: X \subset \mathbb{Z}^d Output: Homotopic opening for X C \leftarrow \{x\} , for x \in X; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do \begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array} return X - C; ``` ``` Input: X \subset \mathbb{Z}^d Output: Homotopic opening for X C \leftarrow \{x\} , for x \in X; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do \begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array} return X - C; ``` ``` Input: X \subset \mathbb{Z}^d Output: Homotopic opening for X C \leftarrow \{x\} , for x \in X; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do \begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array} return X - C; ``` ``` Input: X \subset \mathbb{Z}^d Output: Homotopic opening for X C \leftarrow \{x\} , for x \in X; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do \begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array} return X - C; ``` ``` Input: X \subset \mathbb{Z}^d Output: Homotopic opening for X C \leftarrow \{x\} , for x \in X; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do \begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array} return X - C; ``` Better use the distance transform ``` C \leftarrow \{x\}, for random x \in X such that dt_X(x) is maximal; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do x \leftarrow \text{random point in } S \text{ such } that dt_X(x) is maximal; S \leftarrow S - \{x\}; if x is simple for C then C \leftarrow C \cup \{x\}; S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); return X - C: ``` #### Complexity $dD: 3^d n(\lg n + f(d))$ ``` C \leftarrow \{x\}, for random x \in X such that dt_X(x) is maximal; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do x \leftarrow \text{random point in } S \text{ such } that dt_X(x) is maximal; S \leftarrow S - \{x\}; if x is simple for C then C \leftarrow C \cup \{x\}; S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); return X - C: ``` #### Complexity $dD: 3^d n(\lg n + f(d))$ ``` C \leftarrow \{x\}, for random x \in X such that dt_X(x) is maximal; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do x \leftarrow \text{random point in } S \text{ such } that dt_X(x) is maximal; S \leftarrow S - \{x\}; if x is simple for C then C \leftarrow C \cup \{x\}; S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); return X - C: ``` #### Complexity $dD: 3^{d} n(\lg n + f(d))$ ``` C \leftarrow \{x\}, for random x \in X such that dt_X(x) is maximal; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do x \leftarrow \text{random point in } S \text{ such } that dt_X(x) is maximal; S \leftarrow S - \{x\}; if x is simple for C then C \leftarrow C \cup \{x\}; S ← S \cup (N_{\alpha}^*(x) \cap (X - C)); return X - C: ``` #### Complexity $dD: 3^d n(\lg n + f(d))$ ``` C \leftarrow \{x\}, for random x \in X such that dt_X(x) is maximal; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do x \leftarrow \text{random point in } S \text{ such } that dt_X(x) is maximal; S \leftarrow S - \{x\}; if x is simple for C then C \leftarrow C \cup \{x\}; S \cup (N_{\alpha}^*(x) \cap (X - C)); return X - C: ``` #### Complexity $dD: 3^d n(\lg n + f(d))$ ``` C \leftarrow \{x\}, for random x \in X such that dt_X(x) is maximal; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do x \leftarrow \text{random point in } S \text{ such } that dt_X(x) is maximal; S \leftarrow S - \{x\}; if x is simple for C then C \leftarrow C \cup \{x\}; S \cup (N_{\alpha}^*(x) \cap (X - C)); return X - C: ``` #### Complexity $dD: 3^d n(\lg n + f(d))$ ``` C \leftarrow \{x\}, for random x \in X such that dt_X(x) is maximal; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do x \leftarrow \text{random point in } S \text{ such } that dt_X(x) is maximal; S \leftarrow S - \{x\}; if x is simple for C then C \leftarrow C \cup \{x\}; S \cup (N_{\alpha}^*(x) \cap (X - C)); return X - C: ``` #### Complexity $dD: 3^d n(\lg n + f(d))$ ``` \overline{C \leftarrow \{x\}}, for random x \in X such that dt_X(x) is maximal; S \leftarrow N_{\alpha}^*(x) \cap (X - C); while S \neq \emptyset do x \leftarrow \text{random point in } S \text{ such } that dt_X(x) is maximal; S \leftarrow S - \{x\}; if x is simple for C then C \leftarrow C \cup \{x\}; S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); return X - C: ``` #### Complexity $dD: 3^{d} n(\lg n + f(d))$ return X - C: #### Complexity $dD: 3^{d} n(\lg n + f(d))$ #### Problems: - \blacksquare Not straight lines \rightarrow later - Torus \rightarrow next #### What happens to the torus? Too many points with equal distance Solution: propagate by layers (Algorithm 2) ### Algorithm 2: propagation by layers #### Complexity $dD: 3^d n^2 f(d)$ 3D: *n*² ### Algorithm 2: propagation by layers ``` \overline{C \leftarrow \{x\}}, for random x \in X with highest dtx value: repeat m \leftarrow \max\{dt_X(x) \mid x \in N^*_{\alpha}(C) \cap X x simple for C}; L \leftarrow dt_{X}^{-1}([m-1,m]) \cap N_{\alpha}^{*}(C); foreach x \in L do if x is simple for C then C \leftarrow C \cup \{x\}; ``` until idempotency; return X - C: #### Complexity $dD: 3^{d} n^{2} f(d)$ 3D: n^2 ### Algorithm 2: propagation by layers until idempotency; return X — C; #### Complexity $dD: 3^{d}n^{2}f(d)$ 3D: *n*² #### Problems: - $lue{}$ No straight lines ightarrow next - Torus Why do we obtain those segments? Solution: keep fronts separated (Plugin) ``` Input: C \subset X, x \in x, r \ge 0 Output: Can we add point x to C? foreach y \in N_{\alpha}(x) do if C \cup (B(y,r) \cap X) is collapsible to C then return true; ``` return false; ### Complexity $dD: f(d) \rightarrow |N_{\alpha}| r^{2d} f(d)$ ``` Input: C \subset X, x \in x, r \ge 0 Output: Can we add point x to C? foreach y \in N_{\alpha}(x) do if C \cup (B(y,r) \cap X) is collapsible to C then return true; ``` return false; ### Complexity $dD: f(d) \rightarrow |N_{\alpha}| r^{2d} f(d)$ ``` Input: C \subset X, x \in x, r \ge 0 Output: Can we add point x to C? foreach y \in N_{\alpha}(x) do if C \cup (B(y,r) \cap X) is collapsible to C then return true; ``` return false; ### Complexity $dD: f(d) \rightarrow |N_{\alpha}| r^{2d} f(d)$ ``` Input: C \subset X, x \in x, r \ge 0 Output: Can we add point x to C? foreach y \in N_{\alpha}(x) do if C \cup (B(y,r) \cap X) is collapsible to C then return true; ``` return false; ### Complexity $dD: f(d) \rightarrow |N_{\alpha}| r^{2d} f(d)$ ``` Input: C \subset X, x \in x, r \ge 0 Output: Can we add point x to C? foreach y \in N_{\alpha}(x) do if C \cup (B(y,r) \cap X) is collapsible to C then return true; ``` return false; #### Complexity $d\mathsf{D} \colon f(d) \to |N_{\alpha}| r^{2d} f(d)$ ### Why the neighborhood? The tangency problem #### Problems: ■ 3D isn't great→ some day ### Structure - 1 Motivation - 2 Definition - 3 Algorithms - 4 Conclusion - 2 algorithms + 1 parameter for ball radius - Algorithm 1: faster $(n \lg n)$ but worse output - Algorithm 2: slower (n^2) but better output - Study the *tangency problem* in 3D - 2 algorithms + 1 parameter for ball radius - Algorithm 1: faster $(n \lg n)$ but worse output - Algorithm 2: slower (n^2) but better output - Study the tangency problem in 3D #### Download this presentation: http://aldo.gonzalez-lorenzo.perso.luminy.univ-amu.fr/downloads.html # Thank you for your attention