Opening holes in Discrete Objects with Digital Homotopy

Aldo Gonzalez-Lorenzo Alexandra Bac Jean-Luc Mari

Aix-Marseille Université, CNRS, LSIS UMR 7296 (France)

20 september 2017

Structure

- 1 Motivation
- 2 Definition
- 3 Algorithms
- 4 Conclusion

Opening and closing holes with homology

Closing holes in discrete objects

Opening and closing holes with homology

Closing holes in discrete objects

Pattern Recognition Letters 23 (2002) 523-531

www.elsevier.com/locate/pat

A three-dimensional holes closing algorithm

Zouina Aktouf, Gilles Bertrand, Laurent Perroton *

Pattern Recognition 43 (2010) 3548-3559

Contents lists available at ScienceDirect
Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Hole filling in 3D volumetric objects

Marcin Janaszewski ^{a,*}, Michel Couprie ^b, Laurent Babout ^a

Pattern Recognition Letters 32 (2011) 2231-2238

Contents lists available at ScienceDirect
Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Marcin lanaszewski **. Michał Postolski **. Laurent Babout *

A little bit of opening holes

Contents lists available at ScienceDirect

Journal of Neuroscience Methods

journal homogogo: www.elsovier.com/lecate/jnoumoth

Topology-corrected segmentation and local intensity estimates for improved partial volume classification of brain cortex in MRI $\,$

Andrea Rueda^{a,b}, Oscar Acosta^{a,d,e,c}, Michel Couprie^c, Pierrick Bourgeat^a, Jurgen Fripp^a, Nicholas Dowson^a, Eduardo Romero^b, Olivier Salvado^a

Structure

- 1 Motivation
- 2 Definition
- 3 Algorithms
- 4 Conclusion

■ Simple point

■ Contractible object

■ Simple point

■ Contractible object

Homotopic opening

Let X be a discrete object.

 $Y \subset X$ is a homotopic opening if

X - Y is contractible

Structure

- 1 Motivation
- 2 Definition
- 3 Algorithms
- 4 Conclusion

```
Input: X \subset \mathbb{Z}^d
Output: Homotopic opening for X
C \leftarrow \{x\} , for x \in X;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
\begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array}
return X - C;
```



```
Input: X \subset \mathbb{Z}^d
Output: Homotopic opening for X
C \leftarrow \{x\} , for x \in X;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
\begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array}
return X - C;
```



```
Input: X \subset \mathbb{Z}^d
Output: Homotopic opening for X
C \leftarrow \{x\} , for x \in X;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
\begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array}
return X - C;
```



```
Input: X \subset \mathbb{Z}^d
Output: Homotopic opening for X
C \leftarrow \{x\} , for x \in X;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
\begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array}
return X - C;
```



```
Input: X \subset \mathbb{Z}^d
Output: Homotopic opening for X
C \leftarrow \{x\} , for x \in X;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
\begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array}
return X - C;
```



```
Input: X \subset \mathbb{Z}^d
Output: Homotopic opening for X
C \leftarrow \{x\} , for x \in X;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
\begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array}
return X - C;
```



```
Input: X \subset \mathbb{Z}^d
Output: Homotopic opening for X
C \leftarrow \{x\} , for x \in X;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
\begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array}
return X - C;
```



```
Input: X \subset \mathbb{Z}^d
Output: Homotopic opening for X
C \leftarrow \{x\} , for x \in X;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
\begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array}
return X - C;
```



```
Input: X \subset \mathbb{Z}^d
Output: Homotopic opening for X
C \leftarrow \{x\} , for x \in X;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
\begin{array}{c} x \leftarrow \text{ some point in } S; \\ S \leftarrow S - \{x\}; \\ \text{if } x \text{ is simple for } C \text{ then} \\ C \leftarrow C \cup \{x\}; \\ S \leftarrow S \cup (N_{\alpha}^*(x) \cap (X - C)); \end{array}
return X - C;
```


Better use the distance transform

```
C \leftarrow \{x\}, for random x \in X
 such that dt_X(x) is maximal;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
     x \leftarrow \text{random point in } S \text{ such }
      that dt_X(x) is maximal;
     S \leftarrow S - \{x\};
     if x is simple for C then
          C \leftarrow C \cup \{x\};
        S \leftarrow
           S \cup (N_{\alpha}^*(x) \cap (X - C));
return X - C:
```


Complexity

 $dD: 3^d n(\lg n + f(d))$

```
C \leftarrow \{x\}, for random x \in X
 such that dt_X(x) is maximal;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
     x \leftarrow \text{random point in } S \text{ such }
      that dt_X(x) is maximal;
     S \leftarrow S - \{x\};
     if x is simple for C then
          C \leftarrow C \cup \{x\};
        S \leftarrow
           S \cup (N_{\alpha}^*(x) \cap (X - C));
return X - C:
```


Complexity

 $dD: 3^d n(\lg n + f(d))$

```
C \leftarrow \{x\}, for random x \in X
 such that dt_X(x) is maximal;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
     x \leftarrow \text{random point in } S \text{ such }
      that dt_X(x) is maximal;
     S \leftarrow S - \{x\};
     if x is simple for C then
          C \leftarrow C \cup \{x\};
        S \leftarrow
           S \cup (N_{\alpha}^*(x) \cap (X - C));
return X - C:
```


Complexity

 $dD: 3^{d} n(\lg n + f(d))$

```
C \leftarrow \{x\}, for random x \in X
 such that dt_X(x) is maximal;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
     x \leftarrow \text{random point in } S \text{ such }
      that dt_X(x) is maximal;
     S \leftarrow S - \{x\};
     if x is simple for C then
          C \leftarrow C \cup \{x\};
       S ←
           S \cup (N_{\alpha}^*(x) \cap (X - C));
return X - C:
```


Complexity

 $dD: 3^d n(\lg n + f(d))$

```
C \leftarrow \{x\}, for random x \in X
 such that dt_X(x) is maximal;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
     x \leftarrow \text{random point in } S \text{ such }
      that dt_X(x) is maximal;
     S \leftarrow S - \{x\};
     if x is simple for C then
          C \leftarrow C \cup \{x\};
           S \cup (N_{\alpha}^*(x) \cap (X - C));
return X - C:
```


Complexity

 $dD: 3^d n(\lg n + f(d))$

```
C \leftarrow \{x\}, for random x \in X
 such that dt_X(x) is maximal;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
     x \leftarrow \text{random point in } S \text{ such }
      that dt_X(x) is maximal;
     S \leftarrow S - \{x\};
     if x is simple for C then
          C \leftarrow C \cup \{x\};
           S \cup (N_{\alpha}^*(x) \cap (X - C));
return X - C:
```


Complexity

 $dD: 3^d n(\lg n + f(d))$

```
C \leftarrow \{x\}, for random x \in X
 such that dt_X(x) is maximal;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
     x \leftarrow \text{random point in } S \text{ such }
      that dt_X(x) is maximal;
     S \leftarrow S - \{x\};
     if x is simple for C then
          C \leftarrow C \cup \{x\};
           S \cup (N_{\alpha}^*(x) \cap (X - C));
return X - C:
```


Complexity

 $dD: 3^d n(\lg n + f(d))$

```
\overline{C \leftarrow \{x\}}, for random x \in X
 such that dt_X(x) is maximal;
S \leftarrow N_{\alpha}^*(x) \cap (X - C);
while S \neq \emptyset do
     x \leftarrow \text{random point in } S \text{ such }
      that dt_X(x) is maximal;
     S \leftarrow S - \{x\};
     if x is simple for C then
          C \leftarrow C \cup \{x\};
        S \leftarrow
           S \cup (N_{\alpha}^*(x) \cap (X - C));
return X - C:
```


Complexity

 $dD: 3^{d} n(\lg n + f(d))$

return X - C:

Complexity

 $dD: 3^{d} n(\lg n + f(d))$

Problems:

- \blacksquare Not straight lines \rightarrow later
- Torus \rightarrow next

What happens to the torus?

Too many points with equal distance

Solution: propagate by layers (Algorithm 2)

Algorithm 2: propagation by layers

Complexity

 $dD: 3^d n^2 f(d)$

3D: *n*²

Algorithm 2: propagation by layers

```
\overline{C \leftarrow \{x\}}, for random x \in X with
 highest dtx value:
repeat
     m \leftarrow \max\{dt_X(x) \mid
      x \in N^*_{\alpha}(C) \cap X
      x simple for C};
     L \leftarrow
      dt_{X}^{-1}([m-1,m]) \cap N_{\alpha}^{*}(C);
     foreach x \in L do
          if x is simple for C then
           C \leftarrow C \cup \{x\};
```

until idempotency;

return X - C:

Complexity

 $dD: 3^{d} n^{2} f(d)$

3D: n^2

Algorithm 2: propagation by layers

until idempotency; return X — C;

Complexity

 $dD: 3^{d}n^{2}f(d)$

3D: *n*²

Problems:

- $lue{}$ No straight lines ightarrow next
- Torus

Why do we obtain those segments?

Solution: keep fronts separated (Plugin)

```
Input: C \subset X, x \in x, r \ge 0
Output: Can we add point x to C?

foreach y \in N_{\alpha}(x) do

if C \cup (B(y,r) \cap X) is collapsible to C then

return true;
```

return false;

Complexity

 $dD: f(d) \rightarrow |N_{\alpha}| r^{2d} f(d)$

```
Input: C \subset X, x \in x, r \ge 0
Output: Can we add point x to C?

foreach y \in N_{\alpha}(x) do

if C \cup (B(y,r) \cap X) is collapsible to C then

return true;
```

return false;

Complexity

 $dD: f(d) \rightarrow |N_{\alpha}| r^{2d} f(d)$

```
Input: C \subset X, x \in x, r \ge 0
Output: Can we add point x to C?

foreach y \in N_{\alpha}(x) do

if C \cup (B(y,r) \cap X) is collapsible to C then

return true;
```

return false;

Complexity

 $dD: f(d) \rightarrow |N_{\alpha}| r^{2d} f(d)$

```
Input: C \subset X, x \in x, r \ge 0
Output: Can we add point x to C?

foreach y \in N_{\alpha}(x) do

if C \cup (B(y,r) \cap X) is collapsible to C then

return true;
```

return false;

Complexity

 $dD: f(d) \rightarrow |N_{\alpha}| r^{2d} f(d)$

```
Input: C \subset X, x \in x, r \ge 0
Output: Can we add point x to C?

foreach y \in N_{\alpha}(x) do

if C \cup (B(y,r) \cap X) is collapsible to C then

return true;
```

return false;

Complexity

 $d\mathsf{D} \colon f(d) \to |N_{\alpha}| r^{2d} f(d)$

Why the neighborhood? The tangency problem

Problems:

■ 3D isn't great→ some day

Structure

- 1 Motivation
- 2 Definition
- 3 Algorithms
- 4 Conclusion

- 2 algorithms + 1 parameter for ball radius
- Algorithm 1: faster $(n \lg n)$ but worse output
- Algorithm 2: slower (n^2) but better output
- Study the *tangency problem* in 3D

- 2 algorithms + 1 parameter for ball radius
- Algorithm 1: faster $(n \lg n)$ but worse output
- Algorithm 2: slower (n^2) but better output
- Study the tangency problem in 3D

Download this presentation:

http://aldo.gonzalez-lorenzo.perso.luminy.univ-amu.fr/downloads.html

Thank you for your attention