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Computing homological information based on directed graphs within discrete objects

Introduction and motivation

Objective: to analyse 2D images or 3D volumes, to find
properties for establishing equivalences.

Approach: homology. Branch of topology considering “holes”.
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Computing homological information based on directed graphs within discrete objects

Introduction and motivation

Example

We can use the number of holes in order to classify images.

Two objects equivalents will be in the same class, and two objects
in different classes will be non-equivalents.
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Computing homological information based on directed graphs within discrete objects

Introduction and motivation

Example

Figure : One connected component and two 1-dimensional holes.
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Introduction and motivation

Example

Figure : Here it is more difficult.
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Computing homological information based on directed graphs within discrete objects

Introduction and motivation

How can we do it ?

Step 1: To have a binary image (2D, 3D, etc);

Step 2: To build a cubical complex from it, chosing one
adjacency relationship;

Step 3: To compute the homology of this complex.

We will see all this in detail.
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Cubical complexes and homology

In order to compute homology, we restrict ourselves to one
kind of topological space: cubical complexes

Intuitively, it is an object made of the union of points, lines,
squares, cubes, . . ., glued by their boundaries

In other words: the intersection of two pieces (cells) is empty
or another piece
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Cubical complexes and homology

Every cubical complex has an associated directed graph
(digraph) called Hasse diagram

Vertices represent the cells

Arcs go from one cell to the cells in its border
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Cubical complexes and homology

Discrete object → cubical complexes

From each n-dimensional discrete object, we can build a cubical
complex w.r.t the 3n − 1 or the 2n-adjacency relationship.
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Cubical complexes and homology

Homology

Homology is defined on chain complexes. It is an algebraic
object that formalizes the boundary of a cell

The elements are chains, linear combinations of cells

The boundary of a cell d(σ) is the sum of the cells in the
boundary of σ with their respective coefficients
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Cubical complexes and homology

There are two important classes of chains:

Z = ker(d), the chains whose boundary is 0 (cycles)

B = im(d), the chains that are the boundary of another chain
(boundaries)

Homology groups consists of the elements of Z/B , this is the
cycles that are not boundaries.
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Preliminaries

Cubical complexes and homology

Figure : Some cycles.
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Cubical complexes and homology

When computing the homology of an object, we want to find
a basis (set of homology generators) of each homology group

The size of this basis is the Betti number (for dimension
n ≤ 3). It is the number of independent “holes”

Let’s remark that this basis is not unique.
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Effective Homology

The Effective Homology theory introduces the concept of
reduction

It gives a relation between the original chain complex and
another one, equivalent and “smaller”

Briefly, it consists of three maps between chains (f , g , h)
satisfying several properties
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Discrete Morse Theory

Introduced by Robin Forman in the 90s

Discrete version of the Morse theory, well-developed and used
for computing the homology in the continuous context

It gives an upper bound of the Betti numbers without dealing
with algebraic objects
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Discrete Morse Theory

Definition

A Discrete Gradient Vector Field (DGVF) is a matching on the
Hasse diagram of a cell complex such that there are not “directed
cycles”.
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Discrete Morse Theory

Figure : Left: A matching. Right: Not a Matching
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Discrete Morse Theory

Figure : Left: A DGVF. Right: Not a DGVF
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Computing homological information based on directed graphs within discrete objects

Preliminaries

Discrete Morse Theory

Given a DGVF, a cell is critical if it is unmatched.

Theorem

For each q ≥ 0, the q-th Betti number is less than the number of

critical q-cells.

26 / 66



Computing homological information based on directed graphs within discrete objects

Preliminaries

Discrete Morse Theory

DGVF → reduction

We can establish a reduction from a DGVF:

h(σ) =
∑

k≥0

V (1− dV )k(σ) = V (σ) + h(1− dV )(σ)

f (σ) = (1− dh − hd)(σ) = f (1− dV )(σ)

g(σ) = σ

where

V (σ) =

{

〈d(τ), σ〉 · τ, (σ, τ) belongs to the matching

0, if not

(〈d(τ), σ〉 being the coefficient of the cell σ in the chain d(τ))
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Our approach

Structure

1 Discrete object → cubical complex;
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Our approach

Structure

1 Discrete object → cubical complex;

2 Initial DGVF;

3 Iterative correction: at each time, we erase 2 critical cells;
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Computing homological information based on directed graphs within discrete objects

Our approach

Structure

1 Discrete object → cubical complex;

2 Initial DGVF;

3 Iterative correction: at each time, we erase 2 critical cells;

4 Homology generators: we obtain them by the reduction.
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Computing homological information based on directed graphs within discrete objects

Our approach

Structure

Step 1: the complex

From a discrete object (voxels set), we build the cubical

complex w.r.t the 2n-adjacency

Figure : Left: Discrete object. Right: Its associated cubical complex
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Computing homological information based on directed graphs within discrete objects

Our approach

Structure

Step 2: initial DGVF

We establish any DGVF

There are several methods. We use the parallel method

Typically, there are too many critical cells
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Computing homological information based on directed graphs within discrete objects

Our approach

Structure

Figure : Left: optimal DGVF. Right: not an optimal DGVF
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Computing homological information based on directed graphs within discrete objects

Our approach

Structure

Step 3: iterative correction

At each iteration,

We choose a critical cell σ;

We compute fd(σ). We choose a critical cell τ found during
this computation;

We reverse the path from σ to τ .

At the end, the number of critical cells equals the Betti numbers
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Computing homological information based on directed graphs within discrete objects

Our approach

Structure

Step 4: homology generators

We only have to compute f = 1− dh − hd over the critical cells
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Discrete object

10 voxels
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Cubical complex

10 0-cells

14 1-cells

5 2-cells
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Initial DGVF

2 critical 0-cells

2 critical 1-cells

1 critical 2-cells
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Our approach

An example in detail

Correction of the critical cell 1

We compute fd(1) =
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 1

We compute fd(1) =
f (−0 + 4) = −f (0) + f (4)
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 1

We compute fd(1) =
= −f (0) + f (2)
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 1

We compute fd(1) =
= −f (0) + f (16)
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 1

We compute fd(1) =
= −f (0) + f (16)
We reverse the path from 1 to 0
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 1

We compute fd(1) =
= −f (0) + f (16)
We reverse the path from 1 to 0
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 6

We compute fd(6) =
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 6

We compute fd(6) =
f (−1+ 5− 9+ 15) = −f (9)+ f (15)
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 6

We compute fd(6) =
= −f (17) + f (17)− f (13)
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 6

We compute fd(6) =
= −f (21) + f (21)− f (13)
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 6

We compute fd(6) =
= −f (13) + f (13)− f (13) = f (13)
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 6

We compute fd(6) =
= −f (13) + f (13)− f (13) = f (13)
We reverse the path from 6 to 13
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Correction of the critical cell 6

We compute fd(6) =
= −f (13) + f (13)− f (13) = f (13)
We reverse the path from 6 to 13
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Our approach

An example in detail

Computing h on the confluence vertices

We compute h(17) =
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Computing h on the confluence vertices

We compute h(17) =
V (17) + h(1− dV )(17) = −22 + h(21)
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Computing h on the confluence vertices

We compute h(17) =
= −22− 20− h(13)
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Computing h on the confluence vertices

We compute h(17) =
= −22− 20− 14− h(15)− h(17)
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Computing h on the confluence vertices

We compute h(17) =
= −22− 20− 14− 6− h(9)− h(17)

59 / 66



Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Computing h on the confluence vertices

We compute h(17) =
= −22−20−14−6+8+h(17)−h(17)
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Computing h on the confluence vertices

We compute h(17) =
= −22−20−14−6+8+h(17)−h(17)
We will substitute
h(17) = −22− 20− 14− 6 + 8
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Our approach

An example in detail

Example

We compute h(9) =
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Computing homological information based on directed graphs within discrete objects

Our approach

An example in detail

Example

We compute h(9) =

= −18 + h(17)

= −18− 22− 20− 14− 6 + 8
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Computing homological information based on directed graphs within discrete objects

Conclusion

Absolute control of the homological information (thanks to
the reduction);

Non-redundant representation of the reduction;

Integer coefficients, any dimension.
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Computing homological information based on directed graphs within discrete objects

Conclusion

Future works

Minimize the number of confluence vertices;

Beautiful generators.
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Computing homological information based on directed graphs within discrete objects

Conclusion

Thanks. Questions?
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