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3D cubical complexes

Union of points, segments, squares and cubes embedded in Z3.

Figure : A 3D cubical complex
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3D cubical complexes

Figure : The Bing’s house
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3D cubical complexes

A 3D cubical complex can be represented by a binary
three-dimensional array

Figure : Left: a 2D cubical complex. Right: its matrix representation
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Betti numbers

Cubical complex → Chain complex → Homology groups:

H0,H1,H2, . . .

The Betti numbers are the ranks of these groups:

β0 = rank(H0), β1 = rank(H1), β2 = rank(H2), . . .
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Betti numbers

The Betti numbers give a mathematical definition of the number
of connected components (β0), tunnels (β1) and voids (β2) in a
space.

Figure : β0 = 2, β1 = 1, β2 = 1

11 / 47



Fast computation of Betti numbers on three-dimensional cubical complexes

The algorithm

β0(K ) = number of connected components of K

Euler-Poincaré characteristic:

χ(K ) = |K 0| − |K 1|+ |K 2| − |K 3| = β0 − β1 + β2

Alexander duality:

Hq(K ) ∼= H2−q(S3 \ K ) ∼= H2−q(S3 \ K ) (reduced homology)

12 / 47



Fast computation of Betti numbers on three-dimensional cubical complexes

The algorithm

β0(K ) = number of connected components of K
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The algorithm

K : (0, 1)

S2 \ K : (1, 0)
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The algorithm

Therefore,

β0(K ) = number of connected components of K

β2(K ) = number of connected components of S3 \ K − 1

β1(K ) = β0 + β2 − χ(K )
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The algorithm

Require: A 3D cubical complex K
Ensure: β0, β1, β2

Count the number of connected components of K together with
χ(K )
Count the number of connected components of K̄ except for
those touching the border of the array
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The algorithm

1 1 1 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 1 0 0
1 0 1 0 1 0 0
1 1 1 0 1 0 0
0 0 1 0 0 0 0
0 0 1 0 1 1 1

β0 = 0

χ = 0

β2 = 0
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1 1 1 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 1 0 0
1 0 1 0 1 0 0
1 1 1 0 1 0 0
0 0 1 0 0 0 0
0 0 1 0 1 1 1

β0 = 1

χ = -1

β2 = 0
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Fast computation of Betti numbers on three-dimensional cubical complexes

Experiments

Require: m ∈ Z, p ∈ [0, 1]
Ensure: A random cubical complex embedded in [0,m]3 with

probability p
for all σ ∈ [0,m]3 do

if rand() < p then
K ← σ

end if
end for
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Experiments

Require: m ∈ Z, p ∈ [0, 1]
Ensure: A random cubical complex embedded in [0,m]3 with

probability p
for all σ ∈ [0,m]3 do

if rand() < pdim(σ)+1 then
K ← σ

end if
end for
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Experiments

Figure : Comparison between the two random complexes
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Experiments

Size complex (n) Time (sec) 1.5 · 10−7n

(2 · 10 + 1)3 0.0009 0.0013
(2 · 20 + 1)3 0.0068 0.0103
(2 · 50 + 1)3 0.1483 0.1545
(2 · 100 + 1)3 1.2735 1.2180
(2 · 200 + 1)3 11.4484 9.6721
(2 · 500 + 1)3 246.9240 150.4505
(2 · 1000 + 1)3 ? 1201.801
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Conclusion

Compute only the Betti numbers for 3D cubical complexes

Linear time complexity in the size of the bounding box

Not generalizable to higher dimensions

Parallel version in process
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Conclusion

Thank you. Questions?
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