<u>Aldo González Lorenzo^{1,2},</u> Jean-Luc Mari¹, Alexandra Bac¹ Pedro Real²

¹Aix-Marseille Université, CNRS, LSIS UMR 7296 (France)

²Universidad de Sevilla, IMUS (Spain)

20 july 2015

Structure

Structure

- 2 Betti numbers
- 3 The algorithm
- 4 Experiments

Structure

Structure

2 Betti numbers

- 3 The algorithm
- 4 Experiments

Structure

Structure

1 3D cubical complexes

2 Betti numbers

3 The algorithm

4 Experiments

Structure

Structure

1 3D cubical complexes

2 Betti numbers

3 The algorithm

4 Experiments

Structure

Structure

1 3D cubical complexes

2 Betti numbers

3 The algorithm

4 Experiments

└_3D cubical complexes

Union of points, segments, squares and cubes embedded in \mathbb{Z}^3 .

Figure : A 3D cubical complex

└_3D cubical complexes

Figure : The Bing's house

└─3D cubical complexes

A 3D cubical complex can be represented by a binary three-dimensional array

Figure : Left: a 2D cubical complex. Right: its matrix representation

∟Betti numbers

Cubical complex \rightarrow Chain complex \rightarrow Homology groups:

 H_0,H_1,H_2,\ldots

The Betti numbers are the ranks of these groups:

$$\beta_0 = \operatorname{rank}(H_0), \beta_1 = \operatorname{rank}(H_1), \beta_2 = \operatorname{rank}(H_2), \dots$$

Betti numbers

The Betti numbers give a mathematical definition of the number of connected components (β_0), tunnels (β_1) and voids (β_2) in a space.

Figure :
$$\beta_0 = 2$$
, $\beta_1 = 1$, $\beta_2 = 1$

β₀(K) = number of connected components of K Euler-Poincaré characteristic:

$$\chi(K) = |K^0| - |K^1| + |K^2| - |K^3| = \beta_0 - \beta_1 + \beta_2$$

Alexander duality:

 $H_q(K) \cong H^{2-q}(\mathbb{S}^3 \setminus K) \cong H_{2-q}(\mathbb{S}^3 \setminus K)$ (reduced homology)

β₀(K) = number of connected components of K
Euler-Poincaré characteristic:

$$\chi(K) = |K^0| - |K^1| + |K^2| - |K^3| = \beta_0 - \beta_1 + \beta_2$$

Alexander duality:

 $H_q(K)\cong H^{2-q}(\mathbb{S}^3\setminus K)\cong H_{2-q}(\mathbb{S}^3\setminus K)$ (reduced homology)

β₀(K) = number of connected components of K
 Euler-Poincaré characteristic:

$$\chi(K) = |K^{0}| - |K^{1}| + |K^{2}| - |K^{3}| = \beta_{0} - \beta_{1} + \beta_{2}$$

Alexander duality:

 $H_q(K)\cong H^{2-q}(\mathbb{S}^3\setminus K)\cong H_{2-q}(\mathbb{S}^3\setminus K)$ (reduced homology)

K:(0,1) $\mathbb{S}^2 \setminus K : (1,0)$

Therefore,

- $\beta_0(K) =$ number of connected components of K
- $\beta_2(K) =$ number of connected components of $\mathbb{S}^3 \setminus K 1$

$$\beta_1(K) = \beta_0 + \beta_2 - \chi(K)$$

Require: A 3D cubical complex K

Ensure: $\beta_0, \beta_1, \beta_2$ Count the number of connected components of K together with $\chi(K)$ Count the number of connected components of \overline{K} except for those touching the border of the array

0 1

1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0

 $egin{aligned} eta_0 &= \mathbf{1} \ \chi &= -\mathbf{1} \ eta_2 &= \mathbf{0} \end{aligned}$

0 1 1 1 1 $1 \quad 1$ 0 1 0 1

 $\beta_0 = \mathbf{2}$ $\chi = \mathbf{0}$ $\beta_2 = \mathbf{0}$

Require: $m \in \mathbb{Z}$, $p \in [0, 1]$ **Ensure:** A random cubical complex embedded in $[0, m]^3$ with probability pfor all $\sigma \in [0, m]^3$ do if rand() < p then $K \leftarrow \sigma$ end if end for

2300000 complexes of size (2*10+1)^3

2510000 complexes of size (2*20+1)^3

1300866 complexes of size (2*50+1)^3

1211293 complexes of size (2*100+1)^3

598305 complexes of size (2*200+1)^3

112449 complexes of size (2*500+1)^3

Histogram of the size of 3m200

Require: $m \in \mathbb{Z}$, $p \in [0, 1]$ **Ensure:** A random cubical complex embedded in $[0, m]^3$ with probability pfor all $\sigma \in [0, m]^3$ do if rand() $< p^{\dim(\sigma)+1}$ then $K \leftarrow \sigma$ end if end for

2230000 complexes of size (2*10+1)^3

1522000 complexes of size (2*20+1)^3

2200100 complexes of size (2*50+1)^3

1000000 complexes of size (2*100+1)^3

328594 complexes of size (2*200+1)^3

20102 complexes of size (2*500+1)^3

Histogram of the size of 4m50

Figure : Comparison between the two random complexes

Size complex (n)	Time (sec)	$1.5 \cdot 10^{-7} n$
$(2 \cdot 10 + 1)^3$	0.0009	0.0013
$(2 \cdot 20 + 1)^3$	0.0068	0.0103
$(2 \cdot 50 + 1)^3$	0.1483	0.1545
$(2 \cdot 100 + 1)^3$	1.2735	1.2180
$(2 \cdot 200 + 1)^3$	11.4484	9.6721
$(2 \cdot 500 + 1)^3$	246.9240	150.4505
$(2 \cdot 1000 + 1)^3$?	1201.801

• Compute only the Betti numbers for 3D cubical complexes

- Linear time complexity in the size of the bounding box
- Not generalizable to higher dimensions
- Parallel version in process

- Compute only the Betti numbers for 3D cubical complexes
- Linear time complexity in the size of the bounding box
- Not generalizable to higher dimensions
- Parallel version in process

- Compute only the Betti numbers for 3D cubical complexes
- Linear time complexity in the size of the bounding box
- Not generalizable to higher dimensions
- Parallel version in process

- Compute only the Betti numbers for 3D cubical complexes
- Linear time complexity in the size of the bounding box
- Not generalizable to higher dimensions
- Parallel version in process

Conclusion

Thank you. Questions?