A Heuristic for Short Homology Basis of Digital Objects

Aldo Gonzalez-Lorenzo, Alexandra Bac, Jean-Luc Mari

Aix-Marseille Université / CNRS, LIS UMR 7020
December 15, 2022
Aix $*$ Marseille université
Initiative d'excellence

Outline

1 Introduction

2 Background

3 Algorithm

4 Conclusion

Outline

1 Introduction

2 Background

3 Algorithm

4 Conclusion

Problem: visualize the holes in a digital object

Why? Identify errors, measure holes

Approach:

- Visualize holes as homology cyles (\sim discrete manifolds)

■ Short cycles are better (tight, well located)

Computing a minimal homology basis

- size of cycle: number of cells
- $q=1: \mathcal{O}\left(n^{\omega}+n^{2} \cdot \beta_{1}\right)^{1}$

■ $q>1$: NP-hard ${ }^{2}$

${ }^{1}$ Dey et al: Efficient algorithms for computing a minimal homology basis (2018)
${ }^{2}$ Chen and Friedman: Hardness results for homology localization (2011)

Computing a minimal radius homology basis
■ size of cycle: radius of smallest geodesic ball containing it

- $q \geq 1: \mathcal{O}\left(\beta_{q} \cdot n^{4}\right)^{3}$, then $\mathcal{O}\left(n^{\omega+1}\right)^{4}$
- Theoretical algorithm, not implemented

${ }^{3}$ Chen and Friedman: Measuring and computing natural generators for homology groups (2011)
${ }^{4}$ Dey et al: Efficient algorithms for computing a minimal homology basis (2018)

Goal: we want an algorithm that
1 can be implemented in practice
2 is faster (even if it is worse)

Outline

1 Introduction

2 Background

- Digital Geometry
- Persistent Homology
- HDVF

3 Algorithm

4 Conclusion

A Heuristic for Short Homology Basis of Digital Objects

- Background
- Digital Geometry

Outline

1 Introduction

2 Background

- Digital Geometry
- Persistent Homology
- HDVF

3 Algorithm

4 Conclusion

Digital object

A $n \mathrm{D}$ digital object is a subset of \mathbb{Z}^{n}

Signed distance transform

Let O be a digital object,

$$
s_{d} t_{O}(x)= \begin{cases}-d\left(x, O^{c}\right) & \text { if } x \in O \\ d(x, O) & \text { if } x \notin O\end{cases}
$$

Figure: Sublevel sets of the signed distance transform

ᄂ Background
L Digital Geometry

Cubical complex

Union of points, edges, squares, cubes, ... (cubes) closed under inclusion

ᄂ Background
L Digital Geometry

Cubical complex

Union of points, edges, squares, cubes, ... (cubes) closed under inclusion

ᄂ Background
L Digital Geometry

Cubical complex

Union of points, edges, squares, cubes, ... (cubes) closed under inclusion

ᄂ Background
L Digital Geometry

Cubical complex

Union of points, edges, squares, cubes, ... (cubes) closed under inclusion

ᄂ Background
L Digital Geometry

Cubical complex

Union of points, edges, squares, cubes, ... (cubes) closed under inclusion

Digital object \longrightarrow cubical complex $\left(\left(3^{n}-1\right)\right.$-connectivity)

— Background
-Persistent Homology

Outline

1 Introduction

2 Background

- Digital Geometry

■ Persistent Homology

3 Algorithm

4 Conclusion

A Heuristic for Short Homology Basis of Digital Objects

—Background
-Persistent Homology
Blue: 1-cube
Red: its boundary (faces)

ᄂ Background
$\left\llcorner_{\text {Persistent Homology }}\right.$
Blue: 2-cube
Red: its boundary (faces)

A Heuristic for Short Homology Basis of Digital Objects

ᄂ Background
$\left\llcorner_{\text {Persistent Homology }}\right.$
Blue: 1-chain
Red: its boundary

A Heuristic for Short Homology Basis of Digital Objects

ᄂ Background
$\left\llcorner_{\text {Persistent Homology }}\right.$
Blue: 1-chain (1-cycle)
Red: its boundary $(=\emptyset)$

A Heuristic for Short Homology Basis of Digital Objects

- Background
$\left\llcorner_{\text {Persistent Homology }}\right.$
Blue: 2-chain
Red: its boundary (1-cycle)

A Heuristic for Short Homology Basis of Digital Objects

—Background
-Persistent Homology
Blue: 1-chain (1-cycle, but not boundary)
Red: its boundary $(=\emptyset)$

- K cubical complex
- Chain complex of K

$$
\cdots C_{3} \xrightarrow{d_{3}} C_{2} \xrightarrow{d_{2}} C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{d_{0}} 0
$$

where $d_{q} d_{q+1}=0 \Rightarrow \operatorname{im}\left(d_{q+1}\right) \subset \operatorname{ker}\left(d_{q}\right)$

- q-dimensional homology group (vector space)

$$
H_{q}(K):=\operatorname{ker}\left(d_{q}\right) / \operatorname{im}\left(d_{q+1}\right)^{5}=\left(\mathbb{F}_{2}\right)^{\beta_{q}}
$$

$$
\overline{{ }^{5} \forall x, y \in \operatorname{ker}\left(d_{q}\right), x \sim y \Leftrightarrow x}+y \in \operatorname{im}\left(d_{q+1}\right)
$$

■ $\beta_{q}:=\operatorname{dim}\left(H_{q}(K)\right)$: number of holes (connected components, tunnels, cavities...)
■ Homology basis: set of independent classes \rightarrow cycles

- Filtration $F: K_{1} \subset K_{2} \subset K_{3} \subset \cdots$

■ Usually defined by a function $f: K \rightarrow \mathbb{R}$

- $\beta_{i, j}=\operatorname{dim}\left(\iota: H\left(K_{i}\right) \rightarrow H\left(K_{j}\right)\right)$
number of holes in K_{i} still in K_{j}
■ $\mu_{i, j}=\beta_{i, j}-\beta_{i, j+1}-\beta_{i-1, j}+\beta_{i-1, j+1}$ number of holes born in K_{i} and dying in K_{j}

A Heuristic for Short Homology Basis of Digital Objects
ᄂ Background
$\square_{\text {Persistent Homology }}$

A Heuristic for Short Homology Basis of Digital Objects

ᄂ Background
$\square_{\text {Persistent Homology }}$

A Heuristic for Short Homology Basis of Digital Objects

ᄂ Background
ᄂ Persistent Homology

A Heuristic for Short Homology Basis of Digital Objects

-Background

-Persistent Homology

A Heuristic for Short Homology Basis of Digital Objects

- Background
$\left\llcorner_{\text {Persistent Homology }}\right.$

Sketch of persistent homology computation:

- Sort cells according to the filtration
- For each cell, associate it with one of the previous ones
- Each of these pairs makes a persistence pair

Persistence pairs

$P D(F)=\left\{(i, j)\right.$ with multiplicity $\left.\mu_{i, j}\right\}$
We also obtain:

- A partial matching of cells
- A cycle associated to each pair (\simeq hole)

ᄂ Background
ᄂ HDVF

Outline

1 Introduction

2 Background

- Digital Geometry
- Persistent Homology
- HDVF

3 Algorithm

4 Conclusion

Homological Discrete Vector Field

Let K be a cubical complex and $P, S \subset K, P \cap S=\emptyset$. (P, S) is a HDVF if $j_{P} \circ \partial \circ i_{S}$ is an isomorphism.
where

- is : $S \rightarrow K$ inclusion
- $j_{P}: K \rightarrow P$ projection
($j_{P} \circ \partial \circ$ is) is an invertible submatrix of the boundary matrix

$$
\partial_{1}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \quad \partial_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

$$
\partial_{1}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \quad \partial_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

$P=\{1,2,3,4\}, S=\{a, b, c, d\}$ is not a HDVF (not invertible)

$$
\partial_{1}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \quad \partial_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

$P=\{1,2,3,4\}, S=\{a, b, c, d\}$ is not a HDVF (not invertible)
$P=\{1,2,3, a\}, S=\{a, b, c, A\}$ is not a $\operatorname{HDVF}(P \cap S \neq \emptyset)$

$$
\partial_{1}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \quad \partial_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

$P=\{1,2,3,4\}, S=\{a, b, c, d\}$ is not a HDVF (not invertible)
$P=\{1,2,3, a\}, S=\{a, b, c, A\}$ is not a $\operatorname{HDVF}(P \cap S \neq \emptyset)$
$P=\{1,2,3, d\}, S=\{a, b, c, A\}$ is a HDVF

A maximal HDVF provides:

- A homology basis
- A cohomology basis
- Check if a cycle is trivial

■ Check if two cycles are homologous

Outline

1 Introduction

2 Background

3 Algorithm

- Description
- Comparison
- Results

4 Conclusion

Simplest case: only one hole
1 Get some candidate (non trivial) cycles
2 Keep the shortest one

Simplest case: only one hole
1 Get some candidate (non trivial) cycles
2 Keep the shortest one

Simplest case: only one hole
1 Get some candidate (non trivial) cycles
2 Keep the shortest one

General case: more than one hole
1 Get some candidate (non trivial) cycles
2 Keep the shortest cycles that make a homology basis

General case: more than one hole
1 Get some candidate (non trivial) cycles
2 Keep the shortest cycles that make a homology basis

General case: more than one hole
1 Get some candidate (non trivial) cycles
2 Keep the shortest cycles that make a homology basis

Pitfalls:

1 How to find good candidate cycles?
2 A cycle is trivial or not?
3 A set of cycles is a homology basis?

Description

Outline

1 Introduction

2 Background

3 Algorithm

- Description
- Comparison
- Results

4 Conclusion

Our algorithm has 4 steps
1 Breadth balls (good starting points)
2 Compute filtrations (candidate cycles)
3 Sort and annotate (cycles to classes)
4 Earliest basis (shortest homology basis)

Notation:

- K is the cubical complex of a digital object O
- We fix $q \geq 1$ and we look for a short homology basis for $H_{q}(K)$
- $g:=\operatorname{dim}\left(H_{q}(K)\right)$

Step 1 - Breadth balls

- Full ${ }^{6}$ cubical complex + signed distance function $f_{s d t}=$ filtration

■ Compute partial matching $M=\left\{\left(\sigma_{1}, \tau_{1}\right) \ldots\right\}$

- Get $\mathcal{B}=$ cells τ such that

1 $(\sigma, \tau) \in M$
$2 f_{\text {sdt }}(\sigma)<0<f_{\text {sdt }}(\tau)$
$3 \operatorname{dim}(\sigma)=q$
These are the centers of the breadth balls of the digital object O
${ }^{6}$ Other approaches: convex hull, homotopical closing

L Algorithm

- Description

Step 1 - Breadth balls

Step 2 - Compute filtrations

For each $\tau \in \mathcal{B}(\tau \notin K)$, we compute a discrete geodesic transform:

Discrete geodesic transform

Let K be a cubical complex, $\tau_{0} \in K$ a 0 -cube,

$$
f_{K, \tau_{0}}(\sigma)= \begin{cases}\text { size of shortest path to } \tau_{0} & \text { if } \operatorname{dim}(\sigma)=0 \\ \max \left\{f_{K, \tau_{0}}\left(\sigma^{\prime}\right): \sigma^{\prime} \subset \sigma, \operatorname{dim}\left(\sigma^{\prime}\right)=0\right\} & \text { if } \operatorname{dim}(\sigma)>0\end{cases}
$$

Step 2 - Compute filtrations

Then, for each $\tau \in \mathcal{B}$

- Let $\tau_{0} \in K$ be a closest 0 -cube to τ
- $f_{K, \tau_{0}}$ is a filtration over K

■ Persistent homology computation $\rightarrow\left\{x_{1} \ldots x_{g}\right\}$ a homology basis for K

- $|\mathcal{B}|=g \Rightarrow$ we compute g homology bases $=g^{2}$ cycles

Step 3 - Sort and annotate

We sort the g^{2} cycles by size: $\left\{x_{1} \ldots x_{g^{2}}\right\}$

To find a basis, we need to write these cycles in a homology basis: an annotation

Annotation

Homomorphism a: $K_{q} \rightarrow H_{q}(C)$ such that for any two q-cycles $x, y, a(x)=a(y)$ iff $[x]=[y]$.

This is simply a linear map that projects each cycle onto the homology group, a $g \times\left|K_{q}\right|$ matrix.

Step 3 - Sort and annotate

$$
H_{1}(K)=\left\langle e_{1}, e_{2}\right\rangle
$$

Step 3 - Sort and annotate

L Algorithm
$L_{\text {Description }}$

Step 3 - Sort and annotate

L Algorithm
L Description

Step 3 - Sort and annotate

$$
\begin{aligned}
& H_{1}(K)=\left\langle e_{1}, e_{2}\right\rangle \\
& a(x)=e_{1}+e_{2}
\end{aligned}
$$

Step 3 - Sort and annotate

We compute an annotation with a HDVF:
1 Let $M=\bigcup_{i \in I}\left\{\left(\sigma_{i}, \tau_{i}\right)\right\}$ be the partial matching of cells computed by any of the filtrations in Step 2
2 Define $P:=\{\sigma:(\sigma, \tau) \in M, \operatorname{dim}(\sigma)=q\}$ and $S:=\{\tau:(\sigma, \tau) \in M, \operatorname{dim}(\tau)=q+1\}$
$3(P, S)$ is a HDVF and the linear map (matrix)

$$
a=\left(j_{C} \circ \partial_{q+1} \circ i_{S}\right) \circ\left(j_{P} \circ \partial_{q+1} \circ i_{S}\right)^{-1} \circ j_{P}+j_{C}
$$

is an annotation
4 Computation: get $A=\left(j c \circ \partial_{q+1} \circ i_{S}\right), B=\left(j p \circ \partial_{q+1} \circ i_{S}\right)$, and compute $A \cdot B^{-1}$

Step 4 - Earliest basis

- Let Y be the $g \times g^{2}$ matrix with columns $a\left(x_{1}\right) \ldots a\left(x_{g^{2}}\right)$

■ Get the first columns to make a basis with gaussian elimination

- Return the corresponding cycles

$$
\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Step 4 - Earliest basis

- Let Y be the $g \times g^{2}$ matrix with columns $a\left(x_{1}\right) \ldots a\left(x_{g^{2}}\right)$

■ Get the first columns to make a basis with gaussian elimination

- Return the corresponding cycles

$$
\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}\right] \quad \text { col: } 1
$$

Step 4 - Earliest basis

- Let Y be the $g \times g^{2}$ matrix with columns $a\left(x_{1}\right) \ldots a\left(x_{g^{2}}\right)$

■ Get the first columns to make a basis with gaussian elimination

- Return the corresponding cycles

$$
\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right] \quad \text { col: } 1
$$

Step 4 - Earliest basis

- Let Y be the $g \times g^{2}$ matrix with columns $a\left(x_{1}\right) \ldots a\left(x_{g^{2}}\right)$

■ Get the first columns to make a basis with gaussian elimination

- Return the corresponding cycles

$$
\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right] \quad \text { col: } 2
$$

Step 4 - Earliest basis

- Let Y be the $g \times g^{2}$ matrix with columns $a\left(x_{1}\right) \ldots a\left(x_{g^{2}}\right)$

■ Get the first columns to make a basis with gaussian elimination

- Return the corresponding cycles

$$
\left[\begin{array}{lllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] \quad \text { col: } 2
$$

Step 4 - Earliest basis

- Let Y be the $g \times g^{2}$ matrix with columns $a\left(x_{1}\right) \ldots a\left(x_{g^{2}}\right)$

■ Get the first columns to make a basis with gaussian elimination

- Return the corresponding cycles

$$
\left[\begin{array}{lllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] \quad \text { col: } 6
$$

Step 4 - Earliest basis

- Let Y be the $g \times g^{2}$ matrix with columns $a\left(x_{1}\right) \ldots a\left(x_{g^{2}}\right)$

■ Get the first columns to make a basis with gaussian elimination

- Return the corresponding cycles

$$
\left[\begin{array}{lllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] \quad \text { col: } 6
$$

Step 4 - Earliest basis

- Let Y be the $g \times g^{2}$ matrix with columns $a\left(x_{1}\right) \ldots a\left(x_{g^{2}}\right)$

■ Get the first columns to make a basis with gaussian elimination

- Return the corresponding cycles
$\left[\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right] \quad$ col: 6
Short homology basis: $\left\{x_{1}, x_{2}, x_{6}\right\}$

Comparison

Outline

1 Introduction

2 Background

3 Algorithm

- Comparison
- Results

4 Conclusion

Focus on the algorithm by Dey et al (2018):
1 Compute one filtration per 0-cube (fast matrix multiplication)
2 Sort all $\left|K_{0}\right| \cdot g$ cycles
3 Compute annotation (LSP-decomposition, fast matrix multiplication)
4 Earliest basis using (LSP-decomposition)
This is a theoretical algorithm using fast matrix multiplication

We simplify it to compare it with ours:
1 Compute g filtrations from random 0-cubes
2 Sort all $g \cdot g$ cycles
3 Compute annotation (with a HDVF)
4 Earliest basis (with gaussian elimination)
This adaptation can be computed and has a similar time complexity

Table: Average sizes of the homology bases produced by both algorithms

Object	Us	Dey et al*
Amphora	930	1068.0
Dancing	902	1042.6
Eight	356	417.0
Fertility	962	999.8
Neptune	640	663.0
Pegasus	1032	1182.8

ᄂ Algorithm
$\left\llcorner_{\text {Results }}\right.$

Outline

1 Introduction

2 Background

3 Algorithm

- Description
- Comparison

■ Results

4 Conclusion

ᄂ Algorithm
$\square_{\text {Results }}$

A Heuristic for Short Homology Basis of Digital Objects

ᄂ Algorithm
$\left\llcorner_{\text {Results }}\right.$

ᄂ Algorithm
$\left\llcorner_{\text {Results }}\right.$

A Heuristic for Short Homology Basis of Digital Objects

ᄂ Algorithm
LResults

Outline

1 Introduction

2 Background

3 Algorithm

4 Conclusion

Conclusion:
■ Heuristic for short homology generators

- Dey et al* is not that bad
- $\mathcal{O}\left(m^{3}+g \cdot n^{3}\right)$ time complexity

■ Easy to implement, check our code

Perspectives:

- Two step algorithm: initial solution + optimization
- Improve length (area, volume...) estimation
- Faster algorithm for the annotation

Perspectives:

- Two step algorithm: initial solution + optimization
- Improve length (area, volume...) estimation
- Faster algorithm for the annotation

Thanks! Questions?

