Aldo Gonzalez-Lorenzo, Alexandra Bac, Jean-Luc Mari

Aix-Marseille Université / CNRS, LIS UMR 7020

December 15, 2022

2 Background

4 Conclusion

Introduction

1 Introduction

- 2 Background
- 3 Algorithm

4 Conclusion

- Introduction

Problem: visualize the holes in a digital object

Why? Identify errors, measure holes

- Introduction

Approach:

- Visualize holes as homology cyles (~ discrete manifolds)
- Short cycles are better (tight, well located)

Introduction

¹Dey et al: Efficient algorithms for computing a minimal homology basis (2018)

²Chen and Friedman: Hardness results for homology localization (2011)

Introduction

Computing a minimal radius homology basis

- size of cycle: radius of smallest geodesic ball containing it
- $q \geq 1$: $\mathcal{O}(eta_q \cdot n^4)^3$, then $\mathcal{O}(n^{\omega+1})^4$

Theoretical algorithm, not implemented

 $^{3}\mbox{Chen}$ and Friedman: Measuring and computing natural generators for homology groups (2011)

⁴Dey et al: Efficient algorithms for computing a minimal homology basis (2018)

- Introduction

Goal: we want an algorithm that

- 1 can be implemented in practice
- **2** is faster (even if it is worse)

A Heuristic for Short Homology Basis of Digital Objects

- Digital Geometry
- Persistent Homology
- HDVF

3 Algorithm

4 Conclusion

- \square Background
 - Digital Geometry

1 Introduction

- 2 BackgroundDigital Geometry
 - Persistent Homology
 - HDVF

3 Algorithm

4 Conclusion

 \square Background

└─Digital Geometry

Digital object

A *n*D digital object is a subset of \mathbb{Z}^n

A Heuristic for Short Homology Basis of Digital Objects

Digital Geometry

Signed distance transform

Let O be a digital object,

$$sdt_O(x) = egin{cases} -d(x,O^c) & ext{if } x \in O \ d(x,O) & ext{if } x \notin O \end{cases}$$

Figure: Sublevel sets of the signed distance transform

A Heuristic for Short Homology Basis of Digital Objects

Digital Geometry

Cubical complex

A Heuristic for Short Homology Basis of Digital Objects

Digital Geometry

Cubical complex

A Heuristic for Short Homology Basis of Digital Objects

Digital Geometry

Cubical complex

A Heuristic for Short Homology Basis of Digital Objects

Digital Geometry

Cubical complex

A Heuristic for Short Homology Basis of Digital Objects

Digital Geometry

Cubical complex

A Heuristic for Short Homology Basis of Digital Objects

Background

Digital Geometry

Digital object \longrightarrow cubical complex ((3ⁿ - 1)-connectivity)

 \square Background

Persistent Homology

1 Introduction

2 Background
Digital Geometry
Persistent Homology
HDVF

3 Algorithm

4 Conclusion

Background

Persistent Homology

Blue: 1-cube Red: its boundary (faces)

Background

Persistent Homology

Blue: 2-cube Red: its boundary (faces)

Background

Persistent Homology

Blue: 1-chain Red: its boundary

Background

Persistent Homology

Blue: 1-chain (1-cycle) Red: its boundary $(= \emptyset)$

Background

Persistent Homology

Blue: 2-chain Red: its boundary (1-cycle)

Background

Persistent Homology

Blue: 1-chain (1-cycle, but not boundary) Red: its boundary (= \emptyset)

A Heuristic for Short Homology Basis of Digital Objects

Persistent Homology

- *K* cubical complex
- Chain complex of K

$$\cdots \mathsf{C}_3 \xrightarrow{d_3} \mathsf{C}_2 \xrightarrow{d_2} \mathsf{C}_1 \xrightarrow{d_1} \mathsf{C}_0 \xrightarrow{d_0} \mathsf{0}$$

where $d_q d_{q+1} = 0 \Rightarrow \operatorname{im}(d_{q+1}) \subset \operatorname{ker}(d_q)$

• *q*-dimensional homology group (vector space) $H_q(K) := \ker(d_q) / \operatorname{im}(d_{q+1})^5 = (\mathbb{F}_2)^{\beta_q}$

$${}^{5}\forall x, y \in \ker(d_q), x \sim y \Leftrightarrow x + y \in \operatorname{im}(d_{q+1})$$

A Heuristic for Short Homology Basis of Digital Objects

- β_q := dim(H_q(K)): number of holes (connected components, tunnels, cavities...)
- \blacksquare Homology basis: set of independent classes \rightarrow cycles

A Heuristic for Short Homology Basis of Digital Objects

Background

Persistent Homology

• Filtration $F: K_1 \subset K_2 \subset K_3 \subset \cdots$

• Usually defined by a function $f: K \to \mathbb{R}$

•
$$\beta_{i,j} = \dim(\iota : H(K_i) \to H(K_j))$$

number of holes in K_i still in K_j

•
$$\mu_{i,j} = \beta_{i,j} - \beta_{i,j+1} - \beta_{i-1,j} + \beta_{i-1,j+1}$$

number of holes born in K_i and dying in K_j

Background

Background

Background

Background

A Heuristic for Short Homology Basis of Digital Objects

- Background
 - Persistent Homology

A Heuristic for Short Homology Basis of Digital Objects

Background

Persistent Homology

Sketch of persistent homology computation:

- Sort cells according to the filtration
- For each cell, associate it with one of the previous ones
- Each of these pairs makes a persistence pair

Persistence pairs

 $PD(F) = \{(i, j) \text{ with multiplicity } \mu_{i, j}\}$

We also obtain:

- A partial matching of cells
- A cycle associated to each pair (\simeq hole)

Background

HDVF

1 Introduction

2 Background

- Digital GeometryPersistent Homology
- HDVF

3 Algorithm

4 Conclusion

Background

Homological Discrete Vector Field

Let K be a cubical complex and $P, S \subset K, P \cap S = \emptyset$. (P, S) is a HDVF if $j_P \circ \partial \circ i_S$ is an isomorphism.

where

• $i_S : S \to K$ inclusion

• $j_P : K \to P$ projection

 $(j_P \circ \partial \circ i_S)$ is an invertible submatrix of the boundary matrix
А	Heuristic	for	Short	Homology	Basis of	Digital	Objects
---	-----------	-----	-------	----------	----------	---------	---------

Background			
HDVF			

$$\partial_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \partial_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

А	Heuristic	for	Short	Homology	Basis	of Dig	ital Obje	ects
---	-----------	-----	-------	----------	-------	--------	-----------	------

Background			
⊢HDVF			

 $P = \{1, 2, 3, 4\}, S = \{a, b, c, d\}$ is not a HDVF (not invertible)

А	Heuristic	for	Short	Homology	Basis	of Dig	ital Obje	ects
---	-----------	-----	-------	----------	-------	--------	-----------	------

Background			
⊢HDVF			

 $P = \{1, 2, 3, 4\}, S = \{a, b, c, d\} \text{ is not a HDVF (not invertible)} \\ P = \{1, 2, 3, a\}, S = \{a, b, c, A\} \text{ is not a HDVF } (P \cap S \neq \emptyset)$

А	Heuristic	for	Short	Homolo	gy Basis	of	Digital	Objects
---	-----------	-----	-------	--------	----------	----	---------	---------

Background			
⊢HDVF			

 $P = \{1, 2, 3, 4\}, S = \{a, b, c, d\} \text{ is not a HDVF (not invertible)}$ $P = \{1, 2, 3, a\}, S = \{a, b, c, A\} \text{ is not a HDVF } (P \cap S \neq \emptyset)$ $P = \{1, 2, 3, d\}, S = \{a, b, c, A\} \text{ is a HDVF}$

A Heuristic for Short Homology Basis of Digital Objects

- Back	ground
∟н	DVF

A maximal HDVF provides:

- A homology basis
- A cohomology basis
- Check if a cycle is trivial
- Check if two cycles are homologous

· · · ·

A Heuristic for Short Homology Basis of Digital Objects

Outline

2 Background

- Description
- Comparison
- Results

4 Conclusion

Simplest case: only one hole

- 1 Get some candidate (non trivial) cycles
- **2** Keep the shortest one

Simplest case: only one hole

- 1 Get some candidate (non trivial) cycles
- **2** Keep the shortest one

Simplest case: only one hole

- 1 Get some candidate (non trivial) cycles
- **2** Keep the shortest one

General case: more than one hole

- **1** Get some candidate (non trivial) cycles
- 2 Keep the shortest cycles that make a homology basis

General case: more than one hole

- **1** Get some candidate (non trivial) cycles
- 2 Keep the shortest cycles that make a homology basis

General case: more than one hole

- **1** Get some candidate (non trivial) cycles
- 2 Keep the shortest cycles that make a homology basis

Pitfalls:

- 1 How to find good candidate cycles?
- 2 A cycle is trivial or not?
- 3 A set of cycles is a homology basis?

- Algorithm
 - Description

1 Introduction

2 Background

- Comparison
- Results

4 Conclusion

Algorithm

-Description

Our algorithm has 4 steps

- Breadth balls (good starting points)
- 2 Compute filtrations (candidate cycles)
- **3** Sort and annotate (cycles to classes)
- 4 Earliest basis (shortest homology basis)

Algorithm

Description

Notation:

- K is the cubical complex of a digital object O
- We fix $q \ge 1$ and we look for a short homology basis for $H_q(K)$
- $g := \dim(H_q(K))$

Algorithm

Description

Step 1 - Breadth balls

- Full⁶ cubical complex + signed distance function f_{sdt} = filtration
- Compute partial matching $M = \{(\sigma_1, \tau_1) \dots \}$
- Get $\mathcal{B} = \text{cells } \tau$ such that

1
$$(\sigma, \tau) \in M$$

2 $f_{sdt}(\sigma) < 0 < f_{sdt}(\tau)$
3 $\dim(\sigma) = q$

These are the centers of the breadth balls of the digital object O

⁶Other approaches: convex hull, homotopical closing

Algorithm

Description

Step 1 - Breadth balls

Algorithm

Description

Step 2 - Compute filtrations

For each $\tau \in \mathcal{B}$ ($\tau \notin \mathcal{K}$), we compute a discrete geodesic transform:

Discrete geodesic transform

Let K be a cubical complex, $\tau_0 \in K$ a 0-cube,

$$f_{\mathcal{K},\tau_0}(\sigma) = \begin{cases} \text{size of shortest path to } \tau_0 & \text{if } \dim(\sigma) = 0\\ \max\{f_{\mathcal{K},\tau_0}(\sigma') : \sigma' \subset \sigma, \dim(\sigma') = 0\} & \text{if } \dim(\sigma) > 0 \end{cases}$$

Algorithm

Description

Step 2 - Compute filtrations

Then, for each $\tau \in \mathcal{B}$

- Let $au_0 \in K$ be a closest 0-cube to au
- f_{K,τ_0} is a filtration over K
- Persistent homology computation $\rightarrow \{x_1 \dots x_g\}$ a homology basis for K

•
$$|\mathcal{B}| = g \Rightarrow$$
 we compute g homology bases $= g^2$ cycles

A Heuristic for Short Homology Basis of Digital Objects

Description

Step 3 - Sort and annotate

```
We sort the g^2 cycles by size: \{x_1 \dots x_{g^2}\}
```

To find a basis, we need to write these cycles in a homology basis: an *annotation*

Annotation

Homomorphism $a : K_q \to H_q(C)$ such that for any two q-cycles x, y, a(x) = a(y) iff [x] = [y].

This is simply a linear map that projects each cycle onto the homology group, a $g \times |K_q|$ matrix.

Algorithm

Description

$$H_1(K) = \langle e_1, e_2 \rangle$$

Algorithm

Description

$$H_1(K) = \langle e_1, e_2 \rangle$$

$$a(x) = 0$$

Algorithm

Description

$$H_1(K) = \langle e_1, e_2 \rangle$$

$$a(x) = e_1$$

Algorithm

Description

$$H_1(K) = \langle e_1, e_2 \rangle$$

$$a(x) = e_1 + e_2$$

A Heuristic for Short Homology Basis of Digital Objects

Description

Step 3 - Sort and annotate

We compute an annotation with a HDVF:

- Let $M = \bigcup_{i \in I} \{(\sigma_i, \tau_i)\}$ be the partial matching of cells computed by any of the filtrations in Step 2
- 2 Define $P := \{ \sigma : (\sigma, \tau) \in M, \dim(\sigma) = q \}$ and $S := \{ \tau : (\sigma, \tau) \in M, \dim(\tau) = q + 1 \}$

3 (P, S) is a HDVF and the linear map (matrix)

$$a = (j_{\mathcal{C}} \circ \partial_{q+1} \circ i_{\mathcal{S}}) \circ (j_{\mathcal{P}} \circ \partial_{q+1} \circ i_{\mathcal{S}})^{-1} \circ j_{\mathcal{P}} + j_{\mathcal{C}}$$

is an annotation

4 Computation: get $A = (j_C \circ \partial_{q+1} \circ i_S)$, $B = (j_P \circ \partial_{q+1} \circ i_S)$, and compute $A \cdot B^{-1}$

Algorithm

Description

Step 4 - Earliest basis

- Let Y be the $g \times g^2$ matrix with columns $a(x_1) \dots a(x_{g^2})$
- Get the first columns to make a basis with gaussian elimination
- Return the corresponding cycles

Algorithm

Description

Step 4 - Earliest basis

- Let Y be the $g \times g^2$ matrix with columns $a(x_1) \dots a(x_{g^2})$
- Get the first columns to make a basis with gaussian elimination
- Return the corresponding cycles

Algorithm

Description

Step 4 - Earliest basis

- Let Y be the $g \times g^2$ matrix with columns $a(x_1) \dots a(x_{g^2})$
- Get the first columns to make a basis with gaussian elimination
- Return the corresponding cycles

Algorithm

Description

Step 4 - Earliest basis

- Let Y be the $g \times g^2$ matrix with columns $a(x_1) \dots a(x_{g^2})$
- Get the first columns to make a basis with gaussian elimination

col: 2

Return the corresponding cycles

Algorithm

Description

Step 4 - Earliest basis

- Let Y be the $g \times g^2$ matrix with columns $a(x_1) \dots a(x_{g^2})$
- Get the first columns to make a basis with gaussian elimination
- Return the corresponding cycles

Algorithm

Description

Step 4 - Earliest basis

- Let Y be the $g \times g^2$ matrix with columns $a(x_1) \dots a(x_{g^2})$
- Get the first columns to make a basis with gaussian elimination
- Return the corresponding cycles

Algorithm

Description

Step 4 - Earliest basis

- Let Y be the $g \times g^2$ matrix with columns $a(x_1) \dots a(x_{g^2})$
- Get the first columns to make a basis with gaussian elimination
- Return the corresponding cycles

Algorithm

Description

Step 4 - Earliest basis

- Let Y be the $g \times g^2$ matrix with columns $a(x_1) \dots a(x_{g^2})$
- Get the first columns to make a basis with gaussian elimination
- Return the corresponding cycles

Short homology basis: $\{x_1, x_2, x_6\}$

- Algorithm
 - Comparison

1 Introduction

2 Background

A Heuristic for Short Homology Basis of Digital Objects

- Algorithm
 - Comparison

Focus on the algorithm by Dey et al (2018):

- **1** Compute one filtration per 0-cube (fast matrix multiplication)
- **2** Sort all $|K_0| \cdot g$ cycles
- Compute annotation (LSP-decomposition, fast matrix multiplication)
- 4 Earliest basis using (LSP-decomposition)
- This is a theoretical algorithm using fast matrix multiplication
A Heuristic for Short Homology Basis of Digital Objects

- Algorithm
 - Comparison

We simplify it to compare it with ours:

- **1** Compute *g* filtrations from random 0-cubes
- **2** Sort all $g \cdot g$ cycles
- **3** Compute annotation (with a HDVF)
- 4 Earliest basis (with gaussian elimination)

This adaptation can be computed and has a similar time complexity

Algorithm

Comparison

Table: Average sizes of the homology bases produced by both algorithms

Object	Us	Dey et al*
Amphora	930	1068.0
Dancing	902	1042.6
Eight	356	417.0
Fertility	962	999.8
Neptune	640	663.0
Pegasus	1032	1182.8

- Algorithm
 - Results

1 Introduction

2 Background

- Description
- Comparison
- Results

- Algorithm

A Heuristic for Short Homology Basis of Digital Objects

— Algorithm	
Results	

Algorithm	
Results	

Algorithm		
Results		

A Heuristic for Short Homology Basis of Digital Objects

- Algorithm
 - Results

- Conclusion

2 Background

- Conclusion

Conclusion:

- Heuristic for short homology generators
- Dey et al* is not that bad
- $\mathcal{O}(m^3 + g \cdot n^3)$ time complexity
- Easy to implement, check our code

- Conclusion

Perspectives:

- Two step algorithm: initial solution + optimization
- Improve length (area, volume...) estimation
- Faster algorithm for the annotation

- Conclusion

Perspectives:

- Two step algorithm: initial solution + optimization
- Improve length (area, volume...) estimation
- Faster algorithm for the annotation

Thanks! Questions?