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maximize the values of the paths that are used a lot (while still respect-
ing the stochastic constraints). We then repeat this process, hoping to
converge on optimal values for the model parameters µ.

The reestimation formulas are as follows:

π̂i = expected frequency in state i at time t = 1(9.17)

= γi(1)

âij = expected number of transitions from state i to j
expected number of transitions from state i

(9.18)

=
�T
t=1 pt(i, j)�T
t=1 γi(t)

b̂ijk = expected number of transitions from i to j with k observed
expected number of transitions from i to j

(9.19)

=
�
{t :ot=k,1≤t≤T} pt(i, j)�T

t=1 pt(i, j)

Thus, from µ = (A, B,Π), we derive µ̂ = (Â, B̂, Π̂). Further, as proved by
Baum, we have that:

P(O|µ̂) ≥ P(O|µ)

This is a general property of the EM algorithm (see section 14.2.2). There-
fore, iterating through a number of rounds of parameter reestimation
will improve our model. Normally one continues reestimating the pa-
rameters until results are no longer improving significantly. This process
of parameter reestimation does not guarantee that we will find the best
model, however, because the reestimation process may get stuck in a lo-local maximum

cal maximum (or even possibly just at a saddle point). In most problems
of interest, the likelihood function is a complex nonlinear surface and
there are many local maxima. Nevertheless, Baum-Welch reestimation is
usually effective for HMMs.

To end this section, let us consider reestimating the parameters of the
crazy soft drink machine HMM using the Baum-Welch algorithm. If we let
the initial model be the model that we have been using so far, then train-
ing on the observation sequence (lem, ice_t, cola) will yield the following
values for pt(i, j):
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(9.20) Time (and j)
1 2 3
CP IP γ1 CP IP γ2 CP IP γ3

i CP 0.3 0.7 1.0 0.28 0.02 0.3 0.616 0.264 0.88
IP 0.0 0.0 0.0 0.6 0.1 0.7 0.06 0.06 0.12

and so the parameters will be reestimated as follows:

Original Reestimated
Π CP 1.0 1.0

IP 0.0 0.0

CP IP CP IP
A CP 0.7 0.3 0.5486 0.4514

IP 0.5 0.5 0.8049 0.1951

cola ice_t lem cola ice_t lem
B CP 0.6 0.1 0.3 0.4037 0.1376 0.4587

IP 0.1 0.7 0.2 0.1363 0.8537 0.0

Exercise 9.4 [�]

If one continued running the Baum-Welch algorithm on this HMM and this train-
ing sequence, what value would each parameter reach in the limit? Why?

The reason why the Baum-Welch algorithm is performing so strangely here
should be apparent: the training sequence is far too short to accurately rep-
resent the behavior of the crazy soft drink machine.

Exercise 9.5 [�]

Note that the parameter that is zero in Π stays zero. Is that a chance occurrence?
What would be the value of the parameter that becomes zero in B if we did an-
other iteration of Baum-Welch reestimation? What generalization can one make
about Baum-Welch reestimation of zero parameters?

9.4 HMMs: Implementation, Properties, and Variants

9.4.1 Implementation

Beyond the theory discussed above, there are a number of practical is-
sues in the implementation of HMMs. Care has to be taken to make the
implementation of HMM tagging efficient and accurate. The most obvious
issue is that the probabilities we are calculating consist of keeping on
multiplying together very small numbers. Such calculations will rapidly


