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Abstract. In this paper, a real-life problem of task scheduling with hu-
man resource allocation is addressed. This problem was approached by
the authors in the context of the ROADEF 2007 Challenge, which is an
international competition organized by the French Operations Research
Society. The subject of the contest, proposed by the telecommunica-
tions company France Télécom, consists in planning maintenance in-
terventions and teams of technicians needed for their achievements. The
addressed combinatorial optimization problem is very hard: it contains
several NP-hard subproblems and its scale (hundreds of interventions
and technicians) induces a huge combinatorics. An effective and efficient
local-search heuristic is described to solve this problem. This algorithm
was ranked 2nd of the competition (over the 35 teams who have sub-
mitted a solution). Moreover, a methodology is revealed to design and
engineer high-performance local-search heuristics for solving practically
discrete optimization problems.

1 Presentation of the problem

The problem proposed by the telecommunications company France Télécom as
subject of ROADEF 2007 Challenge [25] (an international competition organized
every two years by the French Operations Research Society) can be viewed as
a task scheduling problem with resource allocation. Here the tasks to plan are
maintenance interventions and their achievement requires human resources, some
technicians, each one having a skill level in different domains. The interventions
are more or less priority; on the whole, 4 levels of priority are defined. Then,
the objective is to minimize a linear function which depends on ending times of
latest interventions for each priority.

Formally, the input of the problem is composed of n interventions Ii and of
m technicians Tt. To each technician Tt is associated its skill level C(t, d) in the
domain d and its availability P (t, j) on day j (1 for available, 0 otherwise). Each
intervention has several characteristics too: D(i) its execution time, R(i, d, l) the
number of technicians of level l in domain d required for its completion, Z(i) its
priority level.
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Concerning skills, we precise that the different domains of skill are disjoint,
but that the levels of each domain are hierarchically organized. Then, a techni-
cian of level l in domain d is able to perform any intervention requiring a smaller
skill level (l′ < l) in the same domain. Consequently, the constants R(i, d, l) are
cumulative, in the sense that they specify the number of technicians needed at
level at least l in domain d. For example, for an intervention Ii which requires
two technicians of level 1 and one technician of level 3 in domain d, we have
R(i, d, 0) = 3, R(i, d, 1) = 3, R(i, d, 2) = 1, R(i, d, 3) = 1 and R(i, d, l) = 0 for all
l ≥ 4. Such a definition implies that the R(i, d, l) are non-increasing according
to the index l: R(i, d, l) ≥ R(i, d, l′) for all l ≤ l′.

Then, the notion of team arises. Daily, the (available) technicians must be
grouped into teams (even if a team may be composed of only one technician). We
insist on the fact that a team is formed for the entire day (for practical reasons).
Then, the problem is to partition daily the technicians into teams and to assign
them a set of interventions, in order to minimize an objective function depending
on the ending dates of the interventions. Two constraints lie on this assignment:
the sum of the lengths of interventions (which are completed sequentially) can
not exceed the length of a working day fixed to H = 120 and the skills of the
team must cover the skills required by the set of tasks in each domain. Finally,
a solution of the problem is given as follows: for each day j, the team Ej,e to
which belongs the technician Tt (the team Ej,0 contains all the technicians not
available on this day); for each intervention Ii, the day ji and the starting time
hi of its execution as well as the team Ej,e in charge of its execution.

The objective of the planning is to minimize the following cost function:
28t1 +14t2 +4t3 +f , where tk denotes the ending date among those of the latest
interventions of priority k and f denotes the ending date of all interventions.
The starting date di (resp. ending date fi) of an intervention Ii is obtained as
ji ·H + hi (resp. ji ·H + hi + D(i)), the days being numbered from 0. Initially,
this objective function was supposed to imply the minimization of the tk’s in
lexicographic order (t1 Â t2 Â t3 Â f). However, compensations between the four
terms of the objective function were allowed during the competition (impacting
gravely our approach as it will be seen later).

Finally, the scope of the problem may be extended in two ways. The first
is to introduce precedence relations between interventions: for all intervention
Ii, one can define a set P (i) of interventions which must be completed before
starting Ii (that is to say, any intervention Ii′ ∈ P (i) must satisfy the inequality
fi′ ≤ di). Note that the natural lapses of time between interventions (travel,
breaks, etc.) are here considered as null. The second extension is to define a
budget B allowing to subcontract a number of interventions. Then, a cost S(i)
is given for any intervention Ii and the sum of the cost S(i) of all abandoned
interventions must not exceed the budget B. In order to ensure the respect
of precedences in this case, any abandoned intervention Ii leads to recursively
abandon any intervention Ii′ such that Ii ∈ P (i′).
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2 Contributions

To the best of our knowledge, this problem was never addressed in these terms
in the literature, both from fundamental and experimental points of view. Be-
cause of its large definition, the problem contains several NP-hard subproblems.
For any partition of technicians into teams a given day, determining if a set of
interventions is assignable to these teams while respecting the working duration
H, the precedence constraints and the skill constraints is NP-complete, even if
the execution time of all interventions is unit (all interventions have equal exe-
cution time), the number of teams is fixed to two and the precedence graph is
isomorphic to a set of vertex-disjoint paths [15]. In the case of arbitrary prece-
dence constraints, the problem remains NP-complete, even if the execution time
of all interventions is unit and the skill constraints are omitted (any intervention
can be performed by any team) [8]. Minimizing the number of days to plan all
interventions is NP-hard in the strong sense, even if the interventions are per-
formed by one sole team each day (containing all available technicians), without
precedence and skill constraints. Indeed, this subproblem corresponds to a bin-
packing problem [8] when the length H is given as an input of the problem.
Finally, maximizing the sum of lengths of the set of abandoned interventions is
equivalent to a knapsack problem (with precedence constraints) [8].

Because of its hardness and large scale (hundreds of interventions and tech-
nicians), such a problem is typical of real-life discrete optimisation problems en-
countered in business and industry. In this paper, an effective and efficient local-
search heuristic is described to solve this problem. Our algorithm was ranked
2nd of the ROADEF 2007 Challenge (over the 35 teams who have submitted
a solution). The victorious algorithm, due to Hurkens [14], can be viewed as
a local-search heuristic where large neighborhoods [1] are explored by integer
linear programming (using ilog cplex 10.0 solver); the team Cordeau-Laporte-
Pasin-Ropke [4], ranked 2nd ex æquo, have also developed a large neighborhood
search approach, but based on destroy and repair moves. Before describing our
algorithm, we outline the methodology followed to design and implement it. This
methodology, already used at our winning participation to the ROADEF 2005
Challenge [5, 6, 24], is a simple and clear recipe to engineer high-performance
local-search heuristics for solving practically discrete optimization problems. An-
other successful application of this methodology for solving real-life inventory
routing problems is presented in a companion paper [3].

For more details on high-performance algorithm engineering, the reader is
referred to the papers by Moret et al. [20, 21] and, as an example, to the out-
standing works of Helsgaun [11–13] on the traveling salesman problem.

3 Methodology: three-layers design

Several papers have been published describing methodologies for engineering
local-search heuristics (see for example the survey edited by Aarts and Lenstra
[2]). But many of these methodological papers are essentially concentrating on
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search strategies and more particularly metaheuristics (see for example [10, 17,
22]). In this paper, we suggest to approach the engineering of local-search heuris-
tics according to the following abc framework: a) search strategy, b) moves, c)
algorithmics & implementation. We claim that the performance of local-search
heuristics depends equally on the good treatment of each of these three layers.
In fact, each one covers a fondamental point of the local-search paradigm: the
definition of the search graph and the exploration of this graph. Figure 1 sum-
marizes the key points of the methodology; note that only a few simple concepts
are introduced for describing this one.

search strategy

definition of
the search graph

exploration of
the search graph

moves

effectiveness

robustness

efficiency

reliability

algorithmics &
implementation

Fig. 1. The three layers of the methodology.

The search space S = (S, f), with S the set of solutions of the problem
and f : S 7→ R the objective function to minimize over this set, is defined as
the discrete space into which local search walks. The search strategy, dedicated
to the problem (or even to instances of the problem), allows to redefine the
search space S if necessary. Indeed, the design of the search strategy may lead
to redefine the original couple (S, f) into a surrogate one, denoted by (Sg, fg),
which supports the convergence of local search towards high-quality local optima.
The idea is to increase the density of the search space S (more solutions in Sg).
A way to do that is to relax some constraints of the problem by switching them
into the objective function (similarly to Lagrangian relaxations in mathematical
programming [19, pp. 349–368]). The idea is to relax only business constraints,
and not physical constraints inducing the intrinsic combinatorial structure of the
problem (matching, partial ordering, etc.). Indeed, relaxing constraints which
strongly structure the solutions of the problem enables a wider diversification,
but makes more difficult the convergence toward a new admissible solution.

Then, the search graph G = (Sg, fg, A), associated to a local-search algorithm,
is defined as the directed graph obtained by adding an arc a ∈ A from s ∈ Sg

to s′ ∈ Sg if a move allows to reach the solution s′ from s. Vertices of S ⊆ Sg

are green, whereas vertices in Sg \ S are red. In the same way, the set A of arcs
is partitioned such that (s, s′) ∈ A is green if fg(s′) ≤ fg(s), or red otherwise.
Then, the iterations of a local-search algorithm (that is, all the solutions visited
during its walk) draw a subgraph in its associated search graph G, inducing a



High-performance local search 5

green-arc path. Thus, the red points of the space serve as bridging points to
reach better admissible solutions, that is, green points having a better cost in
the sense of f .

The moves (also called transformations) play a central role because they
induce the connectivity of the search graph, which is decisive for convergence.
Then the idea is to increase the density of the search graph G (more arcs in A)
by defining a lot of moves, more or less orthogonal, more or less large, more or
less specialized. This latter notion consists in increasing the success probability
of a move (the number of red arcs visited before finding a green one) by using
structural properties specific to the problem or even to the instances (see for
example the work of Helsgaun [11–13] on travelling salesman problems or the
works of the authors [5, 6] on car sequencing problems). Note that the idea which
consists in using systematically a large pool of moves (i.e., of neighborhoods)
appears at the root of well-known metaheuristics like Iterated Local Search or
Variable Neighborhood Search (see [9] for more details).

This is at these levels – search strategy and moves – that some fragments of
metaheuristics can be incorporated (thresholds, tabu lists). However, from our
point of view, the diversification of the search must be firstly attained through
the (re)definition of the search space (density) and the definition of moves (con-
nectivity), and not only through a meta-strategy. The main reason is that such
a diversification is guided and controlled via the surrogate objective function,
unlike traditional metaheuristics. This is why we prefer, at least for starting, im-
plementing a basic first-improvement descent strategy [2] with stochastic choice
of moves. In this case, the diversification is realized by accepting to move to
solutions with equal cost. Note that the introduction of stochastic elements in
every choice made during the search is shown to improve the diversification,
in particular by naturally avoiding cycling phenomena (nevertheless, stochastic
does not mean uniform).

Finally, algorithmics, in particular those related to the evaluation of moves
(that is, the exploration of neighborhoods), is crucial for efficiency. Since local
search is an incomplete search technique, its effectiveness is closely linked to
the number of solutions visited before the time limit. In this way, algorithmics
forms the engine of the search. Incremental algorithms, exploiting invariants in
discrete structures, help to speed up the convergence of local search by several
orders of magnitude (see for example the works of Katriel et al. [16] in the
context of the Comet software [18]). Then, careful implementations, aware of
the locality principle ruling the cache memory allocation and optimized by code
profiling, still helps to accelerate local search (see for example the works done
on SAT solvers [27]). From experience, it is not surprising to observe an order of
10 between the times of convergence of two local-search heuristics, apparently
based on the same principles.

Linked to algorithmics, software and implementation aspects like reliability
are no less crucial than efficiency. Because relying on complex incremental algo-
rithmics and data structures, engineering local search requires larger efforts for
verifying and testing than in traditional (business) software engineering. Hence,



6 Estellon et al.

the verification process of local-search softwares must be systematic. The first
step is to program with assertions [26] (by verifying preconditions, postcondi-
tions, invariants all along the program); in particular, one must check at each
iteration of the local search (in debugging mode) that the current solution satis-
fies the constraints of the problem and that its objective value is correct. But one
step beyond, the consistency of all dynamic data structures must be checked (in
debugging mode) after each iteration of the local search by recomputing them
from scratch (with naive algorithms independent from the local-search code).
Consequently, a large part of the source code (and of the time spent to imple-
ment) in local-search engineering projects must be dedicated to verification and
testing: from experience, code checkers represent from 10 to 20 % of the whole
source code. Reliability aspects (as well as maintainability and portability is-
sues) must be imperatively taken into account for costing tightly local-search
engineering projects.

Once these three levels have been completed, the resulting algorithm can be
evaluated by computing statistics on target instances: success rate (number of
acceptations over the number of attempts) and improvement rate (number of
improvements in the sense of f over the number of attempts) for each move,
number of iterations and time to reach best solutions. From experience, the
quest for high performance requires many stepwise refinements, following the
80-20 rule (the last 20 % of improvement takes 80 % of the engineering time).

4 Description of the algorithm

4.1 The overall heuristic

The general heuristic is divided into four successive phases, each phase k con-
sisting in planning interventions of priority k. The objective of one phase k is to
minimize the ending date tk of interventions with priority k, without degrading
ending dates of interventions with priority k′ < k. For this, a greedy algorithm
completes the feasible solution inherited from the previous phase with interven-
tions of priority k. Then, this solution is modified by local search in order to
decrease tk while maintaining ending dates tk′ for each priority k′ < k. Local
search, which is used to pack a set of interventions of a given priority, is the
critical routine of the overall heuristic.

More precisely, the local-search step for minimizing the ending date tk is
done as follows. Given one feasible solution with ending dates t1, t2, . . . , tk, a
new feasible solution with ending dates t1, t2, . . . , tk − 1 is searched. During
the search, an intervention is called infeasible if it is not completed before the
ending date tk − 1 or if the team of technicians to which this one is assigned
does not own enough skills to complete it. In this way, the surrogate objective
of local search is to minimize the number of infeasible interventions. When all
are feasible, a new feasible solution is obtained and the process is iterated. This
is an example of search strategy increasing density of the search space through
constraint relaxation, as described in the methodology section.
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A preprocessing phase was added (during the last days of the competition) to
the overall heuristic in order to deal with compensations between the four terms
of the original objective function (originally assumed to be unlikely according
to France Télécom organizers). Indeed, scheduling interventions of priority k
before interventions of priority k′ < k may be advantageous according to the
global objective function, due to the weakly discriminating coefficients (28, 14,
4, 1). This paradox induces an additional difficulty for which our heuristic was
not prepared: to determine in which order the four priorities must be scheduled.
Thus, a preprocessing phase was designed to “guess” this order. For this, inter-
ventions of each priority k are scheduled separately to determine an upper bound
of their completion time ck; concretely, this is done by the local-search routine
in a short execution time (15 seconds for each priority, 1 minute on the whole).
Then, the order kept to schedule priorities is the one which minimizes the origi-
nal objective function, with ending dates tk obtained by summing durations ck.
For example, assume that one have c1 = 1200, c2 = 120, c3 = 600. The natural
ordering of priorities induces the ending dates t1 = 1200, t2 = 1320, t3 = 1920,
which implies a cost of 59760. But, by inverting priorities 1 and 2, we obtain
t1 = 1320, t2 = 120, t3 = 1920, which implies a cost of 46320. Consequently,
the order kept for the application of the overall heuristic will be: 2, 1, 3, 4. The
experimental study presented at the end of the paper shows that the optimal
ordering of priorities differs from the natural ordering 1, 2, 3, 4 for more than
the half of all instances. However, we do not linger more on this aspect of the
problem, since our work was focused on the local-search routine.

4.2 The transformations

The local-search routine, employed to pack interventions of each priority, consists
in applying stochastically some transformations to modify the current solution.
We have defined two kinds of transformations, namely moves and swaps, applied
on two kinds of objects, namely technicians or interventions. A transformation
is accepted if the new solution respects the precedence constraints between in-
terventions, the maximal working duration H in a day, and if the number of
infeasible interventions is not increased.

Eight core transformations have been defined, which forms the engine of the
local search:

- MoveTechnician, SwapTechnicians
- MoveInterventionInterDays, SwapInterventionsInterDays
- MoveInterventionIntraDay, SwapInterventionsIntraDay
- MoveInterventionIntraTeam, SwapInterventionsIntraTeam

The transformations applied to technicians consist in moving or swapping some
technicians into a given day of the planning. The transformations applied to
interventions consist in moving or swapping interventions of the planning; the
suffixes InterDays (resp. IntraDay, IntraTeam) mean that interventions are
moved or swapped between different days (resp. into a same day, into a same
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team). Then, these 8 transformations have been specialized in order to increase
their probability of success (it can be viewed as a refinement of neighborhoods
which are explored). For each transformation, the three following declinations
are defined:

- Generic: choose technicians (resp. interventions) randomly;
- InfeasibleDay: choose randomly a day among the ones containing an infea-

sible intervention and pick technicians working this day (resp. interventions
performed this day) randomly;

- InfeasibleTeam: choose randomly a team among the ones containing an
infeasible intervention and pick technicians working in this team (resp. in-
terventions performed by this team) randomly.

Finally, additional transformations have been introduced to tackle the two possi-
ble extensions of the problem; namely, adding precedences between interventions,
and allowing to abandon interventions within the limit of a budget.

- AbandonInterventionBudget: abandon an intervention of the planning (de-
clined into Generic and InfeasibleDay);

- SwapInterventionsBudget: swap an abandoned intervention with a planned
one (declined into Generic and InfeasibleDay);

- ReinsertInterventionBudget: reinsert an abandoned intervention into the
planning;

- SwapInterventionsPrecedences: swap two interventions Ii, Ii′ such that
di ≤ di′ and the number of descendants of Ii′ in the precedence graph
is greater than or equal to the one of Ii (declined into InterDays and
IntraDay).

On the whole, a pool of 31 transformations is used. At each iteration of the heuris-
tic, a transformation is picked randomly following a certain distribution. Here the
convergence speed of the local search depends strongly of the utilization rate of
each transformation. These rates have been fixed by hand after experimentations
done with the first 20 benchmarks provided by France Télécom. Here is the out-
line of the distribution: (i) 25 % of MoveInterventionInterDays declined into
InfeasibleDay, (ii) 25 % of MoveTechnician declined into InfeasibleTeam,
(iii) 15 % of SwapTechnicians declined into InfeasibleTeam, and from 5 % to
1 % for the 28 other moves (if no budget is available, no budget-specific trans-
formation is used; idem for precedences). The prominence of transformations (i),
(ii), (iii) in the distribution is sensible: (i) is in charge of reinserting interventions
making a day infeasible into another ones, whereas (ii) and (iii) are supposed
to solve the infeasibility generated by lack of skills in teams. Note that, despite
their low utilization rate, the 28 other moves participate to the diversification of
the search.

4.3 Algorithmics & implementation

Applying a transformation follows this scheme: if the evaluation of the move
is positive (evaluate), then the move is performed and all the incremental data
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structures are updated (commit), else the incremental data structures are initial-
ized (rollback). Since the number of attempted moves is generally much higher
than the number of accepted moves, evaluate and rollback procedures are critical
for the efficiency of the local search. The evaluation procedure is staged in order
to stop early in case of rejection of the move; the different tests which are part of
it are ordered according to their time complexity and their propensity to fail. For
example, since the precedence constraints are considered as inviolable, all tests
related to precedences in the evaluation process of moves MoveIntervention
and SwapInterventions are done first. Since the evaluation process cannot be
detailed for each of the 8 core transformations, we will only insist on two main
points: the evaluation related to skills and the evaluation related to precedences.

Evaluation of skills. Any move which impacts the technicians or the interven-
tions of a team calls for an evaluation of the adequation between skills provided
by the technicians and skills required by the interventions of this team. To realize
this evaluation, to each team of technicians is associated a matrix Ce of skills
giving for each domain d and level l, the number of technicians of level at least
l in the domain d. Then, an intervention Ii assigned to the team Ee is infeasible
(according to skills) if a pair (d, l) exists such that Ci(d, l) > Ce(d, l). Since the
number of domains and levels is not bounded (for example, the instance B4 of
benchmarks provided by France Télécom includes 40 domains), it is difficult to
design a data structure more efficient than this matrix domain/level to evaluate
skills. Consequently, evaluating the impact of a move on skills becomes time
expensive in the worst case, because in O(dl) time.

Fortunately, the number of cells of this matrix which are necessary to scan
can be drastically reduced in practice. For example, the scan can be restricted
to the useful domains of the matrix of skills required by the intervention, that is,
the domains for which at least one technician is required. Then, for each useful
domain d, the scan can be reduced to an interval of levels. Remind that our skill
matrices are built cumulatively: for each domain, the number of technicians is
non-increasing according to levels. Thus, the evaluation can start at the higher
level linf such that Ci(d, linf) = Ci(d, l) for all l ≤ linf and stop at the lower level
lsup such that Ci(d, lsup) = 0.

Finally, a heuristic test with a lower time-complexity can be done before the
scan of the matrix, in order to stop earlier in case of negative evaluation. For each
domain d, define Ce(d) =

∑
l Ce(d, l) and symmetrically Ci(d) =

∑
l Ci(d, l).

Then, the following necessary condition holds: if one domain d exists such that
Ci(d) > Ce(d), then Ii is infeasible (note that the reciprocal is trivially false).
Such a test located upstream enables to determine in only O(d) time the in-
feasible status of the intervention. In the same way, it is appropriate to place
even before another test verifying if Ci =

∑
d Ci(d) is strictly greater than

Ce =
∑

d Ce(d). Finally, the evaluation of skills is composed of three successive
tests, respectively in O(1) time, in O(d) time, and in O(dl) time, each one allow-
ing to conclude in case of failure. Of course, all the structures involved in these
tests must be maintained incrementally during the search.



10 Estellon et al.

Maintaining precedences. The second point concerns the evaluation of the
ending dates t1, t2, . . . , tk−1, and more generally the evaluation of the completion
dates of the set of interventions assigned to each team. The computation of these
values are complicated by precedences between interventions, because requiring
to compute longest paths in a directed acyclic graph (DAG). For this, a DAG
is attached to each day of the planning. Each DAG contains a source node
representing the start of the day and a destination node representing its end.
Then, to each intervention planned into the day is associated one node in the
DAG. These nodes are linked by two kinds of precedences: blue arcs which induce
the order of the interventions assigned to each team of technicians into the day,
and red arcs which represent the precedences given in input. The length l(i, i′)
of the arc connecting the nodes corresponding two interventions Ii ≺ Ii′ is given
by the duration D(i) of the intervention Ii. In this way, the earliest starting date
of one intervention is determined by the length of a longest path from the source
node to its node into the DAG. This date, stored at each node, allows to verify
if the maximal working duration H is respected for all teams, and to compute
the ending dates t1, t2, . . . , tk − 1.

Thus, any transformation MoveIntervention or SwapIntervention implies
a cascade of insertion/suppression of arcs into the DAG of impacted days, need-
ing a (temporary) update of the longest paths in order to evaluate the impact of
the transformation. Since the interventions of each team are completed sequen-
tially, each node has only one blue predecessor and only one blue successor. The
red predecessors and successors are stored as unordered lists into the data struc-
ture of the node. These lists, implemented as arrays, are designed to support
basic routines (find, insert, delete, clear) in O(1) time. Such a representation
was motivated by the sparsity of the precedence graph on benchmarks A and B
(where the number of red arcs is lower than the number n of interventions).

The temporary update of longest paths is done by a recursive bread-first
propagation from the inserted/suppressed node. The new longest path at a node
is computed by scanning its predecessors: if the new longest path is different from
the old one, then the successors of the node are placed into a queue in order to
be examined recursively. This propagation also enables to detect the creation
of cycles, which makes the transformation rejected. When the maximum degree
of the DAG remains in O(1), which is the case here, our incremental algorithm
(evaluate, commit and rollback procedures) runs in optimal time and space O(a)
with a the number of affected nodes (that is, having a modified longest path).
The interested reader can consult the works of Katriel et al. [16] on the subject,
which give an incremental algorithm whose complexity becomes advantageous
when the maximum in-degree of a node is large.

An implementation detail. As claimed in introduction, every choice made
during the search follows stochastic rules, in order to avoid bias and to enforce
diversification. Then, a number of choices are made before applying each single
move. On average, the function MyRand(n), which returns a pseudo-random inte-
ger value between 0 and n−1, is called 5 times per attempted move. For example,
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the transformation MoveInterventionInterDays declined into InfeasibleDay
(which represents 25 % of attempted moves) uses it 6 times. MyRand is in fact
the portion of code which is the most called into our program (more than 10
billion of calls over 20 minutes of running time).

A direct implementation (in ISO C programming language) of MyRand(n)
is n * rand() / (RAND MAX + 1.0) [23, p. 277], where rand() is a function
of the stdlib library returning a pseudo-random integer between 0 and the
largest positive int-type number. Although providing pseudo-random integer
sequences of sufficient quality for our application, a profiling of our program
with gprof [7] pointed MyRand as the main bottleneck for running time. Inspired
by the Knuth-Lewis generator [23, pp. 283–286], we have engineered a quick
MyRand(n) function dedicated to our needs: (n * ((seed = 1664525 * seed +
1013904223) À 16)) À 16, which is correct if n is between 0 and 216 − 1 =
65535 and if the int type is encoded on 32 bits (the traditional seed of the
generator is initialized at the beginning of the program).

Experimentations on different computing platforms have shown that this
concise implementation is at least 3 times faster than the direct implementation.
The period of the generator is of length 232 > 4 × 109, which is comparable
to the one of rand() and remains sufficient in this context (from experience,
the quality of the pseudo-random number generation is not highly critical for
simulating randomness in local search). This enables us to reduce the part of
running time spent in MyRand from 17 % to 7 %, lowering it to the levels of the
other time-consuming functions of the program (the 3 functions appearing just
after MyRand, which are parts of the evaluation process, consume each one nearly
5 % of the total running time).

5 Experimental results

The whole algorithm was implemented in C programming language (ISO C99).
The resulting program, which includes nearly 12000 lines of code, was compiled
and tested on several computing platforms with comparable performance (Red
Hat Linux/AMD Athlon 64, Windows XP/Intel Pentium 4, Windows XP/Intel
Xeon, Windows Vista/Intel Xeon 64) using the free compiler GCC 3.4.4 with
options -O3 -pedantic -Wall -W -std=c99}. Note that nearly 10 % of the
source code is dedicated to the verification of the program.

The benchmarks A, B, X provided by France Télécom and used for tests
can be downloaded on the web page of the Challenge [25] (the set X, used to rank
the competitors, was unveiled once the final results proclaimed). On each tested
platform, our local-search algorithm attempts more than 1 million moves per
second, even for large-scale instances (for example instance B8: 800 interventions,
150 technicians, 10 domains and 4 levels for skills, 440 precedences. Over 20
minutes of running time (which is the maximum allowed for the competition),
the heuristic visits more than 1 billion solutions into the surrogate search space.
The average success rate of transformations (that is, the number of accepted
transformations divided by the number of attempted ones) varies between 10
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and 60 % according to the instances. The memory allocated by the program
does not exceed 10 Mo for any instance of the benchmarks (for example, 8 Mo of
memory are allocated for B8 instance), allowing a full exploitation of the cache
memory. Table 1 reports the results obtained on a computer equipped with a
Windows XP operating system and a chipset Intel Xeon 3075 (CPU 2.67 GHz, L1
cache 64 Kio, L2 cache 4 Mio, RAM 2 Go). An executable binary file (compiled
for the desired computing architecture) is available on request from the authors.

data n m d l P B FT EGN BEST gap priority attempt accept improve

A1 5 5 3 2 0 0 2490 2340 2340 0.0 % 1234 8696 M 1260 M 2
A2 5 5 3 2 2 0 4755 4755 4755 0.0 % 1234 4626 M 1530 M 2
A3 20 7 3 2 0 0 15840 11880 11880 0.0 % 2134 4262 M 1178 M 3
A4 20 7 4 3 7 0 14880 14040 13452 4.4 % 1234 4558 M 1047 M 80
A5 50 10 3 2 13 0 41220 29400 28845 2.0 % 2134 5203 M 951 M 273
A6 50 10 5 4 11 0 30090 18795 18795 0.0 % 2134 4861 M 1163 M 225
A7 100 20 5 4 31 0 38580 30540 29690 2.9 % 1234 4968 M 892 M 669
A8 100 20 5 4 21 0 26820 20100 16920 18.8 % 1234 4958 M 1176 M 1014
A9 100 20 5 4 22 0 35600 27440 27440 0.0 % 2134 5081 M 877 M 1166
A10 100 15 5 4 31 0 51720 38460 38296 0.5 % 1234 5689 M 707 M 577

B1 200 20 4 4 47 300 69960 33900 33675 0.7 % 1234 4453 M 1012 M 833
B2 300 30 5 3 143 300 34065 16260 15510 4.9 % 1234 4259 M 945 M 1195
B3 400 40 4 4 57 500 34095 16005 15870 0.9 % 1234 3722 M 825 M 1830
B4 400 30 40 3 112 300 50340 24330 23700 2.7 % 2134 2485 M 604 M 604
B5 500 50 7 4 427 900 150360 88680 87300 1.6 % 1234 3344 M 1520 M 612
B6 500 30 8 3 457 300 47595 27675 27210 1.8 % 2134 4437 M 616 M 1534
B7 500 100 10 5 387 500 56940 36900 33060 11.7 % 1234 2867 M 1544 M 643
B8 800 150 10 4 440 500 51720 36840 32160 14.6 % 1234 2927 M 1513 M 1036
B9 120 60 5 5 55 100 44640 32700 28080 16.5 % 1234 3853 M 1470 M 697
B10 120 40 5 5 55 500 61560 41280 34440 19.9 % 1234 3704 M 1499 M 565

X1 600 60 15 4 195 50 n/a 180240 151140 19.3 % 1234 2622 M 1136 M 546
X2 800 100 6 6 536 500 n/a 8370 7260 15.3 % 1234 2764 M 962 M 2712
X3 300 50 20 3 224 1000 n/a 50760 50040 1.5 % 1234 2458 M 1464 M 888
X4 800 70 15 7 321 150 n/a 68960 65400 5.5 % 2134 3383 M 623 M 2015
X5 600 60 15 4 201 50 n/a 178560 147000 21.5 % 1234 2551 M 1222 M 599
X6 200 20 6 6 128 500 n/a 10440 9480 10.2 % 1234 3573 M 1051 M 487
X7 300 50 20 3 235 1000 n/a 38400 33240 15.6 % 1234 2533 M 1405 M 527
X8 100 30 15 7 40 150 n/a 23800 23640 0.7 % 1234 2712 M 1330 M 327
X9 500 50 15 4 184 50 n/a 154920 134760 15.0 % 1234 2541 M 1156 M 522
X10 500 40 15 4 184 500 n/a 152280 137040 11.2 % 1234 2739 M 1183 M 546

average 7.3 % 3894 M 1129 M 790

Table 1. Benchmarks A, B, X: characteristics and results (M = million).

The characteristics of each instance are given on the left part of the table: the
number n of interventions, the number m of technicians, the number d of skill
domains, the number l of skill levels, the number P of (non transitive) prece-
dences between interventions, the budget B available. For each instance, 5 runs
were performed, each one limited to 1200 seconds (20 minutes). In the middle
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part of the table, the columns “FT”, “EGN”, “BEST”, “% gap”, “priority” con-
tain respectively the result obtained by France Télécom’s algorithm, the worst
result obtained by our algorithm (over the 5 runs), the best result obtained
among all the competitors (including the 5 runs of our algorithm), the relative
gap (in %) between the values of the two previous columns, and the ordering of
priorities used by the EGN algorithm (for example, the value 3214 means that
the priorities were scheduled according to the ordering 3, 2, 1, 4). In the right
part of the table, the column “attempt” (resp. “accept”, “improve”) reports the
average number of attempted transformations (resp. accepted transformations,
strictly improving transformations).

A weak gap is observed between the results of the 5 runs of our algorithm
(that is why only the worst result is given here). Note that this gap increases
with the number of planned days. Thus, gaps greater than 1 % between runs are
observed for the following instances: X1 (57 days), X5 (52 days), X9 (50 days),
X10 (49 days). Then, the relative gap between the results of our algorithm and
the best results of the Challenge shows that this one is very competitive. On
average, EGN algorithm reduces by 30 % the cost of the solutions proposed
by France Télécom (and by 41 % for the sole benchmark B). On the other
hand, the gap between our solutions and the best solutions obtained among all
competitors is of 7.3 % on average (with a standard deviation of 7.5 %). On the
30 instances, our algorithm obtains the best solution for 13 ones (7 for A, 6 for
B, 3 for X) and obtains a solution having a cost lower than 6 % of the cost of
the best solution for 18 instances (9 for A, 6 for B, 3 for X).

data EGN EGN∗ BEST % gap priority

A5 29700 28845 28845 0.0 3214
A8 20100 16979 16979 0.0 2134

B7 36900 35700 33300 7.3 2134
B9 32700 28080 28080 0.0 2134
B10 41280 34440 34440 0.0 2314

X2 8370 7440 7260 2.5 2134
X6 10440 10140 9480 7.0 2134
X7 38400 32280 32280 0.0 2134
X8 23800 23220 23220 0.0 2134

data 20 min 1 hr 3 hrs 9 hrs

X1 180240 170460 168240 158280
X5 178560 167280 165120 164760
X9 154920 146520 146040 141720
X10 152280 144360 140340 140160

Table 2. Results with optimal priority ordering (left) or extended time limits (right).

Besides, we are able to explain why EGN algorithm fails to find the best
solution for the 17 remaining instances. The main reason is that the ordering
of priorities computed in the preprocessing stage is not the most appropriate.
The table on the left part of Table 2 shows the cost obtained by our algorithm
assuming that the optimal ordering is known. This cost appears in the column
named “EGN∗” and the optimal ordering appears in the column named “prior-
ity”. In this case, one can observe that for 6 more instances we obtain the best
solution. The second reason is still due to the multi-objective nature of the cost
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function. For example, for instance A4, EGN algorithm obtains the following
solution: t1 = 315, t2 = 540 and t3 = 660 with global cost 14040. Now, relaxing
slightly the ending date of interventions with priority 1 allows to improve the
global cost thanks to the compensation of the two first terms of the objective
function: t1 = 324, t2 = 480 and t3 = 660 with global cost 13452 (best known
solution).

However, our local-search approach is overcome on instances X1, X5, X9,
X10 by large neighborhood search approaches of Hurkens [14], winner of the
Challenge, and to a lesser extend, of Cordeau et al. [4] ranked second ex æquo.
In fact, these instances contain in majority long interventions (of length 60 or
120) requiring many technicians, which reduces considerably the combinatorics
induced by the assignment of interventions to teams and then allows integer pro-
gramming approaches for tackling subproblems. To make up for this weakness,
it seems therefore appropriate to add some moves with larger neighborhoods to
our pool of transformations (as done in [5] for car sequencing problems). A first
simple idea is to implement (k, l)-swap transformations, consisting in exchanging
k interventions with l other ones (here only (1, 1)-swaps are done). The table
on the right part of Table 2 gives results obtained for these 4 instances with
extended time limits, showing that our algorithm converges toward a solution of
quality near from the ones of Hurkens and Cordeau et al. [25].
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