
Local Search for Mixed-Integer Nonlinear
Optimization: a Methodology and an Application

Frédéric Gardi1, Karim Nouioua2

1 Bouygues e-lab, Paris, France

2 Laboratoire d’Informatique Fondamentale – CNRS UMR 6166, Université
Aix-Marseille II – Faculté des Sciences de Luminy, Marseille, France

fgardi@bouygues.com, karim.nouioua@lif.univ-mrs.fr

Abstract. A methodology is presented for tackling mixed-integer non-
linear optimization problems by local search, in particular large-scale
real-life problems. This methodology is illustrated through the local-
search heuristic implemented for solving an energy management problem
posed by the EDF company in the context of the ROADEF/EURO Chal-
lenge 2010, an international competition of applied optimization. Our
local-search approach is pure and direct: the problem is tackled frontally,
without decomposition nor hybridization. In this way, both combinatorial
and continuous decisions can be modified by a move during the search.
Then, our work focuses on the diversification by the moves and on the
performance of the incremental evaluation machinery. Exploring millions
of feasible solutions within one hour of running time, the resulting local
search allows us to obtain among the best results of the competition, in
which 44 teams from 25 countries were engaged.

1 Presentation of the Problem

Électricité de France (EDF) is the historical French energy producer and sup-
plier, whose operations and participations span worldwide today. The EDF
power generation facilities in France stand for a total installed capacity of nearly
100 GW. Most of the French electricity is produced by thermal power plants:
90% in 2009 among which 82% by nuclear power plants. The subject of the
ROADEF/EURO Challenge 2010, an international competition organized by the
French Operational Research and Decision Support Society (ROADEF) and the
Association of European Operational Research Societies (EURO), was focused
on the medium-term (5 years) management of the EDF French thermal power
park, and especially of nuclear plants which have to be repeatedly shut down for
refueling and maintenance. Before describing our contributions (methodology
and application), the main characteristics of this problem (decision variables,
objectives, constraints) are outlined. For the sake of concision and readability,
the presentation remains voluntarily informal. The interested reader is referred
to the detailed technical specification provided by EDF in the context of the



2 F. Gardi, K. Nouioua

ROADEF/EURO Challenge 2010 [9], which can be downloaded on the ROADEF
website3.

The thermal power park is composed of two kinds of plants. Type-1 (shortly
T1) plants can be supplied in fuel continuously. They correspond to coal, fuel oil,
or gas power facilities, or even virtual power stations allowing to import energy.
On the other hand, Type-2 (shortly T2) plants have to be shut down for refueling
and maintenance regularly. They correspond to nuclear power plants. Indeed, the
fuel stock of these facilities is consumed as power is produced. Whenever a T2
plant is supplied with new fuel, it has to be offline and cannot produce during
the length of this outage period, generally several weeks. Thus, the operation of a
T2 plant is organized in a succession of cycles, namely an offline period (outage)
followed by an online period (production campaign). These production assets
are used to satisfy a customer demand over a specific time horizon. This horizon
is discretized with a homogeneous time step. Customer load is uncertain and
known only through an available set of uncertainty scenarios. These scenarios
are assumed to be the realization of some stochastic processes (in particular
weather conditions). Production at T1 plants incurs a cost proportional to the
power output and also depends on the load scenario and the time step. For each
T2 facility, the initial fuel stock at the beginning of the time horizon is known.
Then, refueling of T2 plants leads to costs proportional to the amount of loaded
fuel, also depending on the time step. Because refueling and maintenance are
heavy operations immobilizing many resources, the order of cycles is fixed for
each T2 power station. The earliest outages over the horizon cannot be canceled,
and must be planned in given time intervals. For the latest outages, whose dates
are not forced and which can be postponed, the following rule applies: if an
outage is canceled, all following outages must be canceled too. Ultimately, the
objective is to minimize the expected cost of production over the given horizon.

More precisely, the decision variables of the problem are: the starting dates
of outages for all T2 plants, the refuel quantities for all outages of all T2 plants,
the production levels for all T1 and T2 plants, all time steps, and all scenarios.
Note that the first kind of decision variables are discrete, whereas the second
and third ones are continuous. The objective function to minimize is composed
of two terms: the expected production costs for all T1 plants (that is, the pro-
duction costs over all scenarios divided by the number of scenarios), and the
refuel costs for all T2 plants minus the expected stock values at the end of the
period (to avoid end-of-side effects). The constraints can be classified into three
categories; all these constraints are listed and numbered from CT1 to CT21 in
the EDF specification. The first category (CT1) corresponds to constraints for
coupling the production of the plants: for each scenario and each time step, the
sum of productions for all T1 and T2 plants must be equal to the demand. The
second category (CT2-CT12) concerns how plants can produce. The power of T1
plants must remain between minimum and maximum values depending on time
steps and scenarios. When a T2 plant is offline, its power is equal to zero. When
a T2 plant is online, its power must be non negative, lower than a maximum

3 http://challenge.roadef.org/2010/index.en.htm



Local Search for Mixed-Integer Nonlinear Optimization 3

value depending on time steps. During the production campaign, the fuel level
dynamics couples fuel quantity and production output over the time horizon:
the fuel stock at time step t+ 1 is equal to the fuel stock at t minus the energy
produced at t, namely the product of the power delivered at t by the duration
of a time step. However, the T2 power must respect an imposed profile when
the fuel stock becomes lower than a given limit; this profile follows a decreasing
piecewise affine function (with only a few pieces). If there is no longer enough
fuel stock to produce, the power production is equal to zero. A nuclear plant
produces generally at maximal power; otherwise, the T2 plant is said to be in
modulation. Because the difference between the maximum power of the plant and
the actual production leads to an undesirable wear of the equipment involved,
the quantity of energy modulated (that is, not produced at maximal power) be-
tween two outages cannot be lower than a given value. For T2 plants, additional
constraints are set on refueling operations. The refuel quantity must be in a
given interval, the stocks before and after refueling must be lower than given
limits. Note that at each refueling operation, a given percentage of stock is lost.
Finally, the third category (CT13-CT21) corresponds to constraints on outage
scheduling of T2 plants: earliest and latest starting dates of outages, minimum
spacing or maximum overlapping of two outages, minimum spacing between the
starting or ending dates of two outages, resource constraints (the number of
maintenance teams able to perform refueling operations is limited), maximum
number of outages containing a given week, maximum cumulated offline power
during a given period.

This optimization problem can be classified as mixed-integer nonlinear. One
can observe that it includes two dependent subproblems, nested according to a
master/slave scheme. The master subproblem consists in determining a schedule
of outages of T2 plants, satisfying constraints induced by limitations on resources
which are necessary to perform refueling and maintenance operations (CT13-
CT21). In summary, this subproblem involves combinatorial decision variables,
subject to constraints related to intervals on the integer line. Having scheduling
outages, the slave subproblem consists in planning production to satisfy the de-
mand at the minimum cost, that is determining the stock refuels for each T2
plant and each outage, and the quantity of energy to produce by each plant (T1
and T2) at each time step for each scenario. This subproblem involves contin-
uous decision variables subject to classical flow conservation and capacity con-
straints, but also to nonlinear constraints activated under certain logical condi-
tions (CT1-CT12). The master subproblem of outage scheduling is theoretically
NP-complete, because it corresponds to scheduling tasks with date and resource
constraints [5]. On the other hand, the slave subproblem of production planning
seems to be NP-hard too because of the nonlinear constraints (CT6, also called
imposition constraints). Moreover, the instances to tackle may be very large: 8
outages to schedule over 300 weeks for 70 T2 plants, the production levels to
determine for 170 plants (T1 and T2) over 10000 time steps for 500 scenarios.
The execution time of the algorithm is limited to 1 hour on a standard computer.



4 F. Gardi, K. Nouioua

We insist on the fact that the economic issues subjacent to this problem
are considerable. The economic function to minimize (obfuscated in EDF data)
contains in effect nine digits, representing nearly one billion euros per year of
operating costs for EDF [6]. Therefore, a gap of only 0.1% between two solutions
represents savings of the order of one million euros a year.

2 Methodology and Outcomes

To the best of our knowledge, no work has been published yet in the literature
which addresses the energy management model exposed above. Nevertheless, sev-
eral softwares have been implemented by EDF researchers these last ten years
for solving this problem. These solutions consists essentially in decomposing
and reducing the problem so as to approach it with mixed-integer programming
solvers [7, pp. 116–118]. The software currently exploited at EDF is based on a
decomposition of the problem site by site, each subproblem being heuristically
solved by integer linear programming according to the master/slave decomposi-
tion. Unfortunately, this solution does not guaranty the satisfiability of all the
constraints of the problem. A large neighborhood search approach based on con-
straint programming (for scheduling outages) and integer linear programming
(for planning production) was recently proposed by [8] (see also [7]), but the
proposed solution does not take in input a set of scenarios but only one.

The solution approach that we have implemented in the context of the
ROADEF/EURO Challenge 2010 is a randomized local search, technique which
is rarely used in mixed-integer nonlinear optimization. The design and engineer-
ing of our local-search algorithm follow a precise methodology, inspired by the
previous works of the authors [1–4]. This methodology is outlined below.

The first particularity of our local search is to be pure and direct. Indeed,
no decomposition is done; the problem is tackled frontally. The search space ex-
plored by our algorithm is close to the original solution space. In particular, the
combinatorial and continuous parts of the problem are treated together: com-
binatorial and continuous decisions can be simultaneously modified by a move
during the search. By avoiding decompositions or reductions, no solution is lost
and the probability to find good-quality ones is increased. Then, no hybridiza-
tion is done: no particular metaheuristic is used, no tree-search technique is used.
The diversification of the search is obtained by exploring a large variety of ran-
domized neighborhoods. The second specificity of our local search is to be very
aggressive: millions of feasible solutions are visited within the time limit. Indeed,
randomized local search is a non deterministic, incomplete exploration of the
search space. Therefore, exploring a huge number of (feasible) solutions during
the allocated time augments the probability to find good-quality solutions.

Then, our local-search heuristic is composed of three layers: general heuristic,
moves, evaluation machinery. The evaluation machinery forms the engine of the
local search; it computes the impacts of moves on constraints and objectives dur-
ing the search. The time spent to engineer each layer during the project follows
the following distribution: 10% on general heuristic, 20% on moves, 70% on



Local Search for Mixed-Integer Nonlinear Optimization 5

evaluation machinery. In summary, our work was focused on: designing random-
ized moves allowing a diversified exploration of the search space despite strong
constraints, and speeding up the evaluation of these moves notably by imple-
menting an incremental randomized combinatorial algorithm for solving approx-
imately but very efficiently the continuous subproblem. Numerical experiments
show that this combinatorial algorithm is 10 000 times faster than state-of-the-
art linear programming solvers (without imposition constraints), while providing
near-optimal production plans. Note that the same approach was recently ap-
plied by one of the authors for solving a real-life inventory routing problem [1],
which can be viewed as a mixed-integer linear optimization problem.

Benchmarks are divided into three categories A, B, X containing each one 5
instances. The instances A were communicated at the beginning of the qualifi-
cation phase of the ROADEF/EURO Challenge 2010. Teams were selected for
the final stage based on the results obtained on these instances. Then, instances
B, much larger and very realistic, were given as test bed for the final stage. Ul-
timately, finalists were ranked according to their results on instances B (known
from competitors) and instances X (unknown from competitors, communicated
after the announcements of the final ranking). The final results were announced
during EURO 2010, the 24th European Conference on Operational Research.
Our algorithm was ranked 1st on instances A and B (among 44 teams engaged,
16 finalists), before falling to the 8th place due to a late-working-hours bug ap-
pearing on some instances X (note that only 4 teams among the 16 finalists
have been able to provide all the solutions to instances X). Once corrected, our
algorithm provides state-of-the-art results on instances X in conditions similar
to ones of the Challenge. The results on instances B as computed by the Chal-
lenge’s organizers4 show an average gap greater than 1% (resp. 10%) between
our solutions and the ones of the team ranked 3rd (resp. 6th). As evoked above,
such gaps are important because corresponding from dozens to hundreds million
euros of savings. One can observe that the majority of approaches proposed by
the other competitors corresponds to MIP/CP-based decomposition heuristics.

The presentation of the local-search algorithm is done through three sections,
each one corresponding to one layer of the local search. The last section is devoted
to numerical experiments.

3 General Heuristic

The general heuristic is decomposed into three phases. First (phase 1), starting
from a random scheduling of outages, we try to find an admissible scheduling
of outages, that is, a scheduling of outages which respects all the combinato-
rial constraints of the problem (CT13-CT21). In this phase, fuel reloading and
production levels are ignored. Then (phase 2), starting from the scheduling of
outages previously found, we try to determine dates of outages in such a way
that an admissible production plan exists. In particular, the spacing between

4 http://challenge.roadef.org/2010/finalResults.pdf



6 F. Gardi, K. Nouioua

outages of each plant must be sufficient so as to ensure that stocks do not ex-
ceed maximum levels before and after refueling operations (CT11). Once such
a solution is found, an admissible solution of the original optimization problem
is found. Finally (phase 3), this solution is optimized according to the original
objective function.

Each phase is performed by local search. The heuristic employed in each
phase is a first-improvement descent with randomized selection of moves; each
phase follows the same design, allowing to factorize many components in their
implementation. In practice, the first two phases are quickly passed (a few sec-
onds). For the sake of efficiency, the phase 3 has been subdivided into several
steps too. Indeed, the complexity for evaluating the cost of a solution depends
on the number of scenarios. Since the number of scenarios may be large (up to
500), one way to reduce this complexity is to work on some subsets of scenarios
(eventually aggregated). This is done as follows. At step s, the solution is opti-
mized by local search for a subset S of scenarios, but with T1 completion costs
computed over all scenarios (thanks to a special data structure). At step s+ 1,
the previous solution is repaired so as to become feasible for the new subset
S ′ ⊃ S of scenarios, and then is optimized over S ′. Repairing a solution consists
in adjusting the production of T2 plants in order to not to exceed the demand
constraints (CT1) for the new scenarios; this is done by minimizing the amount
of power exceeding the demand over all the time steps and for all scenarios. This
sequence of steps can be parameterized in different ways to obtain the best ratio
between efficiency and robustness, depending on the allowed time limit. After
experiments on instances A and B provided by EDF, we have chosen to simply
proceed as follows: first, we optimize on an “average demand” scenario, and then
we refine the solution over all scenarios.

4 Moves

The combinatorial structure of the problem naturally induces the following move:
select k outages in the current solution and shift them over the time line. The
neighborhood induced by such a move is of size O(Hk), with H the number of
weeks given in input. In the preliminary phase of the Challenge, these moves
were applied totally randomly by the heuristic with small values of k (between 1
and 3) in a first-improvement fashion (if the new solution reached via the move
satisfy all the constraints and has a better cost, then commit the move, oth-
erwise rollback it). Unfortunately, the combinatorial part of the problem being
hardly constrained, such “simple” moves have a low success rate, which limits
the diversification and may prevent the convergence to high-quality solutions.

To overcome this difficulty, larger moves have to be designed so as to better
explore the combinatorial part of the problem. This has been done by designing
compound moves based on the simple moves described above. The underlying
principal of these compound moves is to allow to join (better) admissible solu-
tions by passing through infeasible solutions. It is particularly useful when the
constraints of the problem are hard, as it is the case here. A compound move



Local Search for Mixed-Integer Nonlinear Optimization 7

is designed as follows. First, apply one move which may destroy the feasibility
of the current solution. Then, apply iteratively some moves in order to repair
the solution. In fact, repairing the solution using simple moves is equivalent to
applying local search for solving a satisfaction problem. In this way, an appropri-
ate objective to optimize must be defined to guide local search toward feasible
solutions. It can be simply done by defining an objective based on the number
and the amplitude of violations for each type of constraints. These compound
moves can be viewed as a generalization (and simplification) of ejection chains
and destroy-repair methods (see [10] for more details on these search techniques).

In order to speed up the convergence toward feasible solutions, the “repair-
ing” moves, applied following a first-improvement descent, target outages in-
ducing violations. Moreover, the number of simple moves to attempt during
reparation is limited: a compromise must be found between the time spent in
attempting the compound move and its success rate (both depending on its
length). On the other hand, in order to refine the search, the “destroying” move
is chosen randomly (following a non uniform distribution) in a pool composed
of the following moves:

– k-MoveOutagesRandom: select k outages among T2 plants randomly and
move them randomly in “feasible” time intervals, that is, ensuring the re-
spect of earliest and latest starting dates (CT13 constraints) and maximum
stocks before and after refueling (CT11 constraints);

– k-MoveOutagesConstrained: select T2 plants which are involved in com-
binatorial constraints related to outage scheduling (CT14-CT21) randomly,
select k outages of these plants randomly, move these outages randomly in
feasible time intervals;

– k-MoveOutagesConsecutive: select a T2 plant randomly, select k consecu-
tive outages of these plant randomly, move these outages randomly in feasible
time intervals.

Note that more than the half of destroying moves attempted are of type 1-Move
OutagesRandom, but specific and larger moves helps to diversify the search. Thus,
whereas the admissibility rate of simple moves (that is, the number of moves
leading to a new feasible solution, divided by the number of attempted moves)
is about 20% on average, the admissibility rate of compound moves is about
75%. The computational experiments presented in last section show that a first-
improvement descent with randomized compound moves converges confidently
toward high-quality solutions (no local optimum is encountered after hours of
computations).

5 Evaluation Machinery

As suggested in introduction, the effectiveness of an incomplete search depends
crucially on the number of (feasible) solutions explored. Hence, an important
task arising in engineering a local-search approach is to make the evaluation fast,
especially when tackling such large-scale real-life problems. Methodologically, our



8 F. Gardi, K. Nouioua

work on this point is driven by a simple goal: to lower as much as possible the
practical time complexity of the evaluation of all moves. For this, an incremental
evaluation is necessary, exploiting the invariants between the current solution
and the one induced by the move. In the present case, the evaluation of the
compound move is realized in two steps, each one corresponding to the resolution
of a hard subproblem: first (re)scheduling outages, then (re)planning production
(refuels and levels). Here is the general scheme of the evaluation layer, for a set
S′ of scenarios:

Combinatorial part :
perform a destroying move;
while combinatorial violations remain do
perform a repairing move;

Continuous part :
set refueling amounts of impacted outages;
for each scenario in S′ do
set production levels of impacted T2 plants;

compute global cost of new solution;

5.1 Combinatorial Part

When a simple move is applied for satisfying combinatorial constraints (CT14-
CT21), the violations on these constraints are maintained incrementally through
routines related to the arithmetic of integer intervals (distance, intersection, in-
clusion). For each constraint, the evaluation returns not only if the constraint is
violated or not following the move, but also the “distance” to feasibility (which
can be interpreted as the cost of infeasibility). For example, for a minimum
spacing constraint of 10 weeks between two outages, this cost shall be 8 if the
spacing is of 2 weeks after the move. For constraints concerning minimum spac-
ing/maximum overlapping between outages (CT14-CT18), the evaluation for
k′ outages impacted by the move is done in O(k′k) time with k the number
of outages involved with the constraint. For resource constraints (CT19), the
evaluation for k′ impacted outages takes O(

∑
k′ wi) time with wi the number

of weeks for which a resource is immobilized during outage i. For constraints
bounding the number of overlapping outages during a given week (CT20), the
evaluation for k′ impacted outages is done in O(k′) time. For constraints limiting
the offline power capacity of T2 plants during a time period (CT21), the evalu-
ation for k′ impacted outages takes O(

∑
k′ ti) time with ti the number of time

steps during outage i. Note that in practice our moves are such that the number
k′ of impacted outages is small relatively to the total number of outages sched-
uled (k′ = O(1)). As explained in the previous section, the convergence toward
combinatorial feasible solutions is speeded up by attempting moves on outages
inducing violations. The randomized selection of outages inducing violations is
made in constant time by maintaining a bipartition of outages, with the ones
inducing violations on the left side and the others on the right side, after each
evaluation of combinatorial constraints.



Local Search for Mixed-Integer Nonlinear Optimization 9

In addition to CT14-CT21 combinatorial constraints, we add an implicit
constraint, called “cut of minimum distance between outages”, induced by the
continuous subproblem: the distance between two consecutive outages k and
k + 1 must be large enough to ensure that stocks at outage k + 1 do not exceed
maximum levels before and after refueling operations (CT11), even if the fuel
reload at outage k is minimal and the production during cycle k is maximal.
When an outage is moved, this minimal distance can be reevaluated in O(log d)
worst-case time, with d the number of time steps between outages. For each T2
plant, compute the cumulated maximum powers of the plant from the beginning
to the end of the horizon, for all time steps. Using this data structure, the
maximum amount of fuel which can be consumed between any pair t1 ≤ t2 of
time steps is obtained in constant time. Then, starting a production cycle with
the minimum fuel level (derived from the minimum fuel reload), the resulting fuel
level after t time steps of production at maximum power is computed in constant
time. Therefore, the minimum number of time steps such that the resulting fuel
level does not exceed a given level (CT11) is obtained by dichotomy in O(log d)
time in the worst case. In practice, this evaluation is still made faster by caching
the output minimum distance with the key (starting time step, starting fuel level)
in a hash map. Ultimately, it allows to compute the desired minimum distance
in amortized constant time. Since 80% of the evaluation time is spent in the
continuous part, cutting the evaluation earlier using this property of minimum
distance between outages is crucial for the efficiency of the whole local search.

5.2 Continuous Part

Now, assume that the compound move yields a solution which is combinatorially
feasible (CT13-CT21 constraints + cuts of minimum distance between outages).
The continuous decision variables impacted by the move must be updated so as
to ensure the feasibility on the continuous part; then, the global cost of the new
solution induced by the move must be evaluated. This continuous subproblem,
whose objective is (roughly speaking) to minimize T1 completion costs, is solved
by an incremental randomized combinatorial algorithm.

For each impacted T2 plant, the refuel at outage k is determined randomly
between the minimum given in input (CT7) and a maximum reinforced to avoid
exceeding the maximum levels before and after refueling operations at outage
k+1 (CT11). The computation of this maximum value is based on the maximal
consumable energy emax(s) over the production cycle and the resulting minimal
ending fuel level lmin(s) for each scenario s. These values are computed for each
scenario through a first pass over the time steps from outage k to outage k + 1.
A nuclear plant produces generally at maximal power; otherwise, the plant is
said to modulate. Modulation is sometimes necessary when the demand is too
low compared to the T2 power capacities. But it can also be used to reduce
production costs by transferring T2 power from time steps where T1 costs are
cheap to time steps where T1 costs are expensive. The quantity of energy which
can be modulated (that is, not produced at maximal power) for each scenario,
denoted by emod(s), is obtained as the minimum among the maximum bound



10 F. Gardi, K. Nouioua

given in input (CT12) and the maximum stock before (resp. after) refuel at
k + 1 minus the minimal ending fuel stock lmin(s). The energy e(s) to consume
during the cycle is then determined randomly between emax(s) − emod(s) and
emax(s). Finally, through another pass, the power levels between outages k and
k + 1 are set so as to consume e(s). This is done randomly from the left to the
right or guided by the lowest T1 completion costs. In summary, the randomized
algorithm for planning production is running in O(T ′) time for each scenario,
with T ′ the number of time steps between outages k and k+1. Thus, the refuels
and the production levels which are impacted by the move are recomputed in
O(P ′

2TS
′) time, with P ′

2 the number of impacted T2 plants, T the number of
time steps over the planning horizon, and S′ the number of considered scenarios.

Finally, the global cost of the new solution is evaluated. The most time-
consuming task is the evaluation of the T1 completion costs (when T2 plants
cannot provide enough power to satisfy demands). For each impacted T2 plant
and each time step, the cheapest T1 completion can be computed in log(P1S

′)
time, with P1 the number of T1 plants and S′ the number of considered sce-
narios. For a given scenario, one can observe that the cheapest completion cost
can be computed by dichotomy in logP1 time, using a data structure contain-
ing the powers and costs of T1 plants, cumulated according to nondecreasing
costs. By fusioning the S′ structures into only one, it is possible to perform the
computation in log(P1S

′) time for S′ scenarios.
In conclusion, the time complexity for evaluating the continuous part (re-

fuels, production levels, global cost) is almost linear in the number of modifi-
cations induced by the move on the current solution. This time complexity is
critical in the global performance of the local search. Having relaxed imposition
constraints, the continuous subproblem can be solved by linear programming.
Some numerical experiments have shown that our combinatorial approximation
algorithm is 10 000 times faster than the state-of-the-art linear programming
solvers (Gurobi Optimizer and ibm ilog cplex), while providing production
plans with optimality gap lower than 0.1%.

6 Numerical Experiments

The whole algorithm was implemented in ISO C++ programming language
(C++0x). The resulting program includes nearly 12 000 lines of code, whose
15% are dedicated to check the validity of all incremental data structures at
each iteration (only active in debug mode). Note that the continuous part of the
problem was handled with exact precision using 64-bits integers. The executable
was statically compiled on Linux x64 platform using GCC 4 with full optimiza-
tion (-O3). Gprof and Valgrind were used for CPU and memory profiling.

All statistics and results presented here have been obtained (without par-
allelization) on a computer equipped with a Linux x64 operating system and a
chipset Intel Xeon X5365 (CPU 3 GHz, RAM 4 GB, L2 4 MB, L1 64 kB). Bench-
marks are divided into three categories A, B, X containing each one 5 instances.
Note that the scale of instances B and X is much larger than instances A. The



Local Search for Mixed-Integer Nonlinear Optimization 11

running time limit was fixed to 1 hour by the organizers of the Challenge. Note
that 1.7 GB of RAM are allocated for tackling the largest instances (B8, B9,
B10, X13, X14, X15). Since our local-search heuristic is randomized, the results
which are given correspond to averages over 10 runs with different seeds. The
variance of results is weak (lower than 0.1%), except for instances B8 and B9
(0.5%). All the solutions obtained passed the EDF’s checker.

Table 1. Results of our local-search heuristic for 10 minutes, 1 hour, and 10 hours of
running time, and comparison with the best results found by the other competitors of
the Challenge (1 hour).

instance 10 mn 1 h 10 h best gap

A01 1.694 804 e11 1.694 780 e11 1.694 748 e11 1.695 383 e11 −0.036%
A02 1.459 699 e11 1.459 600 e11 1.459 568 e11 1.460 484 e11 −0.061%
A03 1.543 227 e11 1.543 212 e11 1.543 160 e11 1.544 298 e11 −0.070%
A04 1.115 163 e11 1.114 966 e11 1.114 940 e11 1.115 913 e11 −0.085%
A05 1.245 784 e11 1.245 599 e11 1.245 439 e11 1.258 222 e11 −0.989%

B06 8.413 041 e10 8.387 786 e10 8.379 878 e10 8.342 471 e10 +0.543%
B07 8.118 554 e10 8.117 563 e10 8.109 972 e10 8.129 041 e10 −0.129%
B08 8.231 156 e10 8.196 477 e10 8.189 974 e10 8.192 620 e10 +0.047%
B09 8.219 982 e10 8.175 367 e10 8.168 956 e10 8.261 495 e10 −1.043%
B10 7.805 363 e10 7.803 998 e10 7.791 096 e10 7.776 702 e10 +0.351%

X11 7.919 385 e10 7.910 063 e10 7.900 765 e10 7.911 677 e10 −0.020%
X12 7.760 939 e10 7.760 090 e10 7.756 399 e10 7.763 413 e10 −0.043%
X13 7.652 986 e10 7.637 339 e10 7.628 852 e10 7.644 920 e10 −0.099%
X14 7.631 402 e10 7.615 823 e10 7.614 948 e10 7.617 299 e10 −0.019%
X15 7.444 765 e10 7.439 302 e10 7.438 837 e10 7.510 139 e10 −0.943%

Table 1 contains the results obtained for each instance with 10 minutes, 1
hour, and 10 hours of running time respectively. The convergence of the local
search is very fast: on average, 99.9 % of the improvement is performed in less
than 10 minutes. On average, our algorithm attempts more than 20 000 com-
pound moves per minute on largest instances (which corresponds to more than
100 000 attempted simple moves); 75% of these compound moves lead to new
feasible solutions. The success rate of simple moves during the compound move
(to improve the number of violations on combinatorial constraints during the
reparation) is greater than 20%, while the success rate of compound move (to
improve the cost of the current solution) is nearly 1%. Consequently, the num-
ber of admissible solutions visited within 1 hour is at least one million, while
the number of improving solutions is of a few thousands. One can observe that
despite using a standard descent heuristic, diversified compound moves allows a
large diversification, which allows still finding improving solutions after several
hours of running time.

In Table 1, a comparison is done between the solutions found by our local-
search algorithm and the best solutions found among the competitors within 1
hour of running time (computed by the Challenge’s organizers). The latter ones



12 F. Gardi, K. Nouioua

have been obtained on a comparable platform: Linux x64 operating system with
chipset Intel Xeon 5420 (2.67 GHz, RAM 8 GB, L2 6 MB, L1 64 kB). Over
the 15 instances, we obtain 12 best solutions. In fact, the solutions provided by
the team Kuipers-Peekstok, also obtained with a direct local-search heuristic, are
very close to ours (average gap lower than 0.1%). But the average gaps of solution
approaches ranked after the 3th (resp. 6th) position, mainly based on MIP/CP
decompositions, is greater than 1% (resp. 10%). Such gaps are considerable here
since the economic fonction (obfuscated in EDF data) contains in effect 9 digits
[6].

Acknowledgements. We warmly thank Dr. Bertrand Estellon (LIF Marseille,
France), which worked on several topics in relation with this paper and helped
us during the Challenge to perform some numerical experiments.

References

1. Benoist, T., Estellon, B., Gardi, F., Jeanjean, A.: Randomized local search for
real-life inventory routing. Transportation Science (2011), to appear

2. Estellon, B., Gardi, F., Nouioua, K.: Large neighborhood improvements for solving
car sequencing problems. RAIRO Operations Research 40(4), 355–379 (2006)

3. Estellon, B., Gardi, F., Nouioua, K.: Two local search approaches for solving real-
life car sequencing problems. European Journal of Operational Research 191(3),
928–944 (2008)

4. Estellon, B., Gardi, F., Nouioua, K.: High-performance local search for task
scheduling with human resource allocation. In: T. Stützle, M. Birattari, H.H. (ed.)
SLS 2009, the 2nd International Workshop on Engineering Stochastic Local Search
Algorithms. Lecture Notes in Computer Science, vol. 5752, pp. 1–15. Springer,
Berlin, Germany (2009)

5. Garey, M., Johnson, D. (eds.): Computers and Intractability: a Guide to the Theory
of NP-Completeness. Series of Books in the Mathematical Science, W.H. Freeman
and Companny, New-York, NY, USA (1979)

6. Gorge, A.: Planification des arrêts pour rechargement des centrales nucléaires.
JOR 2008, la 3ème Journée de Recherche Opérationnelle et Optimisation dans les
Réseaux, Paris, France (May 2008), oral communication

7. Khemmoudj, M.: Modélisation et résolution de systèmes de contraintes : appli-
cation au problème de placement des arrêts et de la production des réacteurs
nucléaires d’EDF. Ph.D. thesis, Université Paris 13 (Paris-Nord), France (2007)

8. Khemmoudj, M., Porcheron, M., Bennaceur, H.: When constraint programming
and local search solve the scheduling problem of Électricité de france nuclear power
plant outages. In: Benhamou, F. (ed.) CP 2006, the 12th International Conference
on Principles and Practice of Constraint Programming. Lecture Notes in Computer
Science, vol. 4204, pp. 271–283. Springer, Berlin, Germany (2006)

9. Porcheron, M., Gorge, A., Juan, O., Simovic, T., Dereu, G.: Challenge
ROADEF/EURO 2010: a large-scale energy management problem with varied con-
straints. EDF R&D, Clamart, France (February 2010), 27 pages

10. Rego, C., Glover, F.: Local search and metaheuristics. In: Gutin, G., Punnen, A.
(eds.) The Traveling Salesman Problem and Its Variations, pp. 105–109. SIAM
Monographs on Discrete Mathematics and Applications 9, Kluwer Academic Pub-
lishers, Dordrecht, Netherlands (2002)


