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1. Introduction

A multi-hop and ad-hoc broadcast network is a collection raicpsses which communicate by broad-
casting messages and should run in absence of any pregxistiastructure (e.g., ad-hoc wireless net-
works). Some of the important challenges in such a netwaleaumeration and leader election which
are well-known in the field of distributed systems [14, 17,19, 22].

1.1. Enumeration and Election

The aim of a naming algorithm is to give pairwise distinctritiees to all processes. The enumeration
problem is a variant of the naming problem and aims at givir&gich process a unique number betwkeen
and the size of the graph. Existence of identified procedkmgssbetter routing of information, resource
management and performance [19].

A distributed algorithm solves the election problem [15]tifalways terminates and in the final
configuration exactly one process is markecekstedand all the other processes are market@s
elected Moreover, it is supposed that once a process becateesedor non-electedhen it remains in
such a state until the end of the algorithm. Election albari constitute a building block of many other
distributed algorithms. The elected vertex acts as coatdininitiator, and more generally performs
some special role (see [21] p. 262).

Using enumeration/naming algorithm, one can promote tbegss with the highest (resp. lowest)
identifier aselected However, enumeration and election problems are not nagklssquivalent (see [5,
9]). We are here interested in characterizing graphs fockvttiere exists an algorithm that solves the
enumeration and the naming problems or that solves thdaigmtoblem.

1.2. The Model

We consider an asynchronous broadcast communication rfemie[11, 10]). A network is represented
by a simple connected gragh = (V(G), E(G)) = (V, E) where vertices correspond to processes and
edges to direct communication links. The state of each geoiserepresented by a labelv) associated

to the corresponding vertexc V (G); we denote byG = (G, \) such a labelled graph.

Remark 1.1. Labels (states) are attached to vertices. They make itljessi encode many different
situations. If the network isnonymoughen all vertices have the same label; vertices having eniqu
identities, a distinguished vertex or any intermediataagion, qualified apartially anonymousare
other examples of labels attached to vertices.

We consider a robust model in which we assume partially amooyg graphs, i.e., processes have
names which are not necessarily distinct. The questionafyanity is often considered when processes
must not divulge their identities during executions, duprtgacy concerns or security policy issues [13].
In addition, each process may be built in large scale quesifitom which it is quite infeasible to ensure
uniqgueness. Therefore, each process must execute the sémalfjorithm in the same way, regardless
of its identity (see [1, 2] for related works on anonymity).

Emitted messages are only heard by reachable processesondider ad-hoc networks which run
in absence of any infrastructure and relying on the messaggmy model and asynchronous broadcast
communications: processes cannot access a global clockxatdite computation steps (atomic emit,
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hear and internal computation) at arbitrary speed. Comeatinin links are reliable but asynchronous,
i.e., a message emitted from a process to neighbours awitleis some finite but unpredictable time.
Note that communications are not necessarily FIFO.

1.3. Overview of our Contributions

We give complete characterizations of multi-hop broadpnasivorks where there exists an enumeration
algorithm or an election algorithm (Theorem 3.8 and Theo#e®). In this model, enumeration and
election problems are not equivalent, meaning that evem itan elect a leader, we cannot always give
a unique number to every process.

Let G = (G, \) be a labelled graph. We will denote ir(G) the symmetric labelled directed
graph (digraph)Dir(G), \) constructed in the following way. The verticeslofr(G) are the vertices of
G and they have the same labelsGhand inDir(G). Each edggu, v} of G is replaced iDir(G) by
two arCSCL(uﬂ)), A (pu) S A(DII‘(G)) such thatS(a(uﬂ))) = t(a(mu)) =u, t(a(um)) = 8(a(v7u)) = v. Note
that this digraph does not contain multiple arcs or loop. @biect we use for our study ®ir(G), A)
and results are stated with symmetric labelled digraphs.

A fibration from a digraphD to a digraphD’ is a homomorphism fronD to D’ that induces an
isomorphism between the incoming arcs of each verte® ahd the incoming arcs of its image.

First, we prove that, in the asynchronous broadcast mdule texists an enumeration algorithm if
and only ifDir(G) is minimal for the fibration relation, i.e., if there existéilaration fromDir(G) to D’
then it is an isomorphism.

For the election problem, we prove that there exists anieteetgorithm if and only if once there
exists a fibration, from Dir(G) to D’ then necessarily there exists a verteaf D’ such thato~!(v) is
a singleton.

For both problems, our algorithms do not require each psoteeknow its degree. For the enumera-
tion problem, processes only know the size of the networkvéier, we show that this initial knowledge
is not sufficient when one considers the election problenusTbur leader election algorithm assumes
that each process knows a map of the network but is not awaiepsition in this map.

Furthermore, our algorithms have a polynomial complexitgal memory, number of messages and
size of messages are polynomially bounded by the size ofetveonk.

Remark 1.2. (Initial Knowledge)
For the enumeration algorithm, it suffices that every pre¢e®ws the size of the network for the termi-
nation detection. This hypothesis is classical when cemnsid leader election and naming/enumeration
problems [1, 5, 23, 25, 17].

For the election algorithm, to detect its termination weauass that each process knows a map of the
whole graph (see Section 4.2 for a discussion); we also phatet suffices that every vertex knows the
size of the graph and the size of its neighbourhood (seedbetib).

1.4. Related Works: Comparison and Comments

Graphs where election or naming are possible were alreauyest for different basic models. Solu-
tions depend on the type of basic computation steps, on geed/network topology and on the initial
knowledge.
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Angluin [1] has introduced the classical proof techniqussdifor showing the non-existence of an
election algorithm based on coverings, which is a notionakmfrom algebraic topology [16]. Finally,
several characterizations of graphs for which there exgistslection algorithm have been obtained [5,
23, 25, 17].

The model studied in this paper corresponds to the Broadaddailbox communication mode of
Yamashita and Kameda [25] and to the no output port awareresso input port awareness of Boldi
et al. [5]. We use intensively fibrations introduced in [5] and stadin [6]. The fundamental tool in
[25, 5] is the notion of view. The view from a vertexof a labelled grapiG, \) is an infinite labelled
tree rooted iny obtained by considering all labelled walks(i@&, \) starting fromo.

The characterization of graphs where election is possibtaimwed in [25] is formulated by using
views whereas Boldet al. [5] use fibrations. In both cases election algorithms aresdbam views
and the election algorithms presented in [25, 5] use messaik an exponential size, they need the
knowledge of the size of the graph and the size of the neighiood of each vertex; this knowledge
is used in the algorithms to ensure that all executions aadussynchronous and that communication
links behave like FIFO channels.

Techniques developed in this paper are inspired by the wbMazurkiewicz [17]. He considers
the asynchronous computation model where in one computatep labels of vertices are modified on
a subgraph consisting of a process and its neighbours, dingato rules depending on this subgraph
only. Mazurkiewicz’s characterization of the graphs whemameration/election are possible is based on
the notion of unambiguous graphs and may be formulated algmitty using coverings of simple graphs
(see [12], p. 256). A grapty is a covering of another gragh if there is a surjective homomorphism
from G to G’ which is locally bijective. He gives a nice and simple enuatien algorithm for the graphs
that are minimal for the covering relation, i.e., which cawer only themselves. The fundamental tool
is a total order attached to local views defined by a vertexitsnteighbourhood.

These techniques have been also used in [7, 8]. The mode] @t | the same one as [23]) is
such that in each step, one of the vertices, depending owiitent label, either changes its state, or
sends/receives a message via one of its ports. The mode] &f fi&fined by local computations on
labelled edges of graphs. In both cases the election prodtehthe enumeration problem are equivalent.

Cidon and Mokryn present in [11] an election algorithm in tabbp radio networks. This algorithm
partitions the network into fragments that are collectiohprocesses where one process is identified
as a candidate and marked initially as active. They considerorks that are not anonymous: each
vertex has a unique identity. During the computation, a icktd can become inactive and joins another
candidate’s fragment.

1.5. Summary

First, we present in Section 2 the notion of fibration for djgts and the fundamental lemma (Lemma
2.11) which connects fibrations and asynchronous broadoastnunications. In Section 3, we charac-
terize graphs which admit and enumeration algorithm whil8éction 4, we characterize graphs which
admit an election algorithm.
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2. Preliminaries

In order to describe our characterizations, one needs sidmmdirected graphs (digraphs for short) that
can have multiple arcs and self-loops. In this section, vesgmt various definitions about digraphs and
labelled digraphs. We also present fibrations which are tecplar type of homomorphism. From these

definitions, we give a fundamental lemma that establishéskebetween fibrations and asynchronous
broadcast communications.

2.1. Labelled Simple Graphs and Digraphs

Undirected graphs without multiple edges or loop are alfled¢asimple graphs. Each such a graph is
written asG = (V(G), E(G)) whereV (G) is the set of vertices af and where the set of edgégG) is

a set of pairs of distinct vertices 6f. For each edg¢u,v} € E(G), v andv are theendsof {u, v} and

u andv are said to badjacentor neighbours We denote byV;(u) the set of all vertices aff adjacent

to u anddeg; (u) is the degree of in G, i.e., the size olNg(u).

A simple graphG is connectedf for all verticesu,v € V(G), there exists a path betweerandv.
Otherwise, it isdisconnectedIn the following, we will only consider connected simpleghs.

A digraphwith multiple arcs, also calledirected multigraphD = (V (D), A(D), sp, tp) is defined
by a setV (D) of vertices, a sefd(D) of arcs and by two mapsp andtp that assign to each arc two
elements of’(D): a source and a target (in general, the subscripts will béted)i If a is an arc, the
arca is said to be going out of(a) and coming intd(a); we also say that(a) andt(a) are incident to
a. Leta be an arc, ifs(a) = v andt(a) = v thenv is an outgoing neighbour af andu is an incoming
neighbour ofv. A self-loop is an arc with the same source and target.

Remark 2.1. Note that since we consider digraphs with multiple arcs,rammas not uniquely defined
by s(a) andt(a).

A symmetriaigraphD is a digraph endowed with a symmetry, that is, an involufigm: : A(D) —
A(D) such that for every. € A(D), s(a) = t(Sym(a)). In a symmetric digraptD, the degree of a
vertexv is degp(v) = [{a | s(a) = v}| = |{a | t(a) = v}| and we denote bWp(v) the set of
neighbours of) which is equal to the set of out-neighboursvadnd to the set of in-neighbours of

Given two verticesu,v € V(D), apath 7 of lengthp from u to v in D is a sequence of arcs
ai,az,...apsuchthas(a;) = u,Vi € [1,p—1],t(a;) = s(a;+1) andt(a,) = v. Ifforeachi € [1,p—1],
a;+1 # Sym(a;), ™ is non-stuttering A digraph D is strongly connected for all verticesu, v € V (D),
there exists a path fromto v in D. In a digraphD, thedistancebetween two vertices andv, denoted
distp(u,v), is the length of the shortest path framo v in D. Note thatdistp(u, v) is not necessarily
equal todistp (v, w) unlessD is a symmetric digraph. A digrapH is asubdigraphof D, notedH C D,
if V(H) CV(D)andA(H) C A(D).

Definition 2.2. ([3])
A homomorphisnp from the digraphD to the digraphD’ denotedp: D — D’ is a mappingp: V(D)U
A(D) — V(D') U A(D') such that for every vertex € V (D), ¢(v) € V(D') and for every arc
a € A(D), p(a) € A(D'), p(s(a)) = s(¢(a)) andp(t(a)) = t(p(a)).

A homomorphismy is anisomorphismif ¢ is bijective. We writeD ~ D’ wheneverD and D’ are
isomorphic.
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In this paper, we consider digraphs where the vertices betléal with labels from a recursive skt
A digraph D labelled overL will be denoted by(D, \), whereX: V(D) — L is the labelling function.
The digraphD is called the underlying digraph and the mappings a labelling of D. A mapping
¢: V(D) — V(D') is a homomorphism froniD, \) to (D', X') if ¢ is a digraph homomorphism from
D to D’ which preserves the labelling, i.e., such th&tp(v)) = A(v) for everyv € V(D). Labelled
digraphs will be designated by bold letters like D', ... If D is a labelled digraph, theP denotes the
underlying digraph.

Let H be a subgraph ab and A the restriction of a labelling\: V(D) — L to V(H). Then the
labelled graphf = (H, \p) is called asubdigraphof G = (D, \); we note this fact by C D.

Our proofs use the notion afew. Informally, the view of a vertex in a digraphD is obtained by
considering all labelled paths I ending inv. From the computation viewpoint, the view of a process
in a network is a tree representing all the information it gather about the network.

Definition 2.3. Given a labelled digrapb, the viewTp (vg) of a vertexvy is an infinite rooted labelled
tree that can be defined recursively. The root of the tree isrexz( that corresponds to, and is
labelled by\(vg). For each incoming neighbout of vy in D, there is an arc betweer and the root
z; of the treeTp (v;). Letd be an integer, the-view T (vg) of vy € V(D) is the infinite viewTp (vo)
truncated at deptHh.

From this definition, we can state that the sed-afiews of a digraplD is finite. Thus, we can define
a partial order- on this set as follows:

Definition 2.4. For every vertexw,w € V(D), if T = T@ (w) is a subtree of” = 7@ (v) thenT’ = T.
Note that if there exists an isomorphism betwé&eto 7”7, they are said to be similar, denot&d~ T".

Remark 2.5. The labellingX of vertices may encode some properties of the network origal iknow!-
edge. For example, if the network is anonymous, all the sesthave the same label (i.8y,u €
V(G), AM(u) = A(u')). If the processes have unique identities, then fonall € V(G) if u # ' then
A(u) # A'). If there exists a distinguished process, then there existsV(G) such that for each
u' € V(G) distinct fromu, A(u) # A(v'). It may also encode partial identities of processes. Amlinit
knowledge, label of a vertex may encode its degree or theo$itte graph.

Remark 2.6. Note that computing the view of a process belongs to the s&iaé$ which allows to
capture “symmetric” behaviour in distributed computasiorThe algorithms of Boldét al. [5] and of
Yamashita and Kameda [25] are based on the notion of view.

2.2.  Homomorphism and Fibration

Fibrations,:-fibrations and:¢-fibrations are important tools for this work (see [4, 6] fafiditions and
properties).

A fibration is a homomorphism that induces an isomorphisnwéeh the incoming arcs of a vertex
and the incoming arcs of its image.

Definition 2.7. A digraphD isfibred overa digraphD’ via a homomorphisny if ¢ is a homomorphism
from D to D’ such that for each aw¢ € A(D’) and for each vertex € ¢~1(t(a’)), there exists a unique
arca € A(D) such that(a) = v andy(a) = o’; this arca is called thdifting of o’ atv.
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We say that the homomorphismis afibration from D to D’, the digraphD is thetotal digraphof
© and the digraphD’ is thebaseof .

Thefibre over a vertex/’ (resp. an are’) of D’ is defined as the set~!(v') of vertices ofD (resp.
the setp—!(a’) of arcs ofD).

The digraphD is minimal if for every digraphD’ such thatD is fibred overD’, D and D’ are
isomorphic.

If a digraphD is fibred over a digrap’ via a homomorphisnp, and if D andD’ are not isomor-
phic, we say thaD is properlyfibred overD’ and thaty is aproper fibration.

From [6], we know that there exists a unique digrdg such thatDir(QG) is fibred overB¢g, and
for eachD such thatDir(G) is fibred overD, D is fibred overB¢. This digraph is called theinimal
baseof G.

In this work, we need to definefibrations and:«-fibrations.

Definition 2.8. The fibre of a vertex is qualified agrivial if |~ (v)| = 1, otherwise, it ison-trivial.

A fibration ¢ is a ¢-fibration if there exists at least one vertex such that iteefib trivial; it is a
nt-fibration if all fibres are non-trivial.

A digraph D is ¢-fibred (resp.xt-fibred) over a digraphD’ via ¢ if and only if ¢ is a ¢-fibration
(resp.nt-fibration).

The digraphD is »¢-minimal if for every digrapHD’ such thafD is fibred overD’ via a fibrationy,
p is at-fibration.

A simple graphG is minimal if Dir(G) is minimal. Similarly, a simple grapks is »¢-minimal if
Dir(G) is nt-minimal. An example of fibration is given in Figure 1.

3 3
1 o2 1 2
1 2 1 2
G Dz’r(G)
3
g = ="¢
v
D

Figure 1. The labelled digraphir(G) is fibred over the digrap®. Therefore,Dir(G) is not minimal. Since
Dir(G) has a unique vertex of degréeDir(G) is nt-minimal. The digrapfD is minimal and alsa¢-minimal.

Remark 2.9. As a corollary of Definition 2.4, we obtain: |1& be a sub-digraph abir(G), for every
vertexv € Dir(G), Tgir(G) (v) = T&(v).

Moreover, letD andD’ be two digraphs. ID is fibred oveD’ via ¢, thenTp (v) = Tp/ (¢(v)), i.e,
the view ofv in D is isomorphic to the view ap(v) in D’.
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Note that the vertices of the minimal baBeof G can be identified to their views B: this defines
a unique homomorphism froré: to B. We define the notion of candidate for a digraphsuch that
Dir(G) is fibred overD.

Definition 2.10. Consider a:¢+-minimal graphG, let B be the minimal base abir(G), and lety be
the unique fibration fronDir(G) to B. A vertexv € V(B) is a candidate oB if |¢~1(v)| = 1, i.e., if
there is a unique vertex € V(G) such thafl'g (w) ~ Tg(v).

Given a digraptD such thatDir(G) is fibred oveD, we know thaD is fibred overB via a unique
homomorphismy’. A vertexw is a candidate oD if and only if ¢'(v) is a candidate oB.

We denote by’'c p the set of candidates ®.

Note that if az¢-minimal digraphDir(G) is fibred over a digrap via a homomorphisnp, then
for every vertexo € Ca.p, |1 (v)| = 1.

Intuitively, a leader election algorithm on a grag@hfibred overD cannot declare a vertex which
does not belong to the set of candidatg p (see Section 4).

2.3. Fibrations and Broadcast Communications

In order to extend the Lifting Lemma of Angluin [1] and Boktial. [5] to asynchronous broadcast com-
munications, we present the correlation between fibratmelsasynchronous broadcast communications.
Leader election and enumeration problems require the mkttworeach anon-symmetrictate. A
network state is qualified as symmetric if it contains difer processes that are in exactly the same
situation; not only their local states, but also the statdébair neighbors, of their neighbors’ neighbors,

etc. That is, there exists a “local similarity” between eiéint processes of infinite radius.

The replay argument shows that different processes thdbeatly similar with infinite radius will
exhibit the same behaviour in some infinite computation.sT there is no algorithm that guarantees that
the symmetry ceases in all finite computations.

It is not difficult to see that local similarity of infinite rats may exist in finite graphs. It is precisely
captured by the notion of graph coverings used by Angluinthisds the mathematical tool to prove the
existence of symmetries of infinite radius.

In our model, when a process emits a message, it modifiesaits atcording to only its previous
state, while its neighbouring processes that hear the messadify their states following their previous
states and the state of the emitting process.

Thus, multi-hop broadcast networks in which symmetriesteaie non minimal and impossibility
of symmetry breaking can be shown for these graphs. Thewiwilplemma connects fibrations and
asynchronous broadcast communication steps.

A maximalexecutionp of an algorithm is either an infinite execution, or a finite @4&n such that
in the final configuration, there is no message in transit anpgracess wants to emit a message.

Lemma 2.11. (Asynchronous Lifting Lemma)

Consider a digrapi; fibred over a digrapD, via ¢ and let.A be an algorithm based on the asyn-
chronous broadcast model. If there exists a maximal ex@tyti of A on D2 which yieldsD), then
there exists a maximal executipn of .A on D; which yieldsD’, such thatD/ is fibred overD5 via ¢.
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Proof:
LetD; = (D1, A1), D2 = (D2, A1) be two digraphs such th&by, \,) is fibred over( D2, \2) via .
Consider a particular set of executioiison D in which each emitted message from a process
followed by the hearing of all its neighbours. Consider @ siep € II: the process emits a message
in D, and all its neighbours hear the message just after its emisket\, be the labelling oD, after
this step. One can lift this execution Iy in which every vertex inp~! (v) emits the same message (not
simultaneously and in any order). Then, all emitted messageheard. Let deno#d, the new labelling
of D,. Each vertexv € Np, (v) hearsk messages, with depending on the number of ares A(D3)
such thats(a) = v andt(a) = w. Sincey is a fibration relation, for every vertex' € ¢~ (w), w’ hask
neighbouring processes ¢! (v) and hearg same messages. In this sengguw’) = \j(w) and labels
of all other vertices are not modified. Note that if there exeny self-loop on, then there exist arcs
a € A(D») such thats(a) = t(a) = v. Oncev has emitted a messag¥,(v) = \,(»~1(v)). Thereafter
oncev has heard this message, we have als@) = \,(»~!(v)). Therefore, the digraphD, ;) is
fibred over(Ds, \,) via ¢. Thus, if the executiop is infinite onDo, the lifted execution oD, is also
infinite. If the maximal executiop on D5 is finite, then all messages have arrived, and no process has t
emit a message. Hence, after the execution lifted fprom D1, D; is fibred overDs and all messages
have also arrived and no process has to emit a message tédestifecution is maximal. O

3.  An Enumeration Algorithm for Broadcast Networks

In this section, we give a necessary condition based on ansgsilglity result which states that there
exists no enumeration algorithm for a gra@hsuch thatDir(G) is not minimal. Then, we prove

that this condition is sufficient by presenting an enumeratilgorithm (Algorithm 1) which relies on

asynchronous broadcast communications and is inspireleoywaork of Mazurkiewicz [17].

3.1. Impossibility Result

Given a network represented by a graghwe present a necessary condition that must be satisfi€dl by
to admit an enumeration algorithm. This is an impossibii@gult that relies on the notion of fibrations

for asynchronous computations. Following the proof of Laar2ril1 presented above, we show that two
processes belonging to a same fibre cannot have differergsiam

Proposition 3.1. Let G be a labelled graph such th&%r(G) is not minimal, there is no enumeration
algorithm forG in the asynchronous broadcast model.

Proof:
Consider a simple grap@& = (G, \) and a strongly connected digraph= (D, n) such thatDir(G) is
properly fibred oveD via a fibrationy. Given an algorithmA relying on asynchronous broadcast com-
munications, consider an execution.4fon D as described in Lemma 2.11. Note that if this execution
of A on D is infinite, then following Lemma 2.11 there exists an inénéxecution of4 on G. Finally,
A is not an enumeration algorithm fGg.

Suppose this execution of on D is finite and yields a configuratioB’. In the final configuration
every message has arrived and no process has to emit a me$sage each vertex has its final label.
Following Lemma 2.11, there exists a lifted executionfobn Dir(G) that yields a configuratio’
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such thatG’ is properly fibred oveD’ via ¢. SinceG’ is fibred overD’ it implies that there exist at
least two vertices that have the same labd&kin Hence, the algorithm! does not give a distinct label to
each vertex and is not an enumeration algorithmGor O

3.2. Informal Description of the Enumeration Algorithm

We first give a general description of our algorithm, thatl \vé denotedM, when executed on a con-
nected labelled simple graph.

During the execution of the enumeration algorithm, eackexer attempts to get its unique identity
label: a number betweeh and [V (G)|. Once a vertexs has chosen a number(v), it emits it to
its neighbourhood. When a vertexhears a message from a neighbauiit stores the numbet ().
From all information it has gathered from its neighbours;hegertexwv is able to create itkcal view
Schematically, the local view af is the multiset of given numbers that appear in his neighdmih
Then, a vertex broadcasts its number withldtsal view N (v). If a vertexu discovers that there exists
another vertex with the same number then it should decide if it changes éstity: it compares its
local view with the local view ofv. If the label ofu or the local view ofu is weaker(for an order we
define later), then, chooses another identity and emits it again with its localwi At the end of the
computation, if the digraplir(G) is minimal, then every vertex will have a uniqgue number.

3.2.1. Labels

We consider a networle whereG = (G, \) is a simple labelled graph. The function: V(G) — L

is the initial vertex labelling and is kept during the comgiign. We suppose that there exists a total
order <z, on L. During the execution, the label of each verteis a tuple(A(v), n(v), N(v), M(v))
corresponding to the following information:

e \(v) € Lis the initial label ofv and is not modified by the algorithm.
e n(v) € Nis the currenhumberof the vertexv computed by the algorithm.

e N(v) € Pan(N x Z)! is thelocal viewof v. Intuitively, oncev has updated its local views, p)
belongs taV (v) if v knowsp neighbours that have as an identity number.

e M(v) € N x L x Pg,(N?) is themailboxof v. The mailbox ofv contains all information heard
by v during the execution of the algorithm. (#fn, ¢, N') € M (v), it means that at some previous
step of the execution, there was a vertesuch that(u) = m, A(u) = £ andN (u) = N.

Initially, each vertexv has a label of the forniA(v), 0, (), ?) indicating that it has not chosen any
number, that it has no information about its neighbours ouathe other vertices of the graph.

In order to update the local view of a procegse V (G), we define a functiompdate(n, nqq) the
operations defined as follows. Firstyif;; = 0, we apply the following rule:

o if there exists(nyq, 1) € N(vp) thenN (vg) := N(vo) \ {(ne1a; 1)},

For any sefS, Psn,(S) denotes the set of finite subsetsHf
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o ifthere exist{nq,p) € N(vg) with p # 1 thenN (vg) := N(vo) \ {(noid,p)} U{(naia,p — 1)},

e otherwise,N (vg) := N(vo) U {(no14, —1)}-
Then, symmetrically, we do the following operations:

o if there existgn, —1) € N(vp) thenN (vg) := N(vo) \ {(n,—1)},
o if there exists(n, p) € N(vp) with p # —1 thenN(vg) := N(v) \ {(n,p)} U{(n,p+ 1)},

e otherwise,N (vg) := N(vp) U{(n,1)}.

3.2.2. Messages

In our algorithm, processes exchange messages of the<fofm, n,q, M) >. If a vertexu emits a
message< (m, nqyq, M) >, thenm is the current numbet(u) of u, nyyq is the previous number af;
if in the meanwhilex has not modified its number, ther;; = m and M is the mailbox ofu.

Remark 3.2. If there exists(n,p) € N(v) with p < 0, then it means that among all the messages
< (m,nqq, M) > thatv has heard, there are more messages whgre= n than messages where
m = n. However, each time a procegsemits a message (m, nqq, M) > with m # n,q, we know
thatw has previously emitted a messag€nq,n.,;, M) > with ngq > nl,,.

Consequently, if there exists, p) € N(v) with p < 0, then it implies that has not heard yet all
messages sent by its neighbours, and thus it can wait umnibits a message of the form(m, n, M) >.

3.2.3. An Order on Local Views

As in Mazurkiewicz's algorithm [17], the nice propertiesthbé algorithm rely on a total order on local
views, i.e., on finite subsets @%;,(N?). The algorithm described above is such that the local view of
any vertex cannot decrease during the computation.

In order to compare two elementsidt, we use the usual lexicographic orderdh (n,p) < (n',p’)
if n<n/,orifn=n"andp < p'.

Let N1, Ny € Pgn(N?), N; # Ns. Consider(n,p) as the maximal element of the symmetric
difference Ny A Ny = (N7 \ N2) U (N2 \ Np). ThenN; < Ns if and only if one of the following
conditions holds:

e (n,p) € Nyandp < 0,

e (n,p) € Ny andp > 0.

If N(u) < N(v) then we say that the local view (v) of v is strongerthan the one of, (and N (u)
is weakerthan N (v)). Note that in particular the empty set is minimal far We assume for the rest
of the paper that the set of initial labelsis totally ordered by<;. We extend< to a total order on
L x Pan(L x N): ((,N) < (¢/,N’) if either¢ <, ¢/, or¢ = ¢ andN < N’. We denote by< the
reflexive closure oK.
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3.3. The Enumeration Algorithm M

The algorithm for the vertex, (see Algorithm 1) is expressed in an event-driven desoriptsee Tel
[22] p. 553). The algorithm we describe here does not redtlif®© communications, i.e., the emitted
messages are not necessarily heard in the same order thar¢hemitted.

The actionI can be executed by a process on wake-up only if it has not lsegrdnessage. In this
case, it chooses the numberupdates its mailbox and informs its neighbours.

The actionR describes the instructions the vertex has to follow when it hears a message
(n’,nl,;, M) > from a neighbour. First, it updates its mailbox by addihg to it. Then it modi-
fies its number if there exist8i(vg), ¢, N') € M(vp) such that(A(vg), N(vg)) < (¢,N), i.e., if there
exists another process in the network which has the sameeruwith a greater local view. Then, it
updates its local view according to thedate(n, nyq) function described above. It adds its new state
(n(vo), A(vo), N(vp)) to its mailbox. Finally, if its mailbox has been modified byetbhxecution of all
these instructions, it emits its number and its mailbox.

If the mailbox ofwvg is not modified by the execution of the acti® it means that the information
v has about its neighbour (i.e., its number) was correct, alidhe elements of\/’ already belong to
M (vp), and that for eackn(vo), £, N') € M(vp), (¢,N) < (A(vo), N(vp)).

The actionS is executed once the local boolean vatueit is set totrue by I or R actions. It means
that the process needs to emit a message to all it neighbours.

3.4. Correctness ofM

Let G be a simple labelled graph. In the followingjs an integer denoting a computation step. Let
(A(w), (n;i(v), N;(v), M;(v)) be the label of the vertex after theith step of the computation of the
algorithm M (Algorithm 1). We present some properties satisfied by eaehuwion of the algorithm in
the asynchronous broadcast model.

The following lemma, which can be proved easily by inductionthe number of steps, recapitulates
basic labelling properties.

Lemma 3.3. For each vertex and each step
1. n;i(v) #0 = (ni(v), \(v), N;(v)) € M;(v),
2. Vn' € N;(v) thenn’ > 0and3¢’ € L,3IN’ € Pg,(N?) such thatn/, ¢/, N') € M;(v).

The algorithm has some remarkable monotonicity propettias are described in the following
lemma.

Lemma 3.4. For each step and each vertex, M;(v) C M;1(v), n;(v) < niy1(v), and N;(v) =
Nit+1(v). Moreover, ifv applies the actio$ at stepi and;j with i # j, thenM;(v) # M;(v).

Proof:
The property is obviously true for the vertices that are mtiva at step. It is easy to see that, for each
vertexv, we always havé/;(v) C M;1(v).

For each vertex and each stepsuch that;(v) # n;1(v), ni11(v) = 1+max{ny; (n1, 41, N1) €
M;(v)} and eithem;(v) = 0 < n;41(v) or (n;(v), A(v), N;(v)) € M;(v) as shown in Lemma 3.3 and
thereforen; (v) < n;t1(v).
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Algorithm 1: Algorithm M in the asynchronous broadcast model.

var: emit : boolinit false;
Neig - INtinit 0
I:{n(vp) = 0 and no message has arrived,g}

begin
Mg :=0;
n(vg) :=1;

M (vo) := {(n(vo), AMvo), )};
emit := true

end

S : {emit = true}

begin
emit < (n(vo), nora, M(vo)) >;
Notd 2= 1(vo);
emit ;= false

end
R : {Amessage< (n',n!,,, M) > has arrived aty}
begin

Moia := M (vo);

M(vo) = M(’UQ) UM

if n(vo) = 0o0or I(n(vy), L, N) € M(vg) such that(A(vg), N(vg)) < (¢,N') then
| n(vg) := 14 max{n | I(n,l,N) € M(vy)};

N(vn) = update(n, nly,):

M (o) := M (vo) U{(n(vo), A(vo), N (v0))};

if Y(n,p) € N(vg),p > 0and M (vg) # M, then
L emit := true

end

Whenv hears a message in the following formess =< (n/,n', M) >, N;1+1(v) = update(n’,n’)
= Nj(v). If N;(v) # Ni;1(v) thenv heard a messageess =< (n’,n.,,, M') > withn’ > n/,, and
thUSNi(’U) < Ni+1(U)-

Moreover, the condition d is satisfied when the value efn:it becomes true, i.e., when the mailbox
M (v) of v is modified. O

The local knowledge of a vertaxreflects to some extent some real properties of the currenfiigeo
uration. The two following lemmas enable us to prove thatykaexwv knows a numbem (i.e., there
exist¢, N such thatm, ¢, N) € M;(v)), then for eachn’ < m, there exists a vertex in the graph such
thatn;(v') = m'. We first show that ifv knowsm there exista’ such that;(v') = m. we also show
that if a vertexv knows an identity numberm, then it knows all the numbers smaller than
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Lemma 3.5. For each vertex € V(G) and each step letn;(v) # 0, given(m/, ¢/, N') € M;(v), for
everyl < m < m/, there exists a vertex € V(G) such that;(w) = m and(m, ¢, N) € M;(v).

Proof:

By induction on step, we show that for each vertexwith n;(v) # 0, given(m/, ¢', N') € M;(v), for
everyl < m < m/, there existgm, ¢, N) € M;(v). We state that it holds for all > 0. If the rule is
applied byv, then,M;(v) = (1, AM(vp), ?) and trivially, the property holds.

If the rule R is applied byv, then,v heard a messageess =< (n’,n/,,, M') > from another
vertexv'. Letj be the step in which’ emitted this message. We know thdt = M;(v'). If v keeps its
number at step+ 1, then,M;1 (v) = M;(v) U M;(v") and the assertion is true by induction hypothesis.
Besides, ifv’ modifies its number, them; 11 (v) = 1 + maz{n | I(n,l,N) € M;(v) U M;(v")} and
M1 (v) = M;(v) U M;(v") U (nig1(v), A(v), Nit1(v)). Consequently, the assertion is true.

Assume that the numben is known byv and letU = {(u,j) € V(G) x N | j < i,n;(u) = m}.
Consider the set/’ = {(u,j) € U | V(«,j') € U,Nj(v') < Nj(u) or Ny(u') = N;(u) andj’ < j}.
It is easy to see that there existssuch that for eacltu,j) € U’,j = iy. Since(m,¢,N) € M;(v),
neitherU nor U’ are empty.

If ip < 4, the numben;,(u) = m of w was modified at stefp+1 but by maximality of A (u), N, (u)),
the vertexu could not modify its number. Hencé, = i and there exists a vertex € V(@) such that
ni(w) = m. O

From Lemma 3.5, we deduce that for each step, the identitybetsrof all the vertices form either a
set[1, k] or a sef0, k] with £ < V(G).

For each step and each vertex, if there exists:’ € N;(v), from Lemma 3.3, there exists such
that n;(v') = n’ and thereforeV (v) can only have a finite number of values and the same holds for
M (v). During the algorithm, the consecutive labelling of eachtesev form an increasing sequence,
(ni(v), N;(v), M;(v)), 7 =1,2,... and, each vertex can emit a message only if it modifies itshoil
Since the number of possible accessible labels is finite dbpendent on the size of the graph), the
algorithm always terminates.

Moreover, we make the assumption that every process knawsizk of the network. Hence, once
a process gets the numbéf(G)|, from Lemma 3.5, it knows that all the vertices have difféiieentity
numbers that will not change anymore and it can locally detectermination of the algorithm.

Since we have proven thdit always terminates, we can give some properties about theldina
belling:

Lemma 3.6. Any executionp of M on a connected labelled gragh= (G, \) terminates and yields to
afinal labelling(\, n,, N,,, M,,) satisfying the following conditions:

1. there exists an integér< |V (G)| such that{n,(v) | v € V(G)} = [1,k],
and for all vertices, v':

2. My(v) = Mp(v'),

3. (np(v), A(v), Np(v)) € My(v"),

4. np(v) = ny(v') implies that\(v) = A(v') and N, (v) = Np(v'),
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5. (n,p) € Np(v) if and only if there existuy, ..., w, € Ng(v) such that for each n,(w;) = n; in
this case, there exist®,,(v),p") € Np(w;) withp’ > 1.

Proof:
1. By Lemma 3.5 applied to the final labelling.

2. Otherwise, there exist two neighbours’ such thatV/ (v) = M (v'). However, since the configu-
ration is final, bothy andv” have sent their mailboxes to their neighbours and Migs) = M (v').

3. A corollary of the previous point using Lemma 3.3.
4. A corollary of the previous property and since neitheror v’ need to change its number.

5. Since each neighbour ofthat has the number has sent a message with its number, and since all
messages have been heard, we know that there éxisis) € N, (v) with p’ > p. Moreover, due
to the design of the function replace, we know t@{m’p)eNP(U)@Op is bounded by the degree
of v. Consequently, the claim holds.
O

In the next proposition, we prove that there exists a diglBphssociated to the final labelling Gf
such thatDir(G) is a fibration ofD.

Proposition 3.7. Given a graphG, we can associate to the final labelling of any execugioof the
enumeration algorithm o, a digraphD such thatDir(G) is fibred overD andV (D) is the set of
numbers appearing on the verticesfat the end op.

Proof:
We use the notation of Lemma 3.6. Ll@t= (G, \).

Consider the grapb defined as follows. Its set of verticesli§D) = {m € N | Jv € V(G),n,(v) =
m}. Foranym,m’ € V(D), there arg arcsa,, .1, - - - , m’,m,p fromm’ tom if there existe € V(G)
such thatn,(v) = m’ and(m,p) € N,(v) with p > 0. From Lemma 3.6, this is independent of the
choice ofv € V(G). For every vertex, v’ € V(G), if n,(v) = n,(v’) then(v) = A(v') and we can
define the labelling) of D: for everyv € V(G), n(n,(v)) = A(v).

Let us recall thatl (Dir(G)) = V(G) and for all edge{v,v'} € E(G), there exist two arcs
Ay s Gy SUCh thats(ay, ) = t(ay o) = vandt(a, ) = s(ay ) = v'. Moreover, for each € V(G),
the label ofv in Dir(G) is the same as i.

It remains to define the homomorphigsfrom Dir(G) to D. For every vertew € V(G), ¢(v) =
n,(v). For every vertex such thatp(v) = n, and for eact{m,p) € N,(v) with p > 0, we know from
Lemma 3.6 that there exigtarcsay, . .., a, € A(Dir(G)) such that(a;) = v andn,(s(a;)) = m. For
eachl < i <p, p(a;) = amn,i-

By definition, ¢ is a fibration and thu®ir(G) is fibred overD. O

From Proposition 3.7, one can show that Algoritht terminates onG and the final labelling
verifies the following properties(Dir(G), \) is fibred overD. Thus if Dir(G) is minimal thenD is
isomorphic toDir(G) and therefore the set of numbers of the vertices is exactly. , |V (G)|: each
vertex has a unique number. Moreover, we make the assunthtibrvery process knows the size of the
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network. Hence, once a process hd$G)| different numbers in its mailbox, from Lemma 3.5, it knows
that all the vertices have different identity numbers thiitnot change anymore.
Finally, we have proven the following theorem:

Theorem 3.8. For every graphG, there exists a(n) naming/enumeration algorithm@rmsing asyn-
chronous broadcast communications if and only if the digr@pr(G) is minimal.

3.5. Complexity Analysis

Complexity analysis of distributed algorithms constitute building block of many properties such as
energy consumption when considering wireless sensor megwin this part, we deal with the complex-
ity of Algorithm 1. We are interested in the number of messagechanged by the processes and their
size. We also look at the memory needed by each vertex.

We consider that each vertex does not need to keep more tleaelementn, ¢, N') for eachn in
its mailbox. Indeed, if there are two elemeiis ¢, N), (n,¢', N') € M(v), and if (¢, N) < (¢/,N’),
we can remové/, N) from the mailbox. Moreover, we assume that the initial labglof G is such that
each initial labe¥ can be encoded witt(log |V (G)|) bits.

Proposition 3.9. Let G be a labelled graph of sizewith m edges and a maximum degré&e Any run of
M yields O(mn?) emissions of messages of si2zé¢An logn) bits. Moreover, it require®(An log n)
bits of memory at any vertex.

Proof:

Let G be a labelled graph of sizewith m edges, maximal degree vertéxand diameteD. Consider
a runp of the algorithm onG. According to Lemma 3.5, we know that each vertex modifieattaber
at mostn times.

For every vertex, since numbers af and of its neighbours only increase,(v), N (v)) can change
(d(v) + 1)n times. Wherv modifies its number or its local view, it yields at most the ssion ofO(n)
messages (because vertices that already fraue, N (v)) in their mailbox do not emit this message).
Hence, any run of the algorithm nee@$mn?) messages. Since, each vertex only keeps useful infor-
mations in its mailbox, there exist at mostelements(ng, ¢, N) in M (v) and each of these elements
can be represented with(A log n) bits. Hence, one can represented the mailbox of each veitax w
O(Anlogn) bits. Therefore, the size of each message(idn logn) bits.

From these previous proofs, one knows that the mailbox df eatex is encoded wit® (An log n)
bits. Moreover, for each vertex n(v) can be represented wilbg n bits while N (v) can be represented
with O(A log n) bits. Thus, the maximum local memory requirement at anyexégO(Anlogn). O

As a corollary of the complexity analysis, Theorem 3.8 isagted as follows:

Theorem 3.10. For every graphG, there exists a polynomial complexity (memory, messagessae
of messages) naming/enumeration algorithnGbuasing asynchronous broadcast communications if and
only if the digraphDir(G) is minimal.

Algorithms of Yamashita and Kameda and of Boddial. presented in Section 1.4 yield3(n?)
emissions of messages of si28("™) bits. Moreover, each process requi¥¥™) memory bits. Thus,
considering different aspects of the complexity, fits particularly well to multi-hop broadcast networks
composed with low-capabilities processes (e.g., wiresegsors).
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4. A Leader Election Algorithm for Broadcast Networks

As stated in the introduction, if we can solve the enumengpimblem on a grapks then we can solve
the election problem on this graph by declaring the vertetk Wie identity numbefV (G)| as elected.
Nonetheless, in our model, the enumeration and the eleptmslems are not equivalent. Consider the
graphG and the digraptDir(G) of Figure 1. SinceDir(G) is fibred overD, from Theorem 3.8, the
enumeration problem cannot be solved@n Nonetheless, if every vertex initially knows, consider
a leader election algorithm defined as follows: each ventaitsea message and, once a vertex receives
four messages, it can declare itself as elected. Since ttexuabelled3 is the unique vertex of degree
greater or equal thatin G, the vertex3 will be elected.

In this section, we also present an impossibility resultoltstates that there exists no leader election
algorithm for a graphG if Dir(G) is not »t-minimal. This condition is sufficient and we give an
extension ofM (Algorithm 2) which solves the election problem.

4.1. Impossibility Result

Given a network represented by a simple graphwe present a necessary condition based:on
fibrations that must be satisfied By to admit a leader election algorithm.

Proposition 4.1. Let G be a labelled graph sudhir(G) is notxt-minimal, there is no leader election
algorithm forG in the asynchronous broadcast model.

Proof:

Consider a simple grap@& = (G, A) and a strongly connected digraph= (D, n) such thatDir(G) is
nt-fibred overD via a fibrationy. Given an algorithm4 using asynchronous broadcast communications,
consider an execution ofl on D as described in Lemma 2.11. Note that if there exists an fafini
execution of4 on D, then, following Lemma 2.11, there exists an infinite exeeubf 4 on G. Finally,

A is not a leader election algorithm f&&.

Suppose that there exists a finite and maximal executiohai D which yields a digrap’. In the
final configuration every message has arrived and no pro@ssglemit a message. Thus, each vertex
has its final label. Following Lemma 2.11, there exists adifexecution of4 on Dir(G) that yields a
configurationG’ such thatG’ is fibred overD’ via . SinceG’ is nt-fibred overD’, it implies that for
every vertexo € V(G), there exist at least two vertices @1 (o (v)) that have the same label @'.
Hence, there exists no vertexc V(G) that has a unique label. The algorith#nis not a leader election
algorithm forG. O

4.2. Initial Knowledge

We here underline the importance of the initial knowledgethle previous algorithriM, every process
only knows the size of the network. Using this initial knodde, we ensure that at the end of the
execution, each process locally knows that each vertexlitamed a unique identity even though some
messages are arbitrarily delayed. Batal.[5] and Yamashita and Kameda [24] also show that knowing
the size of the graph allows to solve election problem wheni\vs possible. However, in their models,
each vertex initially knows its degree (or can compute iilgaand this initial knowledge is actually
used in their views construction algorithm.
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In our model, vertices do not initially know their degree amdhis case, the initial knowledge of the
size of the graph is not sufficient to solve the election pobbn graphs where it can be solved. For
instance, assume that there exists a leader election taigofor the three graph&,, Go and G3 of
Figure 2. InG1 (resp. G2, G3), there exists a unique vertex of degre@esp. 5, 5). Hence, similarly
to the graph of Figure 1, one can elect in these three grapba wi assume that each process initially
knows the graph. Consider the digraBhsuch thatDir(G,) is ¢-fibred overB via a fibrationp. When
executed orB, a leader election algorithm fd&; has to elect a process such that its fibre is trivial.
Thus, there exist two vertices b € B such thalp=!(a)| = |¢~(b)| = 1 and which can be declared as
elected. Assume that several messages are arbitrary delaeseveral communication links are not yet
established. One can find two grapgis andG3 and two digraph®- andDj3 such thaD, C Dir(Gs)
andD3 C Dir(Gs) and such thaD, andDj5 are alsot-fibred overB.

From Lemma 2.11, if there exists a finite and maximal exeoudioan algorithm that elects a leader
in B then there exists a finite and maximal execution/aim(G1 ), D2 andD3 that also elects a leader.
Hence, if the vertex is declared as elected B, then there exists an execution énr(Gz) where
messages sent along arcsi¥ir(G-) \ D2 are delayed for an arbitrary long time. At some point in
this execution, two vertices have the final labcted Similarly, if the vertexa is declared as elected
in B, then there exists a particular executionir(Gs) such that two vertices are marked as elected.
Therefore, we cannot find a universal leader election algorifor all graphs of orde® where election
problem can be solved. In the following, we provide a leadiect®n algorithmM ., which assumes that
each process knows a map of the network.

4.3. Informal Description of the Leader Election Algorithm

We present how to exten#! to solve the leader election problem on digraphs thatan@inimal.

Consider a graplG such thatDir(G) is t-fibred over a digrapfD. Our aim is to provide an
extension of our previous algorithm by using the termimatietection algorithm of [20]. The idea is
to execute this algorithm and to reconstruct a graph fronctments of the vertices mailboxes (as it
is done in Proposition 3.7) and check if all processes arglvad in the execution, i.e., if there is no
isolated process.

4.3.1. The SSP Algorithm

Initially in [20], this algorithm was devised to detect tregrhination of another distributed algorithm.
As stated in Section 3.4, each process is able to deternsiterihination condition. The SSP algorithm
detects an instant in which the entire computation is aeliev

Let G be a graph, to each processs associated a predicaigv) and an integes(v), its confidence
level. Initially, P(v) is false andi(v) is equal to—1. If a vertexv has finished its computation of the
initial algorithm, then it changes its valu&(v) to true. Each time a vertex changes the valu® @f) or
a(v) then itinforms its neighbours.

The modification of the value af(vy) only depends on the value &f(vy) and the informations
has about the valugsi(v1), . .., a(vq)} of its neighbours:

o if P(vg) = falsethena(vy) = —1,

o if P(vg) = truethena(vg) = 1+ min{a(vg) | k € [0; k]}.
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Figure 2. The labelled digraphir(G.) is fibred over the digrapB. This fibration is a-fibration andDir (G )
is ne-minimal; the subdigraphB, of Dir(G2) andD3 of Dir(Gs) are alsot-fibred over the minimal basB.
From Lemma 2.11, an execution of a leader election algorgh® can be lifted to an execution diir(G,) and
an execution o, andD3. Thus, the vertex can be declared as electedBn G; andG, and the vertex can
be declared as electedBy, G; andGs. If the algorithm chooses (resp.b), then two vertices G, (resp.G3s)
are declared as elected: that is not possible.

We will adapt this algorithm using the ideas of the algorit8SP [12]. For every vertex, the
value of P(v), instead of being boolean, will be a graph reconstructeah fitee contents of the mailbox
of v. An important property of the functio® is that it is constant between two moments where it has
the same value.

In our models, a vertex cannot distinguish its neighboungrdfore we will use the numbers that
appear in the local view. A vertexwill increase its confidence leve(v) only if when|N (v)| = k, then
v has heard messages frandifferent processes’ such thatV (v') = M (v) anda(v’) > a(v).

In our algorithm, each vertex permanently tries to recaiesta digrapD (M) from its mailbox. This
digraph is constructed as in Proposition 3.7. Given a mailbg we say that an elemeftt, ¢, N) € M
is maximalif for all (n,¢',N') € M, (¢, N') < (¢,N); we denote bymax(M) the set of maximal
elements of\/; note that for each, there is at most one elemept, ¢, N) € max(M). If there exists
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(n,£, N) € max(M) such that there i&m,p) € N with p < 0, or if there is na(m, ¢', N') € max(M),
then D(M) is undefined. Otherwise, the digraid(M/) is defined as follows:V(D(M)) = {n |
3(n, ¢, N) € max(M)}, and for each{n, ¢, N) € max(M), A\(n) = ¢, and for eaci{m,p) € N, there
are exactlyp arcs fromm ton in D(M).

4.3.2. Labels

As in the enumeration algorithm, we start with a labelledpré& = (G, \). During the computation,
verticesv will get new labels of the form\(v),n(v), N(v), M (v),a(v), A(v)). Thus, we add to the
label of each vertex two items:

¢ a(v) € Nis the confidence level of the vertex

e A(v) € Pan(N X Z x Z) is a set maintained by each vertexIt contains the confidence level of
its neighbours in the forrn, p, a) wherep is the number of the neighbours ofvith » as identity
number and: as confidence level.

For sake of simplicity, we define a functieon fidence(n, a) to update the seti(vy) of a process
vg as follows. First, ifa > 0, we leta,;q = a — 1 and we apply the following rules:
o if there existn, 1, axq) € A(vg) thenA(vy) := A(vo) \ {(n, 1, aoia)},

o if there exists(n, p, aqa) € A(vo) With p # 1 then A(vg) := A(vo) \ {(n, p, acia) } U {(n,p —
1, aoid) },
e otherwise,A(vg) := A(vo) U {(n, —1,a04)}-

Then, symmetrically, we do the following operations:

o if there existgn, —1,a) € A(vp) thenA(vy) := A(vg) \ {(n,—1,a)},

o if there existgn, p,a) € A(vg) with p # —1 thenA(vg) := A(vo) \ {(n,p,a)} U{(n,p+1,a)},
e otherwise A(vg) := A(vg) U{(n,1,a)}.

Note that in Algorithm 2, the digrapB¢ is the minimal base of the initial digrapghir(G) on which
the algorithm is performed.

4.3.3. Messages

A message emitted by a procesand heard by the proces$as the following formx< (m, nyq, M, a) >
wherem, n,;q and M are identical to values of messages exchangetiinWe add the itena which is
the value of the confidence lewelu) of a.

4.4. The Leader Election Algorithm M,

The algorithm for the vertey, is described in Algorithm 2. The core of the actibremains unchanged
compared to Algorithm\1 except that the vertex, has to initialize its confidence leve(v,) to —1.

The actionR. contains the instructions the vertey has to follow when it heard a message
(n',nl,;, M',a") > from a neighbour. Initially, it behaves as in Algorithwt. If its mailbox has been
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modified, it has to reset its confidence lewél) and the confidence it has collected from its neighbours
in A(vg). Conversely, if its mailbox remains unchanged, it updatés,) with the received value’'.

In order to update its own confidence level, the vertgxerifies if every collected confidence levels in
A(vg) are greater than(vy) and if the graph reconstructed from its mailbbk(vy) is fibred overBg.

It means thaty has the same mailbox of its neighbours. Following theseuasbns, if its mailbox or

its confidence level has been modified by the execution, itseitsi number with its new mailbox and
confidence level. Finally, an execution is terminated whgsrconfidence level is greater than the size
of the graph|V(G)|. It means that all processes have reconstructed the saite fyoan their mailbox
which is fibred oveBg. Thus, the vertex whose its fibre is trivial is declared asteld If there exist
more than one vertex satisfying this condition, the verték the lowest number is chosen.

4.5. Correctness ofM,

Let G be a simple labelled and connected graph. In the followirig,an integer denoting a computa-
tion step. Let(A(v), ni(v), N;(v), M;(v),a;(v), A;(v)) be the label of the vertex after theith step of
the computation of the algorithmM.. We present some properties satisfied by each executioreof th
algorithm in the asynchronous broadcast model.

We can easily state by induction that if the mailbox of a vertés the same between two steps, the
confidence level ob increases.

Lemma 4.2. For each step and each vertex, if M;(v) = M;+1(v) thena;+1(v) > a;(v). Moreover,
if v applies the actio® at steps andj, then;(v) # M;(v) or a;(v) # a;(v).

In the following lemma, we show that when a process emits asaues therv/(n,p,a) € A(v),
a>a(v)—1.

Lemma 4.3. For each step and each vertex, eitherV(n,p,a) € A;(v), a > a;(v) — 1, or there exists
(n,p,a) € A;(v) such thap < 0 and¥(n,p’,d’") € A;(v), d’ > a.

Proof:
We prove the lemma by induction an Initially, A(v) = () and the property obviously holds. Sup-
pose that the property holds for all vertices at stegnd consider a vertex that hears a message
< n',n,;, M a > atstepi + 1. If n/,, # n/, orif M' # M;(v), thena;1(v) = —1 and
for all (n,p,a) € A;j11(v), a = —1. Note that if M;;1(v) = M;(v) anda;1(v) # ai(v), then
ai+1(v) =14+ min{a | 3(n,p,a) € A;+1(v)} and the property holds.

Suppose that at stepV(n,p,a) € A;(v), a > a;(v). If ¢ > a;(v), thenV(n,p,a) € Ait1(v),
a>ai41(v)—1. If a’ <a;(v)—1, thenthere existe', —1,a’—1) € A;41(v) andv(n/,p",a") € A;(v
a” >a —1.

Suppose now that at steépthere existgn, p,a) € A;(v) such thap < 0 andV(n,p”,a”) € A;(v)
a” > a. If n’ # n, then the property still holds. Otherwisedif < a, then(n/, —1,a’ — 1) € A;11(v
andv(n,p”,a") € Aix1(v),d” > d —1;If / =a+1,then(n’,p—1,a) € A;41(v) and¥(n,p”,a")
Ait1(v),d” > a;If o/ > a+1,then(n/,p,a) € A;11(v) andV(n,p”,d"”) € Aj11(v), d” > a.

~—

~—

O m

Consider a vertew € V(G) and a step, for any givena > 0, for every (n,p) € N;(v), let
Xi(n,a,v) ={p' | I(n,p’,d’) € A;(v) such that' > a} andz;(n,a,v) = zpeXi(n,a,v)p'
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Algorithm 2: Algorithm M. in the asynchronous broadcast model.

var: emit : boolinit false;
I:{n(vy) = 0 and no message has arrivedg}
begin
( 0) := 1 aw) := —1;
Mg = 0; aola := —1; noa := 0;
M (vo) := {(n(vo), A(vo), 0)};
emit := true
end
S : {emit = true}
begin
if V(n,p) € N(vp),p > 0and¥(n,p,a) € A(vy),p > 0then
if a(vo) = —1then
emit < (n(vo), Notd, M (vo), a(vo)) >;
else whileay;q < a(vg) do
Qold = Gold + 1,
L emit < (n(vo), Notd, M (vo), aota) >;

| emit := false ; nog := n(vo) ; Gord = a(vo);

end
R : {Amessage< (n,n/,,, M’ ,a’) > has arrived at }
begin

Moiq := M (vo);

M(’Uo) = M(Uo) U MI;
if n(vy) = 0o0rI(n(vy),4,N) € M(vg) such thatA(vy), N(vg)) < (¢, N) then
| n(vo) :==1+max{n|3I(n,l,LN) e M(vo)};
N(vo) := update(n',n.,,);
M (vo) := M (vo) U {(n(vo), A(vo), N(v0))};
if M(vo) # Moiq then
L a(vg) == —1; apig := —1;
A(vo) :={(n,p, =1) | (n,p) € N(vo)};
if M(vo) =M'"anda’ > 0then
| A(vo) := confidence(n’,a);
if V(n,p,a) € A(vg),a(vy) < athen
construct D(M (vg)) from M (vp);
if D(M (v)) is fibred oveB¢g then
| a(vg) :=1+min{a | 3(n,p,a) € A(vo)};

if CL(’U()) # Aolad OF M(vo) 75 Moia then
| emit := true,;
if a;(v) > |V(G)| then
L computeCq b (a(vo));
if n(vo) = min{n | n € Cg p(r(vy)) } then status := elected
elsestatus := non-elected

end
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Lemma 4.4. Consider a step For every vertex € V(G) and any giver > 0, if £ = z;(n,a,v) > 0,
there existt neighbouring verticesy, ..., w, € Dir(G) such that for every < [ < k, v has heard a
message< (n,n’, M, a) > from w; before step.

Proof:

Assume thatt = apar = maz{d’ | (n,p,a’) € A;(v)}. Thus, X;(n, amas,v) = {p' | I(n,p',d’) €
A;(v) such thatt = a4, } andx;(n, amaz,v) = p'. This means that the proceshas heargy mes-
sages in the formc (n,nqq, M, a) > before step. By Lemmas 3.4 and 4.2, we deduce that the assertion
is satisfied.

Considera < anq,. Suppose that the assertion holds#gn, a + 1,v). Hencep has heard at least
xi(n,a + 1,v) messagemess=< (n,nqq, M,a + 1) >. Thus, from Lemma 4.3, for each message
messheard byv, the con fidence(n,a + 1) function is called and an elemeft, a) is removed from
A;(v). This means that ifn,p’,a) € A;(v), the proces® has heard’ + x;(n,a + 1,v) messages
< (n,nyq, M,a) > before step. By Lemmas 3.4 and 4.2, each of these messages has beerdéyitte
a different neighbour of. Therefore, the property is verified. O

Consider a step, and a vertexyy such thata;,(vg) > 0. We denoteM = M;,(vy). For every
vertexv € V(G), we definei(v, M, ig) (or i(v) when it is clear from the context) as follows. If there
is a stepi such thatv emits a message n;(v), noq, M;(v), a;(v) > with M;(v) = M, theni(v) is
the last step where emits a message of this form; otherwige) = co. We define a digrap®I (M, i)
as follows. For every vertex € V(Dir(G)), v belongs toV (H(M, 1)) if i(v) < oco. For each
vertexv € V(H(M, 1)), for every(n,p) € N, (v), letk = z;,(n, a;)(v) — 1,v). From Lemma 4.4,
there existt neighbouring vertices, . .., wy of v such that for every < | < k, w; € V(H(M,1p))
andn;, (w;) = n andv has heard a message (n, noq, M, a;,) (v) — 1) > from w; before step(v).
Each corresponding arc from; to v belongs toA(H(M,iy)). In the following, we prove that while
H(M, i) # Dir(G), then the execution of the algorithm is not terminated.

For every vertex, sincea(v) and the number of given identities are boundedBy(=)|, we know
that any execution oM. terminates. In the next lemma, we show that the confidena ta vertex
allows to know how far fromv the vertices have the same mailboxvas

Lemma 4.5. Consider a stepy and a mailbox). For all vertices, w € V(H(M,1q)), if distgar,)
(w,v) < ajw) (), thena;,) (w) = a;)(v) — distrariy) (W, v).

Proof:

Let H = H(M,1ip). This lemma can be proved by induction on the distahbetweenw andv in H.
Assume thatl = 1. Hence,a;,(v) > distg(w,v) > 1 andw € Nu(v). Sincea;y(v) > 1, we
know that for all(m,p,a) € Aj)(v), @ > a;)(v) — 1. Thus, from the definition of{ (M, ) and
Lemma 4.3, for every vertew € Ny (v), w has sent a message (n(w), noa(w), M, a;q) (v) —
1) >. Consequently, for each € Ny, there exists a step< i(v) < ig such thatV/;(v) = M and
aj(w) > a)(v) — 1, and thusy;,) (w) > a;@) (v) — 1.

We assume that it holds for every vertexv such thatdisty (w,v) < d. Consider two vertices, w
such that;(,y(v) > d + 1 anddistg(w,v) = d + 1. Consider a vertex € H such thatw,u) € A(H)
anddistu(u,v) = d. By induction hypothesisy;,)(u) > a;)(v) — d anda;,(w) > a;e,)(w) — 1.
Consequentlyg; () (w) > ;@) (v) — (d +1). O
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Let us recall thaBg is the digraph such thabir(G) is ¢-fibred overBg via a fibration relation
¢ andBg is the minimal base oDir(G). When one considers an execution/of. in which some
messages are delayed, every process involved in the cotioputelongs to a subdigrafl of Dir(G).
In the following lemma, we show that whéil is fibred overBg, the view of each vertex € V(H) is
isomorphic to the view o € V(G).

Lemma 4.6. Let H be a subdigraph oDir(G) and the digrapB¢ such thatDir(G) (resp. H) is

fibred overB¢ via a fibration relationp (resp.pm). If zq is the vertex with the maximal view B¢,

thenpu(v) = 20 = ¢g(v) = zo. Moreover, for every vertex € H, Tg(v) ~ Tu(v) and thus
H =~ G.

Proof:

SinceH is a subdigraph o€, from Remark 2.9, for each, T (v) < Te(v). SinceH is fibred over
Bg Via ¢, for everyw in Bg that has a maximal view, for every € ¢~ (wp), Th(vo) is maximal in
G and thUSTH(Uo) = Tg(vo).

We now prove that for every vertexin V(G), Ta(v) = Te(v). Let X be the set of vertices that
have a maximal view. Let, be the closest vertex fromin G such thatl'c (vy) is maximal, and let
dista (v, Xo) be the distance from to vy in G. We prove the result by induction afist (v, Xo). If
v € Xp, then we already know the result holds. Otherwise, therst®x neighbout; of v such that
distg(u, Xo) = dista(v, Xo) — 1. By induction, we know tha¥'g(u) ~ Tw(u), and thusu has the
same degree i and inH. Moreover, the multiset of the views of the neighbours.afhould be the
same inH andG. Consequently, i (v) < Ta(v), there exists another neighboufrof v such that
T (v) < Ta(v), which is impossible. Thus, for anye V(H), T (v) = Tu(v) andNg(v) = Nug(v).
SinceG is connected) (G) = V(H) andDir(G) ~ H. O

From Proposition 3.7, once the enumeration algorithm mitgaited orH (M, i), every vertex has
the same mailboX/ = M (v) and is able to construct a labelled digraptii/(v)). We have to show
that if D(M (v)) is fibred oveBg, thenH (M, ig) = Dir(G).

We now prove in the following lemma that once a vertex getsrdidence level greater than the size
of the graph, all vertices of the graph have the same mailbhdxhave a confidence level greater tiian

Lemma 4.7. If there exist a stey and a vertex such thai;, (v) > |V (G)|, then there exists a subdi-
graphH' of H(M;, (v), i) such that’ is fibred oveD (M, (v)).

Proof:
Let M = M;,(v) and consider the grapH (M, i) defined above and lét’ be the set of vertices
w € V(H(M,ip)) such that there exists a path framto v in H(M, i,). Let H' be the subgraph of
H(M, ip) induced byV’. From Lemma 4.5, for eachr € V(H'), M, (w) = M anda;(,)(w) > 1.
Sincea; () (w) > 1, there does not exigh; . (w), ¢, N') € M such that\(w), Ny, (w)) < (¢, N').
Consequently, for ally, w" € V(H'), if n()(w) = 1 (w'), then(w) = A(w') and Ny, (w) =
Ni(w’)(w,)'

Note that sinces;(,,)(w) > 1, for every(n,p,a) € Ay (w), a > 0. Consequently, for every
(1, p) € Niw) (W), Ti(w) (1, () (w) —1,w) = p. Consequently, iD (M), for every(n, p) € N, (w),
there aregy arcs from the vertex to the vertexn;(,, (w).
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We define a homomorphism from H' to D(M) as follows. For each vertew € V(H'), let
p(w) = n,( (w). Considering a vertew € V(H'), we define the image by of all its incoming arcs
as follows. By construction dFl (1, 1g), for each(n,p) € Ny, (w), we know that there exist exactly
ai,...,ap € A(H(M,ig)) such that for each € [1,p], t(a;) = w andn;(q,))(s(ar)) = n. Thus, we
let p(a;) = Uy (w) 1+ BY constructionH’ is fibred overD (M) via . O

Thus, if there exists a vertexsuch that the digrap® (M (v)) reconstructed from its mailba/ (v)
is not fibred over the minimal ba3&g of Dir(G), the algorithm is not terminated.

In the following lemma, we show that, at the end of any executf M, on axt-minimal graph,
only one vertex is declared atected

Lemma 4.8. In every execution ofM. on a graphG such thatDir(G) is nt-minimal, exactly one
vertexv is declared aslected

Proof:

One knows that every maximal execution/of, terminates. First, suppose that after the final stépere
exists a vertex such thata;(v) < |V(G)|. Since all messages have been heard, for evetyV (G),
for every(n,p) € N(v), p > 0 and for every(n, p,a) € A(v), p > 0. Among all vertices» such that
a;(v) is minimal, letv be the last one that hears a message ang le# the step where hears this last
message. After has processed the messaggv) = 1 + min{a | 3(n,p,a) € A(v)}. Thus, there
exists a neighbouw of v such thatu; (w) = a;,(v) — 1 = a;(v) — 1, which is a contradiction with our
choice ofv.

From Lemmas 4.6 and 4.7, if there exist a sig@nd a vertexo € V(G) such thata;,(v) >
|[V(G)|, thenH(M (v), i) and Dir(G) are isomorphic. Moreover, from Lemma 4.5, we know that all
the vertices have the same mailbox and that for eaeh(w), N (w) and M (w) will not change anymore.
Consequently, after stej, for anyw, the digraphD (M (w)) is alwaysD(M;,(v)). Thus, there exists
a step: such that for allkw € V(G), M;(w) = M;,(v) anda;(w) > |V(G)|. Let M = M;,(v).
SinceDir(G) is t-minimal, Cg p(ar) is not empty. Thus, there is a unique vertex V(G) such that
ni(v) = min Cq p(ar), and this vertex is elected. O

Therefore, we have proven the following theorem:

Theorem 4.9. For every graphG, there exists a polynomial (memory, messages and size (fages)
leader election algorithm o@ using asynchronous broadcast communications if and otigifligraph
Dir(G) is nt-minimal.

4.6. Remarks on the Initial Knowledge: Degree Awarness

From previous assumptions on the initial knowledge, arrésting question could be to know what
happens when processes initially know their degree.

Let G be a labelled digraph such thatir(G) is nt-minimal. If each process knows its degree
and the size of the graph, one can modify the algorithig (Algorithm 2) to take into account this
combination of knowledge. Before increasing the confiddecel in which all processes have the same
mailbox, each processwaits until it has received a message from all its neighlmgupgrocesses. Once
the sum ofp such thatn, p) € N(v) is equal to the degreé:g(v) of v, we deduce that has received a
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message from all of its neighbouring processes at least ¢ivoen Lemma 4.5, for each stépthe ball
in G centered ab of radiusa;(v) belongs toH (M, i). Hence, ifa;(v) > |V(G)| thenH(M,i(v)) and
Dir(G) are isomorphic. Note that knowing the diameter of the graphufficient. The radius of the ball
centered ab only increases whea;(v) < a;(w) for everyw € Ng(v). Consequentely, leDiam(G)
be the diameter o, if a;(v) > Diam(G), we can easily extend our proofs and deduce@t/, i(v))
andDir(G) are isomorphic.

We previously showed (Lemmas 4.7 and 4.6) that once eaclkegsd@s a confidence level greater
than the size of the graph, then all processes have the sailt@xrend are able to reconstruct the same
digraphD. We also stated (Proposition 3.7) that the digrdph(G) is fibred overD. The following
lemma establishes a link between the degree of each pratgsheasize of its fibre:

Lemma 4.10. ([5])

Let D be a labelled digraph, we denofg, . (resp. d(, .»), the number of arca such thats(a) = v

andt(a) = v’ (resp.s(a) = v" andt(a) = v) in D. For every pair of vertices, v’ € V (D), there exist
two integersd, ./, d. ., such that given a simple gragh, if Dir(G) is fibred overD via ¢, then
d(v,v’)‘gp_l(v)‘ = d(v’,v)’(p_l(v/)"

With the initial knowledge of its degree, a process can camfnom Lemma 4.10 the size of the
fibre of each process that belongs to the digrBgfd/ (v)) reconstructed from its mailbok/ (v). Thus,
every process can locally identify processes that belontpd¢oset of candidates (Definition 2.10) of
the reconstructed grapP®. Therefore, the elected process is the vertex with the sstailllentity of
this set. Hence, our leader election algorithm can be easiyl in the model in which each process
is endowed with degree-awarness (see [5]) while keepingyam@mial complexity and asynchronous
broadcast communications.

Remark 4.11. From Lemma 4.10, given a minimal digraf3, we know that for any simple grap&
that is fibred oveB, the set of candidateSg g does not depend o@, but only onB.

In Algorithm 2, since processes only use the minimal Hgeof Dir(G), one can relax the initial
knowledge of every process. In order to solve the leadetiefeproblem in our model, it suffices that
each process knows the size of the graph and the minimallBBase— and not necessarily the initial
graphG.
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