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1. Introduction

A multi-hop and ad-hoc broadcast network is a collection of processes which communicate by broad-
casting messages and should run in absence of any preexisting infrastructure (e.g., ad-hoc wireless net-
works). Some of the important challenges in such a network are enumeration and leader election which
are well-known in the field of distributed systems [14, 17, 18, 19, 22].

1.1. Enumeration and Election

The aim of a naming algorithm is to give pairwise distinct identities to all processes. The enumeration
problem is a variant of the naming problem and aims at giving to each process a unique number between1
and the size of the graph. Existence of identified processes allows better routing of information, resource
management and performance [19].

A distributed algorithm solves the election problem [15] ifit always terminates and in the final
configuration exactly one process is marked aselectedand all the other processes are marked asnon-
elected. Moreover, it is supposed that once a process becomeselectedor non-electedthen it remains in
such a state until the end of the algorithm. Election algorithms constitute a building block of many other
distributed algorithms. The elected vertex acts as coordinator, initiator, and more generally performs
some special role (see [21] p. 262).

Using enumeration/naming algorithm, one can promote the process with the highest (resp. lowest)
identifier aselected. However, enumeration and election problems are not necessarily equivalent (see [5,
9]). We are here interested in characterizing graphs for which there exists an algorithm that solves the
enumeration and the naming problems or that solves the election problem.

1.2. The Model

We consider an asynchronous broadcast communication model(see [11, 10]). A network is represented
by a simple connected graphG = (V (G), E(G)) = (V,E) where vertices correspond to processes and
edges to direct communication links. The state of each process is represented by a labelλ(v) associated
to the corresponding vertexv ∈ V (G); we denote byG = (G,λ) such a labelled graph.

Remark 1.1. Labels (states) are attached to vertices. They make it possible to encode many different
situations. If the network isanonymousthen all vertices have the same label; vertices having unique
identities, a distinguished vertex or any intermediate situation, qualified aspartially anonymous, are
other examples of labels attached to vertices.

We consider a robust model in which we assume partially anonymous graphs, i.e., processes have
names which are not necessarily distinct. The question of anonymity is often considered when processes
must not divulge their identities during executions, due toprivacy concerns or security policy issues [13].
In addition, each process may be built in large scale quantities from which it is quite infeasible to ensure
uniqueness. Therefore, each process must execute the same finite algorithm in the same way, regardless
of its identity (see [1, 2] for related works on anonymity).

Emitted messages are only heard by reachable processes. We consider ad-hoc networks which run
in absence of any infrastructure and relying on the message passing model and asynchronous broadcast
communications: processes cannot access a global clock andexecute computation steps (atomic emit,
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hear and internal computation) at arbitrary speed. Communication links are reliable but asynchronous,
i.e., a message emitted from a process to neighbours arriveswithin some finite but unpredictable time.
Note that communications are not necessarily FIFO.

1.3. Overview of our Contributions

We give complete characterizations of multi-hop broadcastnetworks where there exists an enumeration
algorithm or an election algorithm (Theorem 3.8 and Theorem4.9). In this model, enumeration and
election problems are not equivalent, meaning that even if we can elect a leader, we cannot always give
a unique number to every process.

Let G = (G,λ) be a labelled graph. We will denote byDir(G) the symmetric labelled directed
graph (digraph)(Dir(G), λ) constructed in the following way. The vertices ofDir(G) are the vertices of
G and they have the same labels inG and inDir(G). Each edge{u, v} of G is replaced inDir(G) by
two arcsa(u,v), a(v,u) ∈ A(Dir(G)) such thats(a(u,v)) = t(a(v,u)) = u, t(a(u,v)) = s(a(v,u)) = v. Note
that this digraph does not contain multiple arcs or loop. Theobject we use for our study is(Dir(G), λ)
and results are stated with symmetric labelled digraphs.

A fibration from a digraphD to a digraphD′ is a homomorphism fromD to D
′ that induces an

isomorphism between the incoming arcs of each vertex ofD and the incoming arcs of its image.
First, we prove that, in the asynchronous broadcast model, there exists an enumeration algorithm if

and only ifDir(G) is minimal for the fibration relation, i.e., if there exists afibration fromDir(G) toD
′

then it is an isomorphism.
For the election problem, we prove that there exists an election algorithm if and only if once there

exists a fibrationϕ from Dir(G) to D
′ then necessarily there exists a vertexv of D′ such thatϕ−1(v) is

a singleton.
For both problems, our algorithms do not require each process to know its degree. For the enumera-

tion problem, processes only know the size of the network. However, we show that this initial knowledge
is not sufficient when one considers the election problem. Thus, our leader election algorithm assumes
that each process knows a map of the network but is not aware ofits position in this map.

Furthermore, our algorithms have a polynomial complexity:local memory, number of messages and
size of messages are polynomially bounded by the size of the network.

Remark 1.2. (Initial Knowledge)
For the enumeration algorithm, it suffices that every process knows the size of the network for the termi-
nation detection. This hypothesis is classical when considering leader election and naming/enumeration
problems [1, 5, 23, 25, 17].

For the election algorithm, to detect its termination we assume that each process knows a map of the
whole graph (see Section 4.2 for a discussion); we also provethat it suffices that every vertex knows the
size of the graph and the size of its neighbourhood (see Section 4.6).

1.4. Related Works: Comparison and Comments

Graphs where election or naming are possible were already studied for different basic models. Solu-
tions depend on the type of basic computation steps, on the type of network topology and on the initial
knowledge.
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Angluin [1] has introduced the classical proof techniques used for showing the non-existence of an
election algorithm based on coverings, which is a notion known from algebraic topology [16]. Finally,
several characterizations of graphs for which there existsan election algorithm have been obtained [5,
23, 25, 17].

The model studied in this paper corresponds to the Broadcast-to-Mailbox communication mode of
Yamashita and Kameda [25] and to the no output port awarenessand no input port awareness of Boldi
et al. [5]. We use intensively fibrations introduced in [5] and studied in [6]. The fundamental tool in
[25, 5] is the notion of view. The view from a vertexv of a labelled graph(G,λ) is an infinite labelled
tree rooted inv obtained by considering all labelled walks in(G,λ) starting fromv.

The characterization of graphs where election is possible obtained in [25] is formulated by using
views whereas Boldiet al. [5] use fibrations. In both cases election algorithms are based on views
and the election algorithms presented in [25, 5] use messages with an exponential size, they need the
knowledge of the size of the graph and the size of the neighbourhood of each vertex; this knowledge
is used in the algorithms to ensure that all executions are pseudo-synchronous and that communication
links behave like FIFO channels.

Techniques developed in this paper are inspired by the work of Mazurkiewicz [17]. He considers
the asynchronous computation model where in one computation step labels of vertices are modified on
a subgraph consisting of a process and its neighbours, according to rules depending on this subgraph
only. Mazurkiewicz’s characterization of the graphs whereenumeration/election are possible is based on
the notion of unambiguous graphs and may be formulated equivalently using coverings of simple graphs
(see [12], p. 256). A graphG is a covering of another graphG′ if there is a surjective homomorphismϕ
fromG toG′ which is locally bijective. He gives a nice and simple enumeration algorithm for the graphs
that are minimal for the covering relation, i.e., which can cover only themselves. The fundamental tool
is a total order attached to local views defined by a vertex andits neighbourhood.

These techniques have been also used in [7, 8]. The model of [7] (it is the same one as [23]) is
such that in each step, one of the vertices, depending on its current label, either changes its state, or
sends/receives a message via one of its ports. The model of [8] is defined by local computations on
labelled edges of graphs. In both cases the election problemand the enumeration problem are equivalent.

Cidon and Mokryn present in [11] an election algorithm in multi-hop radio networks. This algorithm
partitions the network into fragments that are collectionsof processes where one process is identified
as a candidate and marked initially as active. They considernetworks that are not anonymous: each
vertex has a unique identity. During the computation, a candidate can become inactive and joins another
candidate’s fragment.

1.5. Summary

First, we present in Section 2 the notion of fibration for digraphs and the fundamental lemma (Lemma
2.11) which connects fibrations and asynchronous broadcastcommunications. In Section 3, we charac-
terize graphs which admit and enumeration algorithm while in Section 4, we characterize graphs which
admit an election algorithm.
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2. Preliminaries

In order to describe our characterizations, one needs to consider directed graphs (digraphs for short) that
can have multiple arcs and self-loops. In this section, we present various definitions about digraphs and
labelled digraphs. We also present fibrations which are a particular type of homomorphism. From these
definitions, we give a fundamental lemma that establishes a link between fibrations and asynchronous
broadcast communications.

2.1. Labelled Simple Graphs and Digraphs

Undirected graphs without multiple edges or loop are also called simple graphs. Each such a graph is
written asG = (V (G), E(G)) whereV (G) is the set of vertices ofG and where the set of edgesE(G) is
a set of pairs of distinct vertices ofG. For each edge{u, v} ∈ E(G), u andv are theendsof {u, v} and
u andv are said to beadjacentor neighbours. We denote byNG(u) the set of all vertices ofG adjacent
to u anddegG(u) is the degree ofu in G, i.e., the size ofNG(u).

A simple graphG is connectedif for all verticesu, v ∈ V (G), there exists a path betweenu andv.
Otherwise, it isdisconnected. In the following, we will only consider connected simple graphs.

A digraphwith multiple arcs, also calleddirected multigraph, D = (V (D), A(D), sD , tD) is defined
by a setV (D) of vertices, a setA(D) of arcs and by two mapssD andtD that assign to each arc two
elements ofV (D): a source and a target (in general, the subscripts will be omitted). If a is an arc, the
arca is said to be going out ofs(a) and coming intot(a); we also say thats(a) andt(a) are incident to
a. Let a be an arc, ifs(a) = u andt(a) = v thenv is an outgoing neighbour ofu andu is an incoming
neighbour ofv. A self-loop is an arc with the same source and target.

Remark 2.1. Note that since we consider digraphs with multiple arcs, an arc a is not uniquely defined
by s(a) andt(a).

A symmetricdigraphD is a digraph endowed with a symmetry, that is, an involutionSym : A(D) →
A(D) such that for everya ∈ A(D), s(a) = t(Sym(a)). In a symmetric digraphD, the degree of a
vertexv is degD(v) = |{a | s(a) = v}| = |{a | t(a) = v}| and we denote byND(v) the set of
neighbours ofv which is equal to the set of out-neighbours ofv and to the set of in-neighbours ofv.

Given two verticesu, v ∈ V (D), a path π of lengthp from u to v in D is a sequence of arcs
a1, a2, . . . ap such thats(a1) = u,∀i ∈ [1, p−1], t(ai) = s(ai+1) andt(ap) = v. If for eachi ∈ [1, p−1],
ai+1 6= Sym(ai), π is non-stuttering. A digraphD is strongly connectedif for all verticesu, v ∈ V (D),
there exists a path fromu to v in D. In a digraphD, thedistancebetween two verticesu andv, denoted
distD(u, v), is the length of the shortest path fromu to v in D. Note thatdistD(u, v) is not necessarily
equal todistD(v, u) unlessD is a symmetric digraph. A digraphH is asubdigraphof D, notedH ⊆ D,
if V (H) ⊆ V (D) andA(H) ⊆ A(D).

Definition 2.2. ([3])
A homomorphismϕ from the digraphD to the digraphD′ denotedϕ : D → D′ is a mappingϕ : V (D)∪
A(D) → V (D′) ∪ A(D′) such that for every vertexv ∈ V (D), ϕ(v) ∈ V (D′) and for every arc
a ∈ A(D), ϕ(a) ∈ A(D′), ϕ(s(a)) = s(ϕ(a)) andϕ(t(a)) = t(ϕ(a)).

A homomorphismϕ is anisomorphismif ϕ is bijective. We writeD ≈ D′ wheneverD andD′ are
isomorphic.
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In this paper, we consider digraphs where the vertices are labelled with labels from a recursive setL.
A digraphD labelled overL will be denoted by(D,λ), whereλ : V (D) → L is the labelling function.
The digraphD is called the underlying digraph and the mappingλ is a labelling ofD. A mapping
ϕ : V (D) → V (D′) is a homomorphism from(D,λ) to (D′, λ′) if ϕ is a digraph homomorphism from
D to D′ which preserves the labelling, i.e., such thatλ′(ϕ(v)) = λ(v) for everyv ∈ V (D). Labelled
digraphs will be designated by bold letters likeD,D′, . . . If D is a labelled digraph, thenD denotes the
underlying digraph.

Let H be a subgraph ofD andλH the restriction of a labellingλ : V (D) → L to V (H). Then the
labelled graphH = (H,λH) is called asubdigraphof G = (D,λ); we note this fact byH ⊆ D.

Our proofs use the notion ofview. Informally, the view of a vertexv in a digraphD is obtained by
considering all labelled paths inD ending inv. From the computation viewpoint, the view of a process
in a network is a tree representing all the information it cangather about the network.

Definition 2.3. Given a labelled digraphD, the viewTD(v0) of a vertexv0 is an infinite rooted labelled
tree that can be defined recursively. The root of the tree is a vertexx0 that corresponds tov0 and is
labelled byλ(v0). For each incoming neighbourvi of v0 in D, there is an arc betweenx0 and the root
xi of the treeTD(vi). Let d be an integer, thed-view T d

D
(v0) of v0 ∈ V (D) is the infinite viewTD(v0)

truncated at depthd.

From this definition, we can state that the set ofd-views of a digraphD is finite. Thus, we can define
a partial order� on this set as follows:

Definition 2.4. For every vertexv,w ∈ V (D), if T = T d
D
(w) is a subtree ofT ′ = T d

D
(v) thenT ′ � T .

Note that if there exists an isomorphism betweenT to T ′, they are said to be similar, denotedT ≈ T ′.

Remark 2.5. The labellingλ of vertices may encode some properties of the network or an initial knowl-
edge. For example, if the network is anonymous, all the vertices have the same label (i.e.,∀u, u′ ∈
V (G), λ(u) = λ(u′)). If the processes have unique identities, then for allu, u′ ∈ V (G) if u 6= u′ then
λ(u) 6= λ(u′). If there exists a distinguished process, then there existsu ∈ V (G) such that for each
u′ ∈ V (G) distinct fromu, λ(u) 6= λ(u′). It may also encode partial identities of processes. As initial
knowledge, label of a vertex may encode its degree or the sizeof the graph.

Remark 2.6. Note that computing the view of a process belongs to the set oftools which allows to
capture “symmetric” behaviour in distributed computations. The algorithms of Boldiet al. [5] and of
Yamashita and Kameda [25] are based on the notion of view.

2.2. Homomorphism and Fibration

Fibrations,t -fibrations andnt -fibrations are important tools for this work (see [4, 6] for definitions and
properties).

A fibration is a homomorphism that induces an isomorphism between the incoming arcs of a vertex
and the incoming arcs of its image.

Definition 2.7. A digraphD is fibred overa digraphD′ via a homomorphismϕ if ϕ is a homomorphism
fromD toD′ such that for each arca′ ∈ A(D′) and for each vertexv ∈ ϕ−1(t(a′)), there exists a unique
arca ∈ A(D) such thatt(a) = v andϕ(a) = a′; this arca is called thelifting of a′ at v.
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We say that the homomorphismϕ is afibration from D to D′, the digraphD is thetotal digraphof
ϕ and the digraphD′ is thebaseof ϕ.

Thefibre over a vertexv′ (resp. an arca′) of D′ is defined as the setϕ−1(v′) of vertices ofD (resp.
the setϕ−1(a′) of arcs ofD).

The digraphD is minimal if for every digraphD′ such thatD is fibred overD′, D andD
′ are

isomorphic.

If a digraphD is fibred over a digraphD′ via a homomorphismϕ, and ifD andD′ are not isomor-
phic, we say thatD is properlyfibred overD′ and thatϕ is aproperfibration.

From [6], we know that there exists a unique digraphBG such thatDir(G) is fibred overBG, and
for eachD such thatDir(G) is fibred overD, D is fibred overBG. This digraph is called theminimal
baseof G.

In this work, we need to definet -fibrations andnt -fibrations.

Definition 2.8. The fibre of a vertexv is qualified astrivial if |ϕ−1(v)| = 1, otherwise, it isnon-trivial.
A fibration ϕ is a t -fibration if there exists at least one vertex such that its fibre is trivial; it is a

nt -fibration if all fibres are non-trivial.
A digraphD is t -fibred (resp.nt -fibred) over a digraphD′ via ϕ if and only if ϕ is a t -fibration

(resp.nt -fibration).
The digraphD is nt -minimal if for every digraphD′ such thatD is fibred overD′ via a fibrationϕ,

ϕ is at -fibration.

A simple graphG is minimal if Dir(G) is minimal. Similarly, a simple graphG is nt -minimal if
Dir(G) is nt -minimal. An example of fibration is given in Figure 1.

1

1

3
2

2

G

1

1

3

2

2

Dir(G)

1
3

v
2

D

Figure 1. The labelled digraphDir(G) is fibred over the digraphD. Therefore,Dir(G) is not minimal. Since
Dir(G) has a unique vertex of degree4, Dir(G) is nt -minimal. The digraphD is minimal and alsont -minimal.

Remark 2.9. As a corollary of Definition 2.4, we obtain: letH be a sub-digraph ofDir(G), for every
vertexv ∈ Dir(G), T d

Dir(G)(v) � T d
H
(v).

Moreover, letD andD′ be two digraphs. IfD is fibred overD′ viaϕ, thenTD(v) ≈ TD′(ϕ(v)), i.e,
the view ofv in D is isomorphic to the view ofϕ(v) in D

′.
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Note that the vertices of the minimal baseB of G can be identified to their views inB: this defines
a unique homomorphism fromG to B. We define the notion of candidate for a digraphD such that
Dir(G) is fibred overD.

Definition 2.10. Consider ant -minimal graphG, let B be the minimal base ofDir(G), and letϕ be
the unique fibration fromDir(G) to B. A vertexv ∈ V (B) is a candidate ofB if |ϕ−1(v)| = 1, i.e., if
there is a unique vertexw ∈ V (G) such thatTG(w) ≈ TB(v).

Given a digraphD such thatDir(G) is fibred overD, we know thatD is fibred overB via a unique
homomorphismϕ′. A vertexv is a candidate ofD if and only if ϕ′(v) is a candidate ofB.

We denote byCG,D the set of candidates ofD.

Note that if ant -minimal digraphDir(G) is fibred over a digraphD via a homomorphismϕ, then
for every vertexv ∈ CG,D, |ϕ−1(v)| = 1.

Intuitively, a leader election algorithm on a graphG fibred overD cannot declare a vertex which
does not belong to the set of candidateCG,D (see Section 4).

2.3. Fibrations and Broadcast Communications

In order to extend the Lifting Lemma of Angluin [1] and Boldiet al. [5] to asynchronous broadcast com-
munications, we present the correlation between fibrationsand asynchronous broadcast communications.

Leader election and enumeration problems require the network to reach anon-symmetricstate. A
network state is qualified as symmetric if it contains different processes that are in exactly the same
situation; not only their local states, but also the states of their neighbors, of their neighbors’ neighbors,
etc. That is, there exists a “local similarity” between different processes of infinite radius.

The replay argument shows that different processes that arelocally similar with infinite radius will
exhibit the same behaviour in some infinite computation. Thus, there is no algorithm that guarantees that
the symmetry ceases in all finite computations.

It is not difficult to see that local similarity of infinite radius may exist in finite graphs. It is precisely
captured by the notion of graph coverings used by Angluin andthis is the mathematical tool to prove the
existence of symmetries of infinite radius.

In our model, when a process emits a message, it modifies its state according to only its previous
state, while its neighbouring processes that hear the message modify their states following their previous
states and the state of the emitting process.

Thus, multi-hop broadcast networks in which symmetries exist are non minimal and impossibility
of symmetry breaking can be shown for these graphs. The following lemma connects fibrations and
asynchronous broadcast communication steps.

A maximalexecutionρ of an algorithm is either an infinite execution, or a finite execution such that
in the final configuration, there is no message in transit and no process wants to emit a message.

Lemma 2.11. (Asynchronous Lifting Lemma)
Consider a digraphD1 fibred over a digraphD2 via ϕ and letA be an algorithm based on the asyn-
chronous broadcast model. If there exists a maximal execution ρ2 of A on D2 which yieldsD′

2 then
there exists a maximal executionρ1 of A onD1 which yieldsD′

1 such thatD′
1 is fibred overD′

2 via ϕ.
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Proof:
LetD1 = (D1, λ1),D2 = (D2, λ1) be two digraphs such that(D1, λ1) is fibred over(D2, λ2) viaϕ.

Consider a particular set of executionsΠ onD2 in which each emitted message from a processv is
followed by the hearing of all its neighbours. Consider a step of ρ ∈ Π: the processv emits a message
in D2 and all its neighbours hear the message just after its emission. Letλ′

2 be the labelling ofD2 after
this step. One can lift this execution inD1 in which every vertex inϕ−1(v) emits the same message (not
simultaneously and in any order). Then, all emitted messages are heard. Let denoteλ′

1, the new labelling
of D1. Each vertexw ∈ ND2(v) hearsk messages, withk depending on the number of arcsa ∈ A(D2)
such thats(a) = v andt(a) = w. Sinceϕ is a fibration relation, for every vertexw′ ∈ ϕ−1(w), w′ hask
neighbouring processes inϕ−1(v) and hearsk same messages. In this sense,λ′

1(w
′) = λ′

2(w) and labels
of all other vertices are not modified. Note that if there exists any self-loop onv, then there exist arcs
a ∈ A(D2) such thats(a) = t(a) = v. Oncev has emitted a message,λ′

1(v) = λ′
2(ϕ

−1(v)). Thereafter
oncev has heard this message, we have alsoλ′

1(v) = λ′
2(ϕ

−1(v)). Therefore, the digraph(D1, λ
′
1) is

fibred over(D2, λ
′
2) via ϕ. Thus, if the executionρ is infinite onD2, the lifted execution onD1 is also

infinite. If the maximal executionρ onD2 is finite, then all messages have arrived, and no process has to
emit a message. Hence, after the execution lifted formρ onD1, D1 is fibred overD2 and all messages
have also arrived and no process has to emit a message: the lifted execution is maximal. ⊓⊔

3. An Enumeration Algorithm for Broadcast Networks

In this section, we give a necessary condition based on an impossibility result which states that there
exists no enumeration algorithm for a graphG such thatDir(G) is not minimal. Then, we prove
that this condition is sufficient by presenting an enumeration algorithm (Algorithm 1) which relies on
asynchronous broadcast communications and is inspired by the work of Mazurkiewicz [17].

3.1. Impossibility Result

Given a network represented by a graphG, we present a necessary condition that must be satisfied byG

to admit an enumeration algorithm. This is an impossibilityresult that relies on the notion of fibrations
for asynchronous computations. Following the proof of Lemma 2.11 presented above, we show that two
processes belonging to a same fibre cannot have different names.

Proposition 3.1. Let G be a labelled graph such thatDir(G) is not minimal, there is no enumeration
algorithm forG in the asynchronous broadcast model.

Proof:
Consider a simple graphG = (G,λ) and a strongly connected digraphD = (D, η) such thatDir(G) is
properly fibred overD via a fibrationϕ. Given an algorithmA relying on asynchronous broadcast com-
munications, consider an execution ofA onD as described in Lemma 2.11. Note that if this execution
of A onD is infinite, then following Lemma 2.11 there exists an infinite execution ofA onG. Finally,
A is not an enumeration algorithm forG.

Suppose this execution ofA onD is finite and yields a configurationD′. In the final configuration
every message has arrived and no process has to emit a message. Thus, each vertex has its final label.
Following Lemma 2.11, there exists a lifted execution ofA on Dir(G) that yields a configurationG′
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such thatG′ is properly fibred overD′ via ϕ. SinceG′ is fibred overD′ it implies that there exist at
least two vertices that have the same label inG

′. Hence, the algorithmA does not give a distinct label to
each vertex and is not an enumeration algorithm forG. ⊓⊔

3.2. Informal Description of the Enumeration Algorithm

We first give a general description of our algorithm, that will be denotedM, when executed on a con-
nected labelled simple graphG.

During the execution of the enumeration algorithm, each vertex v attempts to get its unique identity
label: a number between1 and |V (G)|. Once a vertexv has chosen a numbern(v), it emits it to
its neighbourhood. When a vertexv hears a message from a neighbouru, it stores the numbern(u).
From all information it has gathered from its neighbours, each vertexv is able to create itslocal view.
Schematically, the local view ofv is the multiset of given numbers that appear in his neighborhood.
Then, a vertex broadcasts its number with itslocal viewN(v). If a vertexu discovers that there exists
another vertexv with the same number then it should decide if it changes its identity: it compares its
local view with the local view ofv. If the label ofu or the local view ofu is weaker(for an order we
define later), thenu chooses another identity and emits it again with its local view. At the end of the
computation, if the digraphDir(G) is minimal, then every vertex will have a unique number.

3.2.1. Labels

We consider a networkG whereG = (G,λ) is a simple labelled graph. The functionλ : V (G) → L

is the initial vertex labelling and is kept during the computation. We suppose that there exists a total
order<L on L. During the execution, the label of each vertexv is a tuple(λ(v), n(v), N(v),M(v))
corresponding to the following information:

• λ(v) ∈ L is the initial label ofv and is not modified by the algorithm.

• n(v) ∈ N is the currentnumberof the vertexv computed by the algorithm.

• N(v) ∈ Pfin(N × Z)1 is the local viewof v. Intuitively, oncev has updated its local view,(n, p)
belongs toN(v) if v knowsp neighbours that haven as an identity number.

• M(v) ∈ N × L × Pfin(N
2) is themailboxof v. The mailbox ofv contains all information heard

by v during the execution of the algorithm. If(m, ℓ,N ) ∈ M(v), it means that at some previous
step of the execution, there was a vertexu such thatn(u) = m, λ(u) = ℓ andN(u) = N .

Initially, each vertexv has a label of the form(λ(v), 0, ∅, ∅) indicating that it has not chosen any
number, that it has no information about its neighbours or about the other vertices of the graph.

In order to update the local view of a processv0 ∈ V (G), we define a functionupdate(n, nold) the
operations defined as follows. First, ifnold 6= 0, we apply the following rule:

• if there exists(nold, 1) ∈ N(v0) thenN(v0) := N(v0) \ {(nold, 1)},

1For any setS, Pfin(S) denotes the set of finite subsets ofS.
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• if there exists(nold, p) ∈ N(v0) with p 6= 1 thenN(v0) := N(v0) \ {(nold, p)} ∪ {(nold, p− 1)},

• otherwise,N(v0) := N(v0) ∪ {(nold,−1)}.

Then, symmetrically, we do the following operations:

• if there exists(n,−1) ∈ N(v0) thenN(v0) := N(v0) \ {(n,−1)},

• if there exists(n, p) ∈ N(v0) with p 6= −1 thenN(v0) := N(v0) \ {(n, p)} ∪ {(n, p + 1)},

• otherwise,N(v0) := N(v0) ∪ {(n, 1)}.

3.2.2. Messages

In our algorithm, processes exchange messages of the form< (m,nold,M) >. If a vertexu emits a
message< (m,nold,M) >, thenm is the current numbern(u) of u, nold is the previous number ofu;
if in the meanwhile,u has not modified its number, thennold = m andM is the mailbox ofu.

Remark 3.2. If there exists(n, p) ∈ N(v) with p < 0, then it means that among all the messages
< (m,nold,M) > that v has heard, there are more messages wherenold = n than messages where
m = n. However, each time a processw emits a message< (m,nold,M) > with m 6= nold, we know
thatw has previously emitted a message< (nold, n

′
old,M) > with nold > n′

old.
Consequently, if there exists(n, p) ∈ N(v) with p < 0, then it implies thatv has not heard yet all

messages sent by its neighbours, and thus it can wait until ithears a message of the form< (m,n,M) >.

3.2.3. An Order on Local Views

As in Mazurkiewicz’s algorithm [17], the nice properties ofthe algorithm rely on a total order on local
views, i.e., on finite subsets ofPfin(N

2). The algorithm described above is such that the local view of
any vertex cannot decrease during the computation.

In order to compare two elements ofN
2, we use the usual lexicographic order onN

2: (n, p) < (n′, p′)
if n < n′, or if n = n′ andp < p′.

Let N1, N2 ∈ Pfin(N
2), N1 6= N2. Consider(n, p) as the maximal element of the symmetric

differenceN1 △ N2 = (N1 \ N2) ∪ (N2 \ N1). ThenN1 ≺ N2 if and only if one of the following
conditions holds:

• (n, p) ∈ N1 andp < 0,

• (n, p) ∈ N2 andp > 0.

If N(u) ≺ N(v) then we say that the local viewN(v) of v is strongerthan the one ofu (andN(u)
is weakerthanN(v)). Note that in particular the empty set is minimal for≺. We assume for the rest
of the paper that the set of initial labelsL is totally ordered by<L. We extend≺ to a total order on
L × Pfin(L × N): (ℓ,N) ≺ (ℓ′, N ′) if either ℓ <L ℓ′, or ℓ = ℓ′ andN ≺ N ′. We denote by� the
reflexive closure of≺.
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3.3. The Enumeration Algorithm M

The algorithm for the vertexv0 (see Algorithm 1) is expressed in an event-driven description (see Tel
[22] p. 553). The algorithm we describe here does not requireFIFO communications, i.e., the emitted
messages are not necessarily heard in the same order that they are emitted.

The actionI can be executed by a process on wake-up only if it has not heardany message. In this
case, it chooses the number1, updates its mailbox and informs its neighbours.

The actionR describes the instructions the vertexv0 has to follow when it hears a message<
(n′, n′

old,M
′) > from a neighbour. First, it updates its mailbox by addingM ′ to it. Then it modi-

fies its number if there exists(n(v0), ℓ,N ) ∈ M(v0) such that(λ(v0), N(v0)) ≺ (ℓ,N ), i.e., if there
exists another process in the network which has the same number with a greater local view. Then, it
updates its local view according to theupdate(n, nold) function described above. It adds its new state
(n(v0), λ(v0), N(v0)) to its mailbox. Finally, if its mailbox has been modified by the execution of all
these instructions, it emits its number and its mailbox.

If the mailbox ofv0 is not modified by the execution of the actionR, it means that the information
v0 has about its neighbour (i.e., its number) was correct, thatall the elements ofM ′ already belong to
M(v0), and that for each(n(v0), ℓ,N ) ∈ M(v0), (ℓ,N ) � (λ(v0), N(v0)).

The actionS is executed once the local boolean valueemit is set totrue by I orR actions. It means
that the process needs to emit a message to all it neighbours.

3.4. Correctness ofM

Let G be a simple labelled graph. In the following,i is an integer denoting a computation step. Let
(λ(v), (ni(v), Ni(v),Mi(v)) be the label of the vertexv after theith step of the computation of the
algorithmM (Algorithm 1). We present some properties satisfied by each execution of the algorithm in
the asynchronous broadcast model.

The following lemma, which can be proved easily by inductionon the number of steps, recapitulates
basic labelling properties.

Lemma 3.3. For each vertexv and each stepi,

1. ni(v) 6= 0 =⇒ (ni(v), λ(v), Ni(v)) ∈ Mi(v),

2. ∀n′ ∈ Ni(v) thenn′ > 0 and∃ℓ′ ∈ L,∃N ′ ∈ Pfin(N
2) such that(n′, ℓ′, N ′) ∈ Mi(v).

The algorithm has some remarkable monotonicity propertiesthat are described in the following
lemma.

Lemma 3.4. For each stepi and each vertexv, Mi(v) ⊆ Mi+1(v), ni(v) ≤ ni+1(v), andNi(v) �
Ni+1(v). Moreover, ifv applies the actionS at stepi andj with i 6= j, thenMi(v) 6= Mj(v).

Proof:
The property is obviously true for the vertices that are not active at stepi. It is easy to see that, for each
vertexv, we always haveMi(v) ⊆ Mi+1(v).

For each vertexv and each stepi such thatni(v) 6= ni+1(v), ni+1(v) = 1+max{n1; (n1, ℓ1, N1) ∈
Mi(v)} and eitherni(v) = 0 < ni+1(v) or (ni(v), λ(v), Ni(v)) ∈ Mi(v) as shown in Lemma 3.3 and
thereforeni(v) < ni+1(v).
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Algorithm 1: Algorithm M in the asynchronous broadcast model.

var: emit : bool init false;
nold : int init 0 ;

I : {n(v0) = 0 and no message has arrived atv0}
begin

Mold := ∅;
n(v0) := 1 ;
M(v0) := {(n(v0), λ(v0), ∅)};
emit := true

end

S : {emit = true}
begin

emit < (n(v0), nold,M(v0)) >;
nold := n(v0);
emit := false

end

R : {A message< (n′, n′
old,M

′) > has arrived atv0}
begin

Mold := M(v0);
M(v0) := M(v0) ∪M ′;
if n(v0) = 0 or ∃(n(v0), ℓ,N ) ∈ M(v0) such that(λ(v0), N(v0)) ≺ (ℓ,N ) then

n(v0) := 1 + max{n | ∃(n, ℓ,N ) ∈ M(v0)};

N(v0) := update(n′, n′
old);

M(v0) := M(v0) ∪ {(n(v0), λ(v0), N(v0))};
if ∀(n, p) ∈ N(v0), p > 0 andM(v0) 6= Mold then

emit := true

end

Whenv hears a message in the following form:mess =< (n′, n′,M ′) >,Ni+1(v) = update(n′, n′)
= Ni(v). If Ni(v) 6= Ni+1(v) thenv heard a messagemess =< (n′, n′

old,M
′) > with n′ > n′

old and
thusNi(v) ≺ Ni+1(v).

Moreover, the condition ofS is satisfied when the value ofemit becomes true, i.e., when the mailbox
M(v) of v is modified. ⊓⊔

The local knowledge of a vertexv reflects to some extent some real properties of the current config-
uration. The two following lemmas enable us to prove that if avertexv knows a numberm (i.e., there
existℓ,N such that(m, ℓ,N) ∈ Mi(v)), then for eachm′ ≤ m, there exists a vertexv′ in the graph such
thatni(v

′) = m′. We first show that ifv knowsm there existsv′ such thatni(v
′) = m. we also show

that if a vertexv knows an identity numberm, then it knows all the numbers smaller thanm.
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Lemma 3.5. For each vertexv ∈ V (G) and each stepi, let ni(v) 6= 0, given(m′, ℓ′, N ′) ∈ Mi(v), for
every1 ≤ m ≤ m′, there exists a vertexw ∈ V (G) such thatni(w) = m and(m, ℓ,N) ∈ Mi(v).

Proof:
By induction on stepi, we show that for each vertexv with ni(v) 6= 0, given(m′, ℓ′, N ′) ∈ Mi(v), for
every1 ≤ m ≤ m′, there exists(m, ℓ,N) ∈ Mi(v). We state that it holds for alli ≥ 0. If the ruleI is
applied byv, then,Mi(v) = (1, λ(v0), ∅) and trivially, the property holds.

If the rule R is applied byv, then,v heard a messagemess =< (n′, n′
old,M

′) > from another
vertexv′. Let j be the step in whichv′ emitted this message. We know thatM ′ = Mj(v

′). If v keeps its
number at stepi+1, then,Mi+1(v) = Mi(v)∪Mj(v

′) and the assertion is true by induction hypothesis.
Besides, ifv′ modifies its number, then,ni+1(v) = 1 + max{n | ∃(n, l,N) ∈ Mi(v) ∪ Mj(v

′)} and
Mi+1(v) = Mi(v) ∪Mj(v

′) ∪ (ni+1(v), λ(v), Ni+1(v)). Consequently, the assertion is true.
Assume that the numberm is known byv and letU = {(u, j) ∈ V (G) × N | j ≤ i, nj(u) = m}.

Consider the setU ′ = {(u, j) ∈ U | ∀(u′, j′) ∈ U,Nj′(u
′) ≺ Nj(u) or Nj′(u

′) = Nj(u) andj′ ≤ j}.
It is easy to see that there existsi0 such that for each(u, j) ∈ U ′, j = i0. Since(m, ℓ,N) ∈ Mi(v),
neitherU norU ′ are empty.

If i0 < i, the numberni0(u) = m of uwas modified at stepi0+1 but by maximality of(λ(u), Ni0(u)),
the vertexu could not modify its number. Hence,i0 = i and there exists a vertexw ∈ V (G) such that
ni(w) = m. ⊓⊔

From Lemma 3.5, we deduce that for each step, the identity numbers of all the vertices form either a
set[1, k] or a set[0, k] with k ≤ V (G).

For each stepi and each vertexv, if there existsn′ ∈ Ni(v), from Lemma 3.3, there existsv′ such
that ni(v

′) = n′ and thereforeN(v) can only have a finite number of values and the same holds for
M(v). During the algorithm, the consecutive labelling of each vertex v form an increasing sequence,
(ni(v), Ni(v),Mi(v)), i = 1, 2, . . . and, each vertex can emit a message only if it modifies its mailbox.
Since the number of possible accessible labels is finite (butdependent on the size of the graph), the
algorithm always terminates.

Moreover, we make the assumption that every process knows the size of the network. Hence, once
a process gets the number|V (G)|, from Lemma 3.5, it knows that all the vertices have different identity
numbers that will not change anymore and it can locally detect the termination of the algorithm.

Since we have proven thatM always terminates, we can give some properties about the final la-
belling:

Lemma 3.6. Any executionρ of M on a connected labelled graphG = (G,λ) terminates and yields to
a final labelling(λ, np, Np,Mp) satisfying the following conditions:

1. there exists an integerk ≤ |V (G)| such that{np(v) | v ∈ V (G)} = [1, k],

and for all verticesv, v′:

2. Mp(v) = Mp(v
′),

3. (np(v), λ(v), Np(v)) ∈ Mp(v
′),

4. np(v) = np(v
′) implies thatλ(v) = λ(v′) andNp(v) = Np(v

′),
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5. (n, p) ∈ Np(v) if and only if there existw1, . . . , wp ∈ NG(v) such that for eachi, np(wi) = n; in
this case, there exists(np(v), p

′) ∈ Np(wi) with p′ ≥ 1.

Proof:

1. By Lemma 3.5 applied to the final labelling.

2. Otherwise, there exist two neighboursv, v′ such thatM(v) = M(v′). However, since the configu-
ration is final, bothv andv′ have sent their mailboxes to their neighbours and thusM(v) = M(v′).

3. A corollary of the previous point using Lemma 3.3.

4. A corollary of the previous property and since neitherv nor v′ need to change its number.

5. Since each neighbour ofv that has the numbern has sent a message with its number, and since all
messages have been heard, we know that there exists(n′, p′) ∈ Np(v) with p′ > p. Moreover, due
to the design of the function replace, we know that

∑
(n,p)∈Np(v),p>0 p is bounded by the degree

of v. Consequently, the claim holds.
⊓⊔

In the next proposition, we prove that there exists a digraphD associated to the final labelling ofG
such thatDir(G) is a fibration ofD.

Proposition 3.7. Given a graphG, we can associate to the final labelling of any executionρ of the
enumeration algorithm onG, a digraphD such thatDir(G) is fibred overD andV (D) is the set of
numbers appearing on the vertices ofG at the end ofρ.

Proof:
We use the notation of Lemma 3.6. LetG = (G,λ).

Consider the graphD defined as follows. Its set of vertices isV (D) = {m ∈ N | ∃v ∈ V (G), nρ(v) =
m}. For anym,m′ ∈ V (D), there arep arcsam′,m,1, . . . , am′,m,p fromm′ tom if there existsv ∈ V (G)
such thatnρ(v) = m′ and(m, p) ∈ Nρ(v) with p > 0. From Lemma 3.6, this is independent of the
choice ofv ∈ V (G). For every vertexv, v′ ∈ V (G), if nρ(v) = nρ(v

′) thenλ(v) = λ(v′) and we can
define the labellingη of D: for everyv ∈ V (G), η(nρ(v)) = λ(v).

Let us recall thatV (Dir(G)) = V (G) and for all edge{v, v′} ∈ E(G), there exist two arcs
av′,v, av,v′ such thats(av,v′) = t(av′,v) = v andt(av,v′) = s(av′,v) = v′. Moreover, for eachv ∈ V (G),
the label ofv in Dir(G) is the same as inG.

It remains to define the homomorphismϕ from Dir(G) to D. For every vertexv ∈ V (G), ϕ(v) =
nρ(v). For every vertexv such thatϕ(v) = n, and for each(m, p) ∈ Nρ(v) with p > 0, we know from
Lemma 3.6 that there existp arcsa1, . . . , ap ∈ A(Dir(G)) such thatt(ai) = v andnρ(s(ai)) = m. For
each1 ≤ i ≤ p, ϕ(ai) = am,n,i.

By definition,ϕ is a fibration and thusDir(G) is fibred overD. ⊓⊔

From Proposition 3.7, one can show that AlgorithmM terminates onG and the final labelling
verifies the following properties:(Dir(G), λ) is fibred overD. Thus ifDir(G) is minimal thenD is
isomorphic toDir(G) and therefore the set of numbers of the vertices is exactly1, . . . , |V (G)|: each
vertex has a unique number. Moreover, we make the assumptionthat every process knows the size of the
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network. Hence, once a process has|V (G)| different numbers in its mailbox, from Lemma 3.5, it knows
that all the vertices have different identity numbers that will not change anymore.

Finally, we have proven the following theorem:

Theorem 3.8. For every graphG, there exists a(n) naming/enumeration algorithm onG using asyn-
chronous broadcast communications if and only if the digraph Dir(G) is minimal.

3.5. Complexity Analysis

Complexity analysis of distributed algorithms constitutes a building block of many properties such as
energy consumption when considering wireless sensor networks. In this part, we deal with the complex-
ity of Algorithm 1. We are interested in the number of messages exchanged by the processes and their
size. We also look at the memory needed by each vertex.

We consider that each vertex does not need to keep more than one element(n, ℓ,N) for eachn in
its mailbox. Indeed, if there are two elements(n, ℓ,N), (n, ℓ′, N ′) ∈ M(v), and if (ℓ,N) ≺ (ℓ′, N ′),
we can remove(ℓ,N) from the mailbox. Moreover, we assume that the initial labelling of G is such that
each initial labelℓ can be encoded withO(log |V (G)|) bits.

Proposition 3.9. LetG be a labelled graph of sizen withm edges and a maximum degree∆. Any run of
M yieldsO(mn2) emissions of messages of sizeO(∆n log n) bits. Moreover, it requiresO(∆n log n)
bits of memory at any vertex.

Proof:
Let G be a labelled graph of sizen with m edges, maximal degree vertex∆ and diameterD. Consider
a runρ of the algorithm onG. According to Lemma 3.5, we know that each vertex modifies itsnumber
at mostn times.

For every vertexv, since numbers ofv and of its neighbours only increase,(n(v), N(v)) can change
(d(v) + 1)n times. Whenv modifies its number or its local view, it yields at most the emission ofO(n)
messages (because vertices that already have(n(v), N(v)) in their mailbox do not emit this message).
Hence, any run of the algorithm needsO(mn2) messages. Since, each vertex only keeps useful infor-
mations in its mailbox, there exist at mostn elements(n0, ℓ,N) in M(v) and each of these elements
can be represented withO(∆ log n) bits. Hence, one can represented the mailbox of each vertex with
O(∆n log n) bits. Therefore, the size of each message isO(∆n log n) bits.

From these previous proofs, one knows that the mailbox of each vertex is encoded withO(∆n log n)
bits. Moreover, for each vertexv, n(v) can be represented withlog n bits whileN(v) can be represented
with O(∆ log n) bits. Thus, the maximum local memory requirement at any vertex isO(∆n log n). ⊓⊔

As a corollary of the complexity analysis, Theorem 3.8 is extended as follows:

Theorem 3.10. For every graphG, there exists a polynomial complexity (memory, messages and size
of messages) naming/enumeration algorithm onG using asynchronous broadcast communications if and
only if the digraphDir(G) is minimal.

Algorithms of Yamashita and Kameda and of Boldiet al. presented in Section 1.4 yieldsO(n2)
emissions of messages of size2O(n) bits. Moreover, each process requires2O(n) memory bits. Thus,
considering different aspects of the complexity,M fits particularly well to multi-hop broadcast networks
composed with low-capabilities processes (e.g., wirelesssensors).
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4. A Leader Election Algorithm for Broadcast Networks

As stated in the introduction, if we can solve the enumeration problem on a graphG then we can solve
the election problem on this graph by declaring the vertex with the identity number|V (G)| as elected.
Nonetheless, in our model, the enumeration and the electionproblems are not equivalent. Consider the
graphG and the digraphDir(G) of Figure 1. SinceDir(G) is fibred overD, from Theorem 3.8, the
enumeration problem cannot be solved onG. Nonetheless, if every vertex initially knowsG, consider
a leader election algorithm defined as follows: each vertex emits a message and, once a vertex receives
four messages, it can declare itself as elected. Since the vertex labelled3 is the unique vertex of degree
greater or equal than4 in G, the vertex3 will be elected.

In this section, we also present an impossibility result which states that there exists no leader election
algorithm for a graphG if Dir(G) is not nt -minimal. This condition is sufficient and we give an
extension ofM (Algorithm 2) which solves the election problem.

4.1. Impossibility Result

Given a network represented by a simple graphG, we present a necessary condition based onnt -
fibrations that must be satisfied byG to admit a leader election algorithm.

Proposition 4.1. Let G be a labelled graph suchDir(G) is notnt -minimal, there is no leader election
algorithm forG in the asynchronous broadcast model.

Proof:
Consider a simple graphG = (G,λ) and a strongly connected digraphD = (D, η) such thatDir(G) is
nt -fibred overD via a fibrationϕ. Given an algorithmA using asynchronous broadcast communications,
consider an execution ofA on D as described in Lemma 2.11. Note that if there exists an infinite
execution ofA onD, then, following Lemma 2.11, there exists an infinite execution ofA onG. Finally,
A is not a leader election algorithm forG.

Suppose that there exists a finite and maximal execution ofA onD which yields a digraphD′. In the
final configuration every message has arrived and no process has to emit a message. Thus, each vertex
has its final label. Following Lemma 2.11, there exists a lifted execution ofA onDir(G) that yields a
configurationG′ such thatG′ is fibred overD′ via ϕ. SinceG′ is nt -fibred overD′, it implies that for
every vertexv ∈ V (G), there exist at least two vertices inϕ−1(ϕ(v)) that have the same label inG′.
Hence, there exists no vertexv ∈ V (G) that has a unique label. The algorithmA is not a leader election
algorithm forG. ⊓⊔

4.2. Initial Knowledge

We here underline the importance of the initial knowledge. In the previous algorithmM, every process
only knows the size of the network. Using this initial knowledge, we ensure that at the end of the
execution, each process locally knows that each vertex has obtained a unique identity even though some
messages are arbitrarily delayed. Boldiet al.[5] and Yamashita and Kameda [24] also show that knowing
the size of the graph allows to solve election problem whenever it is possible. However, in their models,
each vertex initially knows its degree (or can compute it easily) and this initial knowledge is actually
used in their views construction algorithm.
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In our model, vertices do not initially know their degree andin this case, the initial knowledge of the
size of the graph is not sufficient to solve the election problem on graphs where it can be solved. For
instance, assume that there exists a leader election algorithm for the three graphsG1, G2 andG3 of
Figure 2. InG1 (resp.G2, G3), there exists a unique vertex of degree4 (resp.5, 5). Hence, similarly
to the graph of Figure 1, one can elect in these three graphs when we assume that each process initially
knows the graph. Consider the digraphB such thatDir(G1) is t -fibred overB via a fibrationϕ. When
executed onB, a leader election algorithm forG1 has to elect a process such that its fibre is trivial.
Thus, there exist two verticesa, b ∈ B such that|ϕ−1(a)| = |ϕ−1(b)| = 1 and which can be declared as
elected. Assume that several messages are arbitrary delayed, i.e., several communication links are not yet
established. One can find two graphsG2 andG3 and two digraphsD2 andD3 such thatD2 ⊆ Dir(G2)
andD3 ⊆ Dir(G3) and such thatD2 andD3 are alsot -fibred overB.

From Lemma 2.11, if there exists a finite and maximal execution of an algorithm that elects a leader
in B then there exists a finite and maximal execution onDir(G1), D2 andD3 that also elects a leader.
Hence, if the vertexb is declared as elected inB, then there exists an execution onDir(G2) where
messages sent along arcs inDir(G2) \ D2 are delayed for an arbitrary long time. At some point in
this execution, two vertices have the final labelelected. Similarly, if the vertexa is declared as elected
in B, then there exists a particular execution onDir(G3) such that two vertices are marked as elected.
Therefore, we cannot find a universal leader election algorithm for all graphs of order8 where election
problem can be solved. In the following, we provide a leader election algorithmMe which assumes that
each process knows a map of the network.

4.3. Informal Description of the Leader Election Algorithm

We present how to extendM to solve the leader election problem on digraphs that arent -minimal.
Consider a graphG such thatDir(G) is t -fibred over a digraphD. Our aim is to provide an

extension of our previous algorithm by using the termination detection algorithm of [20]. The idea is
to execute this algorithm and to reconstruct a graph from thecontents of the vertices mailboxes (as it
is done in Proposition 3.7) and check if all processes are involved in the execution, i.e., if there is no
isolated process.

4.3.1. The SSP Algorithm

Initially in [20], this algorithm was devised to detect the termination of another distributed algorithm.
As stated in Section 3.4, each process is able to determine its termination condition. The SSP algorithm
detects an instant in which the entire computation is achieved.

LetG be a graph, to each processv is associated a predicateP (v) and an integera(v), its confidence
level. Initially, P (v) is false anda(v) is equal to−1. If a vertexv has finished its computation of the
initial algorithm, then it changes its valueP (v) to true. Each time a vertex changes the value ofP (v) or
a(v) then it informs its neighbours.

The modification of the value ofa(v0) only depends on the value ofP (v0) and the informationsv0
has about the values{a(v1), . . . , a(vd)} of its neighbours:

• if P (v0) = false thena(v0) = −1,

• if P (v0) = true thena(v0) = 1 +min{a(vk) | k ∈ [0; k]}.
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Figure 2. The labelled digraphDir(G1) is fibred over the digraphB. This fibration is at -fibration andDir(G1)
is nt -minimal; the subdigraphsD2 of Dir(G2) andD3 of Dir(G3) are alsot -fibred over the minimal baseB.
From Lemma 2.11, an execution of a leader election algorithmonB can be lifted to an execution onDir(G1) and
an execution onD2 andD3. Thus, the vertexa can be declared as elected inB, G1 andG2 and the vertexb can
be declared as elected inB, G1 andG3. If the algorithm choosesa (resp.b), then two vertices inG2 (resp.G3)
are declared as elected: that is not possible.

We will adapt this algorithm using the ideas of the algorithmGSSP [12]. For every vertexv, the
value ofP (v), instead of being boolean, will be a graph reconstructed from the contents of the mailbox
of v. An important property of the functionP is that it is constant between two moments where it has
the same value.

In our models, a vertex cannot distinguish its neighbours: therefore we will use the numbers that
appear in the local view. A vertexv will increase its confidence levela(v) only if when|N(v)| = k, then
v has heard messages fromk different processesv′ such thatM(v′) = M(v) anda(v′) ≥ a(v).

In our algorithm, each vertex permanently tries to reconstruct a digraphD(M) from its mailbox. This
digraph is constructed as in Proposition 3.7. Given a mailbox M , we say that an element(n, ℓ,N) ∈ M

is maximal if for all (n, ℓ′, N ′) ∈ M , (ℓ′, N ′) � (ℓ,N); we denote bymax(M) the set of maximal
elements ofM ; note that for eachn, there is at most one element(n, ℓ,N) ∈ max(M). If there exists
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(n, ℓ,N) ∈ max(M) such that there is(m, p) ∈ N with p < 0, or if there is no(m, ℓ′, N ′) ∈ max(M),
thenD(M) is undefined. Otherwise, the digraphD(M) is defined as follows:V (D(M)) = {n |
∃(n, ℓ,N) ∈ max(M)}, and for each(n, ℓ,N) ∈ max(M), λ(n) = ℓ, and for each(m, p) ∈ N , there
are exactlyp arcs fromm to n in D(M).

4.3.2. Labels

As in the enumeration algorithm, we start with a labelled graphG = (G,λ). During the computation,
verticesv will get new labels of the form(λ(v), n(v), N(v),M(v), a(v), A(v)). Thus, we add to the
label of each vertex two items:

• a(v) ∈ N is the confidence level of the vertexv,

• A(v) ∈ Pfin(N × Z × Z) is a set maintained by each vertexv. It contains the confidence level of
its neighbours in the form(n, p, a) wherep is the number of the neighbours ofv with n as identity
number anda as confidence level.

For sake of simplicity, we define a functionconfidence(n, a) to update the setA(v0) of a process
v0 as follows. First, ifa ≥ 0, we letaold = a− 1 and we apply the following rules:

• if there exists(n, 1, aold) ∈ A(v0) thenA(v0) := A(v0) \ {(n, 1, aold)},

• if there exists(n, p, aold) ∈ A(v0) with p 6= 1 thenA(v0) := A(v0) \ {(n, p, aold)} ∪ {(n, p −
1, aold)},

• otherwise,A(v0) := A(v0) ∪ {(n,−1, aold)}.

Then, symmetrically, we do the following operations:

• if there exists(n,−1, a) ∈ A(v0) thenA(v0) := A(v0) \ {(n,−1, a)},

• if there exists(n, p, a) ∈ A(v0) with p 6= −1 thenA(v0) := A(v0) \ {(n, p, a)} ∪ {(n, p+1, a)},

• otherwise,A(v0) := A(v0) ∪ {(n, 1, a)}.

Note that in Algorithm 2, the digraphBG is the minimal base of the initial digraphDir(G) on which
the algorithm is performed.

4.3.3. Messages

A message emitted by a processu and heard by the processv has the following form< (m,nold,M, a) >
wherem, nold andM are identical to values of messages exchanged inM. We add the itema which is
the value of the confidence levela(u) of a.

4.4. The Leader Election AlgorithmMe

The algorithm for the vertexv0 is described in Algorithm 2. The core of the actionI remains unchanged
compared to AlgorithmM except that the vertexv0 has to initialize its confidence levela(v0) to −1.

The actionR contains the instructions the vertexv0 has to follow when it heard a message<
(n′, n′

old,M
′, a′) > from a neighbour. Initially, it behaves as in AlgorithmM. If its mailbox has been
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modified, it has to reset its confidence levela(v0) and the confidence it has collected from its neighbours
in A(v0). Conversely, if its mailbox remains unchanged, it updatesA(v0) with the received valuea′.
In order to update its own confidence level, the vertexv0 verifies if every collected confidence levels in
A(v0) are greater thana(v0) and if the graph reconstructed from its mailboxM(v0) is fibred overBG.
It means thatv0 has the same mailbox of its neighbours. Following these instructions, if its mailbox or
its confidence level has been modified by the execution, it emits its number with its new mailbox and
confidence level. Finally, an execution is terminated when its confidence level is greater than the size
of the graph|V (G)|. It means that all processes have reconstructed the same graph from their mailbox
which is fibred overBG. Thus, the vertex whose its fibre is trivial is declared as elected. If there exist
more than one vertex satisfying this condition, the vertex with the lowest number is chosen.

4.5. Correctness ofMe

Let G be a simple labelled and connected graph. In the following,i is an integer denoting a computa-
tion step. Let(λ(v), ni(v), Ni(v),Mi(v), ai(v), Ai(v)) be the label of the vertexv after theith step of
the computation of the algorithmMe. We present some properties satisfied by each execution of the
algorithm in the asynchronous broadcast model.

We can easily state by induction that if the mailbox of a vertex v is the same between two steps, the
confidence level ofv increases.

Lemma 4.2. For each stepi and each vertexv, if Mi(v) = Mi+1(v) thenai+1(v) ≥ ai(v). Moreover,
if v applies the actionS at stepsi andj, thenMi(v) 6= Mj(v) or ai(v) 6= aj(v).

In the following lemma, we show that when a process emits a message, then∀(n, p, a) ∈ A(v),
a ≥ a(v)− 1.

Lemma 4.3. For each stepi and each vertexv, either∀(n, p, a) ∈ Ai(v), a ≥ ai(v)− 1, or there exists
(n, p, a) ∈ Ai(v) such thatp < 0 and∀(n, p′, a′) ∈ Ai(v), a′ ≥ a.

Proof:
We prove the lemma by induction oni. Initially, A(v) = ∅ and the property obviously holds. Sup-
pose that the property holds for all vertices at stepi and consider a vertexv that hears a message
< n′, n′

old,M
′, a′ > at stepi + 1. If n′

old 6= n′, or if M ′ 6= Mi(v), then ai+1(v) = −1 and
for all (n, p, a) ∈ Ai+1(v), a = −1. Note that ifMi+1(v) = Mi(v) and ai+1(v) 6= ai(v), then
ai+1(v) = 1 + min{a | ∃(n, p, a) ∈ Ai+1(v)} and the property holds.

Suppose that at stepi, ∀(n, p, a) ∈ Ai(v), a ≥ ai(v). If a′ ≥ ai(v), then∀(n, p, a) ∈ Ai+1(v),
a ≥ ai+1(v)−1. If a′ ≤ ai(v)−1, then there exists(n′,−1, a′−1) ∈ Ai+1(v) and∀(n′, p′′, a′′) ∈ Ai(v),
a′′ ≥ a′ − 1.

Suppose now that at stepi, there exists(n, p, a) ∈ Ai(v) such thatp < 0 and∀(n, p′′, a′′) ∈ Ai(v),
a′′ ≥ a. If n′ 6= n, then the property still holds. Otherwise, ifa′ ≤ a, then(n′,−1, a′ − 1) ∈ Ai+1(v)
and∀(n, p′′, a′′) ∈ Ai+1(v), a′′ ≥ a′−1; If a′ = a+1, then(n′, p−1, a) ∈ Ai+1(v) and∀(n, p′′, a′′) ∈
Ai+1(v), a′′ ≥ a; If a′ > a+ 1, then(n′, p, a) ∈ Ai+1(v) and∀(n, p′′, a′′) ∈ Ai+1(v), a′′ ≥ a. ⊓⊔

Consider a vertexv ∈ V (G) and a stepi, for any givena ≥ 0, for every (n, p) ∈ Ni(v), let
Xi(n, a, v) = {p′ | ∃(n, p′, a′) ∈ Ai(v) such thata′ ≥ a} andxi(n, a, v) =

∑
p∈Xi(n,a,v)

p.
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Algorithm 2: Algorithm Me in the asynchronous broadcast model.

var: emit : bool init false;
I : {n(v0) = 0 and no message has arrived atv0}
begin

n(v0) := 1; a(v0) := −1;
Mold := ∅; aold := −1; nold := 0;
M(v0) := {(n(v0), λ(v0), ∅)};
emit := true

end

S : {emit = true}
begin

if ∀(n, p) ∈ N(v0), p > 0 and∀(n, p, a) ∈ A(v0), p > 0 then
if a(v0) = −1 then

emit < (n(v0), nold,M(v0), a(v0)) >;

else whileaold < a(v0) do
aold := aold + 1 ;
emit < (n(v0), nold,M(v0), aold) >;

emit := false ; nold := n(v0) ; aold := a(v0);

end

R : {A message< (n′, n′

old,M
′, a′) > has arrived atv0}

begin
Mold := M(v0);
M(v0) := M(v0) ∪M ′;
if n(v0) = 0 or ∃(n(v0), ℓ,N ) ∈ M(v0) such that(λ(v0), N(v0)) ≺ (ℓ,N ) then

n(v0) := 1 +max{n | ∃(n, ℓ,N ) ∈ M(v0)};

N(v0) := update(n′, n′

old);
M(v0) := M(v0) ∪ {(n(v0), λ(v0), N(v0))};
if M(v0) 6= Mold then

a(v0) := −1; aold := −1;
A(v0) := {(n, p,−1) | (n, p) ∈ N(v0)};

if M(v0) = M ′ anda′ ≥ 0 then
A(v0) := confidence(n′, a′);

if ∀(n, p, a) ∈ A(v0), a(v0) ≤ a then
constructD(M(v0)) fromM(v0);
if D(M(v0)) is fibred overBG then

a(v0) := 1 +min{a | ∃(n, p, a) ∈ A(v0)};

if a(v0) 6= aold or M(v0) 6= Mold then
emit := true;

if ai(v) > |V (G)| then
computeCG,D(M(v0));
if n(v0) = min{n | n ∈ CG,D(M(v0))} then status := elected;
elsestatus := non-elected;

end
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Lemma 4.4. Consider a stepi. For every vertexv ∈ V (G) and any givena ≥ 0, if k = xi(n, a, v) > 0,
there existk neighbouring verticesw1, . . . , wk ∈ Dir(G) such that for every0 < l ≤ k, v has heard a
message< (n, n′,M, a) > from wl before stepi.

Proof:
Assume thata = amax = max{a′ | (n, p, a′) ∈ Ai(v)}. Thus,Xi(n, amax, v) = {p′ | ∃(n, p′, a′) ∈
Ai(v) such thata′ = amax} andxi(n, amax, v) = p′. This means that the processv has heardp′ mes-
sages in the form< (n, nold,M, a) > before stepi. By Lemmas 3.4 and 4.2, we deduce that the assertion
is satisfied.

Considera < amax. Suppose that the assertion holds forxi(n, a+ 1, v). Hence,v has heard at least
xi(n, a + 1, v) messagesmess=< (n, nold,M, a + 1) >. Thus, from Lemma 4.3, for each message
messheard byv, the confidence(n, a + 1) function is called and an element(n, a) is removed from
Ai(v). This means that if(n, p′, a) ∈ Ai(v), the processv has heardp′ + xi(n, a + 1, v) messages
< (n, nold,M, a) > before stepi. By Lemmas 3.4 and 4.2, each of these messages has been emitted by
a different neighbour ofv. Therefore, the property is verified. ⊓⊔

Consider a stepi0 and a vertexv0 such thatai0(v0) ≥ 0. We denoteM = Mi0(v0). For every
vertexv ∈ V (G), we definei(v,M, i0) (or i(v) when it is clear from the context) as follows. If there
is a stepi such thatv emits a message< ni(v), nold,Mi(v), ai(v) > with Mi(v) = M , theni(v) is
the last step wherev emits a message of this form; otherwisei(v) = ∞. We define a digraphH(M, i0)
as follows. For every vertexv ∈ V (Dir(G)), v belongs toV (H(M, i0)) if i(v) < ∞. For each
vertexv ∈ V (H(M, i0)), for every(n, p) ∈ Ni0(v), let k = xi0(n, ai(v)(v) − 1, v). From Lemma 4.4,
there existk neighbouring verticesw1, . . . , wk of v such that for every0 < l ≤ k, wl ∈ V (H(M, i0))
andni0(wl) = n andv has heard a message< (n, nold,M, ai(v)(v) − 1) > from wl before stepi(v).
Each corresponding arc fromwl to v belongs toA(H(M, i0)). In the following, we prove that while
H(M, i0) 6= Dir(G), then the execution of the algorithm is not terminated.

For every vertexv, sincea(v) and the number of given identities are bounded by|V (G)|, we know
that any execution ofMe terminates. In the next lemma, we show that the confidence level of a vertex
allows to know how far fromv the vertices have the same mailbox asv.

Lemma 4.5. Consider a stepi0 and a mailboxM . For all verticesv,w ∈ V (H(M, i0)), if distH(M,i0)

(w, v) ≤ ai(v)(v), thenai(w)(w) ≥ ai(v)(v) − distH(M,i0)(w, v).

Proof:
Let H = H(M, i0). This lemma can be proved by induction on the distanced betweenw andv in H.
Assume thatd = 1. Hence,ai(v)(v) ≥ distH(w, v) ≥ 1 andw ∈ NH(v). Sinceai(v)(v) ≥ 1, we
know that for all(m, p, a) ∈ Ai(v)(v), a ≥ ai(v)(v) − 1. Thus, from the definition ofH(M, i) and
Lemma 4.3, for every vertexw ∈ NH(M,i)(v), w has sent a message< (n(w), nold(w),M, ai(v)(v) −
1) >. Consequently, for eachw ∈ NH(M,i), there exists a stepj < i(v) ≤ i0 such thatMj(v) = M and
aj(w) ≥ ai(v)(v)− 1, and thusai(w)(w) ≥ ai(v)(v)− 1.

We assume that it holds for every vertexv,w such thatdistH(w, v) ≤ d. Consider two verticesv,w
such thatai(v)(v) ≥ d+1 anddistH(w, v) = d+1. Consider a vertexu ∈ H such that(w, u) ∈ A(H)
anddistH(u, v) = d. By induction hypothesis,ai(u)(u) ≥ ai(v)(v) − d andai(w)(w) ≥ ai(u)(u) − 1.
Consequently,ai(w)(w) ≥ ai(v)(v)− (d+ 1). ⊓⊔
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Let us recall thatBG is the digraph such thatDir(G) is t -fibred overBG via a fibration relation
ϕ andBG is the minimal base ofDir(G). When one considers an execution ofMe in which some
messages are delayed, every process involved in the computation belongs to a subdigraphH of Dir(G).
In the following lemma, we show that whenH is fibred overBG, the view of each vertexv ∈ V (H) is
isomorphic to the view ofv ∈ V (G).

Lemma 4.6. Let H be a subdigraph ofDir(G) and the digraphBG such thatDir(G) (resp. H) is
fibred overBG via a fibration relationϕG (resp.ϕH). If x0 is the vertex with the maximal view inBG,
thenϕH(v) = x0 =⇒ ϕG(v) = x0. Moreover, for every vertexv ∈ H, TG(v) ≈ TH(v) and thus
H ≈ G.

Proof:
SinceH is a subdigraph ofG, from Remark 2.9, for eachv, TH(v) � TG(v). SinceH is fibred over
BG via ϕ, for everyw0 in BG that has a maximal view, for everyv0 ∈ ϕ−1(w0), TH(v0) is maximal in
G and thusTH(v0) = TG(v0).

We now prove that for every vertexv in V (G), TH(v) = TG(v). Let X0 be the set of vertices that
have a maximal view. Letv0 be the closest vertex fromv in G such thatTG(v0) is maximal, and let
distG(v,X0) be the distance fromv to v0 in G. We prove the result by induction ondistG(v,X0). If
v ∈ X0, then we already know the result holds. Otherwise, there exists a neighbouru of v such that
distG(u,X0) = distG(v,X0) − 1. By induction, we know thatTG(u) ≈ TH(u), and thusu has the
same degree inG and inH. Moreover, the multiset of the views of the neighbours ofu should be the
same inH andG. Consequently, ifTH(v) ≺ TG(v), there exists another neighbourv′ of v such that
TG(v) ≺ TH(v), which is impossible. Thus, for anyv ∈ V (H), TG(v) ≈ TH(v) andNG(v) = NH(v).
SinceG is connected,V (G) = V (H) andDir(G) ≈ H. ⊓⊔

From Proposition 3.7, once the enumeration algorithm is terminated onH(M, i0), every vertexv has
the same mailboxM = M(v) and is able to construct a labelled digraphD(M(v)). We have to show
that ifD(M(v)) is fibred overBG, thenH(M, i0) = Dir(G).

We now prove in the following lemma that once a vertex gets a confidence level greater than the size
of the graph, all vertices of the graph have the same mailbox and have a confidence level greater than0.

Lemma 4.7. If there exist a stepi0 and a vertexv such thatai0(v) > |V (G)|, then there exists a subdi-
graphH′ of H(Mi0(v), i0) such thatH′ is fibred overD(Mi0(v)).

Proof:
Let M = Mi0(v) and consider the graphH(M, i0) defined above and letV ′ be the set of vertices
w ∈ V (H(M, i0)) such that there exists a path fromw to v in H(M, i0). Let H′ be the subgraph of
H(M, i0) induced byV ′. From Lemma 4.5, for eachw ∈ V (H ′), Mi(w)(w) = M andai(w)(w) ≥ 1.
Sinceai(w)(w) ≥ 1, there does not exist(ni(w)(w), ℓ

′, N ′) ∈ M such that(λ(w), Ni(w)(w)) ≺ (ℓ′, N ′).
Consequently, for allw,w′ ∈ V (H ′), if ni(w)(w) = ni(w′)(w

′), thenλ(w) = λ(w′) andNi(w)(w) =
Ni(w′)(w

′).
Note that sinceai(w)(w) ≥ 1, for every (n, p, a) ∈ Ai(w)(w), a ≥ 0. Consequently, for every

(n, p) ∈ Ni(w)(w), xi(w)(n, ai(w)(w)−1, w) = p. Consequently, inD(M), for every(n, p) ∈ Ni(w)(w),
there arep arcs from the vertexn to the vertexni(w)(w).
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We define a homomorphismϕ from H
′ to D(M) as follows. For each vertexw ∈ V (H ′), let

ϕ(w) = ni(w)(w). Considering a vertexw ∈ V (H ′), we define the image byϕ of all its incoming arcs
as follows. By construction ofH(M, i0), for each(n, p) ∈ Ni(w)(w), we know that there exist exactly
a1, . . . , ap ∈ A(H(M, i0)) such that for eachl ∈ [1, p], t(al) = w andni(s(al))(s(al)) = n. Thus, we
letϕ(al) = an,ni(w)(w),l. By construction,H′ is fibred overD(M) via ϕ. ⊓⊔

Thus, if there exists a vertexv such that the digraphD(M(v)) reconstructed from its mailboxM(v)
is not fibred over the minimal baseBG of Dir(G), the algorithm is not terminated.

In the following lemma, we show that, at the end of any execution of Me on ant -minimal graph,
only one vertex is declared aselected.

Lemma 4.8. In every execution ofMe on a graphG such thatDir(G) is nt -minimal, exactly one
vertexv is declared aselected.

Proof:
One knows that every maximal execution ofMe terminates. First, suppose that after the final stepi, there
exists a vertexv such thatai(v) ≤ |V (G)|. Since all messages have been heard, for everyv ∈ V (G),
for every(n, p) ∈ N(v), p > 0 and for every(n, p, a) ∈ A(v), p > 0. Among all verticesv such that
ai(v) is minimal, letv be the last one that hears a message and leti0 be the step wherev hears this last
message. Afterv has processed the messageai0(v) = 1 + min{a | ∃(n, p, a) ∈ A(v)}. Thus, there
exists a neighbourw of v such thatai(w) = ai0(v) − 1 = ai(v) − 1, which is a contradiction with our
choice ofv.

From Lemmas 4.6 and 4.7, if there exist a stepi0 and a vertexv ∈ V (G) such thatai0(v) >

|V (G)|, thenH(M(v), i0) andDir(G) are isomorphic. Moreover, from Lemma 4.5, we know that all
the vertices have the same mailbox and that for eachw, n(w), N(w) andM(w) will not change anymore.
Consequently, after stepi0, for anyw, the digraphD(M(w)) is alwaysD(Mi0(v)). Thus, there exists
a stepi such that for allw ∈ V (G), Mi(w) = Mi0(v) and ai(w) > |V (G)|. Let M = Mi0(v).
SinceDir(G) is t -minimal,CG,D(M) is not empty. Thus, there is a unique vertexv ∈ V (G) such that
ni(v) = minCG,D(M), and this vertex is elected. ⊓⊔

Therefore, we have proven the following theorem:

Theorem 4.9. For every graphG, there exists a polynomial (memory, messages and size of messages)
leader election algorithm onG using asynchronous broadcast communications if and only ifthe digraph
Dir(G) is nt -minimal.

4.6. Remarks on the Initial Knowledge: Degree Awarness

From previous assumptions on the initial knowledge, an interesting question could be to know what
happens when processes initially know their degree.

Let G be a labelled digraph such thatDir(G) is nt -minimal. If each process knows its degree
and the size of the graph, one can modify the algorithmMe (Algorithm 2) to take into account this
combination of knowledge. Before increasing the confidencelevel in which all processes have the same
mailbox, each processv waits until it has received a message from all its neighbouring processes. Once
the sum ofp such that(n, p) ∈ N(v) is equal to the degreedeg(v) of v, we deduce thatv has received a
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message from all of its neighbouring processes at least once. From Lemma 4.5, for each stepi, the ball
in G centered atv of radiusai(v) belongs toH(M, i). Hence, ifai(v) > |V (G)| thenH(M, i(v)) and
Dir(G) are isomorphic. Note that knowing the diameter of the graph is sufficient. The radius of the ball
centered atv only increases whenai(v) ≤ ai(w) for everyw ∈ NG(v). Consequentely, letDiam(G)
be the diameter ofG, if ai(v) > Diam(G), we can easily extend our proofs and deduce thatH(M, i(v))
andDir(G) are isomorphic.

We previously showed (Lemmas 4.7 and 4.6) that once each process has a confidence level greater
than the size of the graph, then all processes have the same mailbox and are able to reconstruct the same
digraphD. We also stated (Proposition 3.7) that the digraphDir(G) is fibred overD. The following
lemma establishes a link between the degree of each process and the size of its fibre:

Lemma 4.10. ([5])
Let D be a labelled digraph, we denoted(v,v′) (resp. d(v′,v)), the number of arcsa such thats(a) = v

andt(a) = v′ (resp.s(a) = v′ andt(a) = v) in D. For every pair of verticesv, v′ ∈ V (D), there exist
two integersd(v,v′), d(v′,v) such that given a simple graphG, if Dir(G) is fibred overD via ϕ, then
d(v,v′)|ϕ

−1(v)| = d(v′,v)|ϕ
−1(v′)|.

With the initial knowledge of its degree, a process can compute from Lemma 4.10 the size of the
fibre of each process that belongs to the digraphD(M(v)) reconstructed from its mailboxM(v). Thus,
every process can locally identify processes that belong tothe set of candidates (Definition 2.10) of
the reconstructed graphD. Therefore, the elected process is the vertex with the smallest identity of
this set. Hence, our leader election algorithm can be easilyused in the model in which each process
is endowed with degree-awarness (see [5]) while keeping a polynomial complexity and asynchronous
broadcast communications.

Remark 4.11. From Lemma 4.10, given a minimal digraphB, we know that for any simple graphG
that is fibred overB, the set of candidatesCG,B does not depend onG, but only onB.

In Algorithm 2, since processes only use the minimal baseBG of Dir(G), one can relax the initial
knowledge of every process. In order to solve the leader election problem in our model, it suffices that
each process knows the size of the graph and the minimal baseBG — and not necessarily the initial
graphG.
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