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Abstract. Given a set S of segments in the plane, the intersection graph of S is the graph with vertex
set S in which two vertices are adjacent if and only if the corresponding two segments intersect. We
prove a conjecture of Scheinerman (PhD Thesis, Princeton University, 1984) that every planar graph
is the intersection graph of some segments in the plane.

1 Introduction

In this paper, we consider intersection models for planar graphs. A segment model of a graph G maps every
vertex v € V(G) to a segment v of the plane so that two segments u and v intersect if and only if uv € E(G).
Although this graph family is simply defined, it is not easy to manipulate. Actually, even if this class of graphs
is small (there are less than 29("1°8m) guch graphs with n vertices [15]) a segment model may be long to
encode (in the models of some of these graphs the endpoints of the segments need at least 2V™ bits to be
coded [13]). There are also interesting open problems concerning this class of graphs. For example, we know
that deciding whether a graph G admits a segment model is NP-hard [11] but it is still open whether this
problem belongs to NP or not. Here we focus on a conjecture proposed by Scheinerman [16], stating that
every planar graph has a segment model.

Many work has been done toward this conjecture. Several proofs [3,5,9] have been given for bipartite
planar graphs. The case of triangle-free planar graphs was proved by de Castro et al. [1] and recently de
Fraysseix and Ossona de Mendez [4] proved it for every planar graph that has a 4-coloring in which every
induced cycle of length 4 uses at most 3 colors.

Another approach to this problem has been proposed [12,14]. Since it is known [6] that planar graphs
are intersection graphs of Jordan arcs in the plane and since two non-parallel segments intersect at most
once, it was asked whether planar graphs are intersection graphs of Jordan arcs in the plane if every pair of
Jordan arcs s; and s, intersect at most once and in a non-tangent way (i.e. around their intersection point we
successively meet s1, 89, 81 and s3). It was already known when tangent intersection are allowed; indeed every
planar graph is the contact graph of touching circles [10]. The authors and Ochem [2] answered positively to
this question. This approach of Scheinerman’s conjecture was decisive since by improving the proof of this
result it yields a proof of Scheinerman’s conjecture that we present here. However, the construction we give
here does not exactly correspond to a stretching of the strings of the construction given in [2].

The paper is organized as follows. In Section 2 we give some definitions. In particular we define premodels
and we outline how to obtain a segment model from a premodel. In Section 3 we describe premodels that
exist for 3-bounded W-triangulations, a family of plane graphs including 4-connected triangulations. Then
in Section 4 we finally construct segment models for general triangulations, which implies the existence of
segment models for general planar graphs.

Due to space limitations, some proofs are omitted and can be found in the full version of the paper
attached in appendix.

2 Preliminaries

A plane graph is an embedded planar graph. Given a plane graph G, let V(G), E(G) and F(G) be respectively
the sets of vertices, edges and inner faces of G. A near-triangulation is a plane graph in which every inner face
is a triangle. A triangulation is a near-triangulation with a triangular outer face. It is easy to see that every
planar graph is the induced subgraph of some triangulation. This implies that it is sufficient to consider
triangulations. Indeed if a planar graph G is isomorphic to the graph induced by a set V(G) C V(T) of



vertices in a triangulation 7', then by removing the segments corresponding to V(7' \ V(G) from a segment,
model of T, we clearly obtain a segment model of G.

In all the paper, the bold notations correspond to geometrical objects like points, segments or lines. For
example we will usually denote by v the segment corresponding to a vertex v and by (v) the line prolonging
this segment. Furthermore since we consider finite planar graphs, the segment sets we consider are all finite.
Given a segment set S, its set of representative points Repg is the set that contains the intersection points
and the ends of the segments in S. A segment set S is unambiguous if every segment s € S has distinct
endpoints, and if parallel segments of S do not intersect. From now on we use the following definition of
model.

Definition 2.1. Given a segment set S, its intersection graph Gg is the graph with vertex set S and where
two wvertices are adjacent if and only if the corresponding segments intersect. Furthermore if (1) S is un-
ambiguous, if (2) the intersection of any three segments of S is empty, and if (3) every endpoint belongs to
exactly one segment, then S is a model for any graph G isomorphic to Gg.

For the proof in Section 4 we need some geometrical structures to represent the triangular inner faces. To
each triangular inner face abc we will associate a face segment, abe, acb or bca.

Definition 2.2. Given an unambiguous segment set S and three pairwise intersecting segments a, b and c,
a face segment £ = abc is a segment [p, q] such that:

— p is the intersection point of a and b, and going around p we consecutively meet a, f and b,
— q is an internal point of c that does not belong to any other segment of S, and
— none of its internal points belongs to any segment of S.

The points p and q are respectively called the cross-end and the flat-end of abc.

Note that the second item implies that face segments are non-trivial, i.e. p # q. Note also that in this
definition a and b play the same role, so a face segment abc is also a face segment bac but it is not a face
segment acb.

Definition 2.3. Given an unambiguous segment set S, two face segments f; and f2 on S are non-interfering
if one of the following holds:

- The segments f1 and fs do not intersect.

- The segments f; and fy have the same cross-end p and this point is the intersection point of exactly
two segments of S, a and b. Furthermore, one of the lines (a) and (b) separates f1 and fs in distinct
half-planes.

Definition 2.4. A full model of a near triangulation T is a couple M = (S, F') of segments sets such that:

— S is a model of T.

— F is a set of non-interfering face segments on S such that for each inner face abc of T', F' contains one
of the following face segments: abc, acb, bca.

— SUF is unambiguous.

The next theorem is the main result of the paper.

Theorem 2.5. Every triangulation T has a full model M = (S, F).

2.1 Premodels

In our proofs, we use a different kind of model. The main difference with full models is that more than two
segments of S can intersect in a same point.

In the following, we consider a segment set S and a set F' of non-interfering face segments on S, where
S U F is unambiguous. Let us denote the segments of S (resp. F) by s1,892,... (resp. f1,f2,...). Given a
representative point p, its incidence sequence Z(p) is the undirected circular sequence of segments (from
S U F) we meet by going around p. This sequence is undirected because it will make no difference going
clockwise or anti-clockwise. By extension, the partial topological incidence sequence of p, Z*(p) is the sequence
obtained in the following way. Prolong every segment that ends at p and consider its new incidence sequence.



Then replace every occurrence of s; and f; that was not in Z(p) before by (s;) and (f;). It is clear that Z(p)
is a subsequence of Z*(p) (i.e. Z(p) € Z(p)). We say that Z(p) is of the form ([r1],r2,...,1}) forr; € SUF,
if either Z(p) = (r1,r2,...,r%), Z(p) = (r2,...,r%), or Z(p) C ((r1),ro,...,rr) C Z*(p).

Let us define types for the representative points, depending on their incidence sequence. These types
are not always entirely determined by the incidence sequence and we will have to assign a type (among the
possible ones) to each representative point. Furthermore, these types are in correspondence with some graphs
we also describe here.

— A point is a segment end if its incidence sequence is (s1). The corresponding graph is the single vertex
S51.

— A point is a flat face segment end if its incidence sequence is (s1, f1,s1). The corresponding graph is the
single vertex si.

— A point may be a crossing if it has an incidence sequence of the form (s, [f1], s2, [f2], s1, [s2]) or (s1, [f1], s2,
S1, [f2],82). The corresponding graph is the edge s1s2.

— A point may be a path—(s1, S2,...,Sk)—point with k > 2, if it has an incidence sequence of the form
(S1,82,...,8k (s1), (s2)) (See Figure 1). Such a typed point is in correspondence with path—(s1, s, ..., sk),
the graph with vertex set {si,..., s} and edge set {s;s;41 |1 <i < k}.

S1 S2 Sk S1 S2 Sk

Fig.1. A path (s1,s2,...,%) point, its partial realization, and its corresponding graph

— A point may be a fan-s1<(sa,...,s;)—point with k > 2, if it has an incidence sequence of the form
(s1,[fi], 82, ... 8k, (s1),[f1], (s2)) (See Figure 2), with f; = sysox. Note that since f; is a face segment
it occurs at most once in the incidence sequence. Such a typed point is in correspondence with fan-s;<
(s2,...,8k), the graph with a vertex s; dominating a path (ss,...,sg).

S1

52 53 Sk

Fig. 2. A fan-s1< (s, ..., sg)—point, its partial realization , and its corresponding graph

In fact, there are three more kinds of special points that are not detailed here but can be found in the
full version of the paper.



Actually, the graphs we considered here are plane graphs, and their inner faces are the grey faces in the
figures. As in [4], we need a bipartite digraph to describe the constraints between segments and representative
points.

Definition 2.6. Given a segment set R, the constraints digraph Constg is the bipartite digraph with vertex
sets R and Reppr, and where r € R and p € Reppr are linked if and only if p € r. More precisely, there is an
arc from p to r if p is an endpoint of v, otherwise (when p is an internal point of v) the arc goes from r to

Jo R

Informally this graph describes the fact that the position of a segment is determined by its endpoints, and
determines the position of its internal representative points.

Definition 2.7. Given a segment set S, a set F' of non-interfering face segments on S and a function T that
assigns a type to each representative point, the triple M = (S, F,7) is a premodel of a near-triangulation T
if the following holds:

- The set SU F is unambiguous and the digraph Constgyr is acyclic.
- A vertex a € V(T) if and only ifa € S.
- An edge ab € E(T) if and only if a and b intersect in a point p such that the graph corresponding to
T(p) contains the edge ab.
- A face abe € F(T) if and only if one of the following holds:
- either there exists a face segment abc, acb or bea in F,
- or, a,b and c intersect in a point p such that abc is an inner face of the graph corresponding to 7(p).

Note that a premodel M = (S, F,7) of a near-triangulation 7" has a bounded number of representative
points. There are at most 2|V(T)| segment ends, at most F(T) flat face segment ends, and at most E(T)
points of another type (since each of them corresponds to at least one edge of T').

Remark 2.8. If a premodel M = (S, F, ) of a near-triangulation T" has 2|V (T)| + |F(T")| 4+ |E(T)| represen-
tative points, then (S, F') is a full model of T'.

2.2 Local Perturbations

In this subsection we describe how to transform a premodel M = (S, F, 1) of a near triangulation 7" into a
full model M’ = (S’, F’) of T. In the following the segments denoted by r; are segments of S U F. Let us
define three basic moves: prolonging, gliding and traversing.

Lemma 2.9 (prolonging). Consider a premodel M = (S, F,T) of a near triangulation T with an intersection
point p which is the end of a segment s; € S. If for every segment so € S that has an end in p, there is
no directed path from so to s1 in Constsyp, it is possible to prolong s, across p without creating a cycle
in Constgup (where S’ is the new segment set). Furthermore, if the type T(p) is still applicable to p then
(S', F,7) remains a premodel of T.

Remark 2.10. Consider a premodel M = (S, F,7) with a point p that is the intersection of exactly two
segments from S, s; and so. By prolonging all the segments that end at p we obtain a segment set S’ such
that Consts/yr remains acyclic.

A segment set R is flexible if every representative point p is internal for at most two segments of R. Note
that according to the defined types for every premodel M = (S, F, 7), the set S U F is flexible.

Definition 2.11. A move of a segment set R = {r; = [a;,b;] | 1 <1i < |R|} is a segment set R such that
R ={r,=[a},b}] | 1 <i<|R|}. An interpolation of this move is a continuous function defined for t € [0,1]
that gives a move R' of R such that R® = R and R' = R’.

Lemma 2.12 (gliding). Consider a flexible and unambiguous segment set R such that Constg is acyclic,
and a representative point p of R. If the segments r1,ra,...,1r; are consecutive around p, if all the segments
ro,...,r; have an end at p and are in the same half-plane delimited by (s1) (See Figure 3), and if in Constg
the vertex r1 cannot be reached from any r; with 2 < j <, then there ezists a move R" with an interpolation
R! such that for every t €]0,1]:



- The set R is unambiguous and Constp: is acyclic.

- The point p splits into two representative points p} and pb, which incidence sequence are respectively
(ri,rh, ... vt rt) and the incidence sequence of p without the occurrences of vh, ... rt.

- For every representative point q # p of R there is a representative point g in R' with exactly the same
topological incidence sequence.

- There is no other representative point (i.e. |Repgt| = |Repr| + 1).

- Every segment r* € R! (resp. representative point ' € Repp:) that is not reachable from any p} in

Constty is static, that is v =1 (resp. ' = q).

Fig. 3. gliding of ra2,...,r; on ry.

Lemma 2.13 (traversing). Consider a flexible and unambiguous segment set R such that Constp is acyclic,
and a representative point p of R which incidence sequence is (ri,...,r;,...,r;,T1,Tj41,..., g, ;) with
2 <i<j<k (See Figure }). There exists a move R’ with an interpolation R* such that for every t €]0,1]:

- The set R is unambiguous and Constg: is acyclic.

- The point p splits into i representative points p}, for 1 <1 < i, which incidence sequence are (rf,rh, ... ,rt)
for 1 =1, (vf,r},ri,x}) for 1 <1 <i, and (rf,r},... x5, vl v, ,vp, 1)) for | =i

- For every representative point q # p of R there is a representative point g in R’ with exactly the same
topological incidence sequence.

- There is no other representative point (i.e. |Reprt| = |Repr|+i—1).

- Every segment v € R (resp. representative point q € Repr) that is not reachable from pt in Constp: is
static, that is ' =r (resp. ' = q).

ry ry

r p Iy /

rj

| ) r; r2 r;
Fig. 4. traversing

Given an intersection point p in a premodel M = (S, F, 1) of T', a partial realization of p is an operation
that combines a basic move at p and the addition of new face segments (eventually none), and that yields
another premodel M’ = (S, F’,7') of T. A simple example of a partial realization at p is prolonging a
segment s across p, choosing s in such a way that 7(p) still applies and that the constraints digraph remains



acyclic. Such a partial realization is called a mazimization of p, and if p is already internal in two segments
we say that this point is mazimal. In a premodel, we say that a point p is simple if it is either a segment
end, a flat face segment end, or a maximal point without any segment of S ending here (at p). Otherwise,
we say that this point is special.

Proposition 2.14. Consider a premodel M = (S, F,7) of a near-triangulation T. Every special point p of
M that is mazimal admits a partial realization.

Proof. Note that since p is special and maximal there are at least three segments from S intersecting at p.
We distinguish different cases according to the type of p.

If this point is a path—(s1, s, ..., sx)—point we do a gliding of {s3,...,si} on s2 to a new representative
point q (by Lemma 2.12 since p is not an end of s3). Let p and q be respectively typed as the crossing
point of s; and sg, and as a path (sa,...,s;) point (See Figure 1). Under these conditions the gliding keeps
the constraints digraph acyclic and preserves the topological incidence sequence of the other representative
points (so that their type can remain unchanged). Thus, since the graph that corresponded to p (the path
(s1,...,8k)) is the union of the graphs corresponding to p and to q, we are done.

If this point is a fan s;<(s2,...,sk) point we do a traversing of {ss,...,s;} along s2 and through s; to
a new representative point q. We add the face segments s1s;s;_1, with 3 <4 <k, and we let q be typed as a
path (s2,...,sk) point (See Figure 2). Under these conditions the traversing keeps the constraints digraph
acyclic and preserves the topological incidence sequence of the other representative points. Thus since the
graph that corresponded to p (the fan—s;<(sa, ..., s)) is the union of the graphs corresponding to the new
crossing points, to the new face segments, to p and to q, we are done.

For the other kinds of types, we refer to the full version of the paper. This concludes the proof of the
proposition. O

Now let us note that any partial realization increases the number of representative points. Since a pre-
model with the maximum number of representative points is a full model (Cf. Remark 2.8), we have the
following corollary.

Corollary 2.15. Any premodel M = (S, F,T) of a near-triangulation T' admits a sequence of partial real-
izations that yield a full model M' = (S", F') of T.

3 The case of 4-connected triangulations.

Let T be a near-triangulation. A chord of T is an edge not incident to the outer face but which ends are on
the outer face. A separating 3-cycle C' is a cycle of length 3 such that some vertices of T lie inside C' whereas
other vertices are outside. It is well known that a triangulation is 4-connected if and only if it contains no
separating 3-cycle.

Definition 3.1. A W-triangulation T is a 2-connected near-triangulation containing no separating 3-cycle.
Such o W-triangulation is 3-bounded if its outer boundary is the union of three paths, (a1, ...,ap), (b1,...,bq),
and (c1,...,¢.), that satisfy the following conditions (see Figure 5):

— a1 = ¢, by = ayp, and ¢1 = by.
— the paths are non-trivial (i.e. p>2,q>2, andr > 2).
— there exists no chord a;aj, b;b;, or c;c;.

This 3-boundary of T' will be denoted by (a1, ...,ap)-(b1,...,bq)-(c1,...,¢r).

In the following, we will use the order on the three paths and their directions, i.e. (a1,...,ap)-(b1,...,bq)-
(c1,...,¢) will be different from (by, ..., bq)-(c1,...,¢r)-(a1,...,ap) and (ap,...,a1)-(¢r,...,c1)-(bg, ..., b1).

Property 1 Consider any W-triangulation T 3-bounded by (a1, ...,ap)-(b1,...,bq)-(c1,...,¢r).

(1) If p =2 (see Figure 6, left), for any triangle BCD, there exists a premodel M = (S, F,7) of T contained
in the triangle BCD such that
— every special point p of M is a point of by = ¢c; = [BC], az = by = [BD] or ¢, = a; = [CD],
— B is a path (b1,ba,...,by) point,



Fig. 5. A 3-bounded W-triangulation 7.

— C is a path (c1,ca,...,¢.) point,

— D is a fan ax<(dy,...,ds,a1) point (where dy,ds, ... ,ds are inner vertices of T') such that there is
a face segment incident only if s =0 (i.e., D is a fan as<(ay)).

(2) If p > 2 (see Figure 6, right), for any triangle ABC there exists a point D inside this triangle and a
premodel M = (S, F,7) of T contained in the polygon ABCD such that

— every special point p of M is a point of a, = b1 = [AB], by = ¢1 = [BC], [CD] (that is contained
in a1 = ¢;) or [AD] (that is contained in az),

— A is a path (aq2,...,a,) point.

— B is a path—(by,ba, ..., by)—point,

— C is a path—(c1, ca, . . ., ¢ )—point,

— D is the crossing point of a1 and ay (with possibly one face segment incident to it corresponding to
the inner face of T incident to ajas),

Fig. 6. Property 1 for one W-triangulation 7" with p = 2 and one with p > 2.

Note that in both cases, at most one face segment is incident to D, since ajas is incident to exactly one
inner face of T'. Furthermore since path points cannot have incident face segments, there is no face segment
incident to A, B, C (resp. B, C) when p > 2 (resp. p = 2).

This property is the core of our construction and its proof can be found in the full version of the paper.
Our proof is based on a decomposition of 4-connected triangulations already used in [2,7,18].

4 Proof of Theorem 2.5

We prove that every triangulation 7" has a full model (S, F') by induction on the number k of separating
3-cycles in T'. If k = 0 the triangulation T is a W-triangulation 3-bounded by (a,b)-(b, ¢)-(¢, a), where a, b



and ¢ are the vertices on its outer-boundary. Then Property 1 provides us a premodel M = (S, F,7) of T
and by Corollary 2.15 we obtain a full model (S’, F”) of T.

Ifk>1,1let C = (a,b,c) be a 3-cycle such that the triangulation 7”7 induced by the vertices on and inside
C does not contain any separating 3-cycle. Let T be the triangulation obtained by removing all the vertices
that lie strictly inside the cycle C'. Let T5 be the subgraph of T" induced by all the vertices of T" that lie strictly
inside the cycle C. By definition of C, T5 is either (A) a single vertex v or (B) a W-triangulation (see Figure
7). In Ty, the cycle C' delimits a face and is no more a separating 3-cycle. Since T} has one separating 3-cycle

Fig. 7. The cases (A) and (B).

less than 7', the induction hypothesis implies that 77 admits a full model M = (S, F'). Since abc is an inner
face of Ty there is a corresponding face segment, say acb, in F' and let respectively B and C be its flat end
and its cross end. Note that there might be an other face segment incident to C. If it exists we denote it acd
since it would correspond to a face acd adjacent to the edge ac in T;. Since F' is non-interfering we know that
(a) or (c) separate acb and acd in distinct half-planes. Here we assume, without loss of generality that the
line (a) separates them. Now let € > 0 be a real such that for every representative point p € Repsyr\{B, C}
we have dist(p,acb) > ¢, and let the region R, be the set of points at distance at most € from acb. The
definition of € implies that (1) the only segments intersecting R, are a, b, ¢, acb and eventually acd if it
exists; and that (2) the endpoints of a, b and ¢ (resp. the flat end of acd) are not in R.. Since there is no
inner face abc in T' we remove acb from F' and we add some segments and face segments in R, to obtain a
full model of the whole T.

acb

/. "=—acd N = acd

Fig. 8. Case (A): Modifications inside R..

Case (A): Ty is a single vertexr v. Since acb and acd (if it exists) are non-interfering, it is easy to draw in
the region R. a segment v that only intersect a, b, and c; and three face segments vba, vcb, and acv such
that the set {vba, veb,acv,acd} is non-interfering (see Figure 8). Now it is clear that from the model M
of T1 we have added a segment for v, three crossings for va, vb and ve, removed the face segment of acb, and
added the face segments of vba, acv and wvcb; thus we have a full model of T
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Fig. 9. Case (B): Modifications inside R..

Case (B): Ty is a W-triangulation. Let a1,as,...,a, be the neighbors of a inside the cycle (a,b,c) going
from ¢ to b excluded. Similarly let by, bo, ..., b, (resp. c1,c¢2,. .., ¢,) be the neighbors of b (resp. ¢) inside the
cycle (a,b,c) going from a to ¢ (resp. from b to a) excluded. It is clear that a1 = ¢,, b1 = a,, and ¢1 = b,.
Furthermore, since there is no separating 3-cycle inside C, we have that:

- p,q and r > 2.
— (a1,a2,...,ap,ba,... by, ca,...,cp) is a cycle, thus Ty is a W-triangulation.
— T5 has no chord agay, byby, or c;cy with y > x4 1.

Thus T, is a W-triangulation 3-bounded by (a1, as,...,ap)-(b1,b2,...,by)-(c1,¢2,...,¢-). Here we choose
this particular 3-boundary because of the assumption that (a) separates acb and acd (if it exists). We now
apply Property 1 with respect to this 3-boundary and this implies that if p = 2 (resp. p > 2) then T5 has
a premodel M’ = (S’, F’,7') inside the triangle BCD (resp. the polygon ABCD), where A is a point of
aNR. (See Figure 9) and D is an internal point of [A,B] (resp. a point strictly inside ABC). If p = 2
we prolong b; = [BD] across D until reaching A and note that since all the special points lie on BCD,
Lemma 2.9 implies that the constraints digraph of M’ remains acyclic. Note also that according to the
definition of R., the full model M and the premodel M’ only intersect at A, B and C. Now we are going
to merge M and M’ in order to construct a premodel M* = (S*, F* 7*) of the whole T. To do this, let
S* =8SUS" and F* = (F'\ acb) U F' U{ajaza,abib, bcic}; where ajaza goes from D to a point of [A, C],
ab;b goes from A to a point of bR, and be;c goes from B to a point of c MR, (See Figure 9). Observe
that F'* is non-interfering, in particular we see that ajaza does not interfere with another face segment f
at D, since f would be inside ABCD. We now define 7* as follows. Let A be a fan-a<(ap, ..., as)-point,
let B be a fan-b< (by, ..., b1)—point, and let C be a fan—c<(a, ¢y, ..., c1)-point. If p > 2 the point D remains
the crossing point of a; and as, even with its new incident face segment. If p = 2 the point D was either
a fan ag<(dy,...,ds,ar) point (for some vertices dy,...,ds) or a fan as<(a;) point. In the first case let D
be a fan a9<(a1,ds,...,d;) point (possible since it has no incident face segment in M’). In the second case
let D be the crossing point of a; and as with one or two incident face segments. Note that in both case
the graph corresponding to D remains unchanged. For the other representative points of M™ let their type
remain as in M or M’.
We now verify that M* is a premodel of T'.

- Tt is clear that S* U F™ is unambiguous and we show here that Constg-_ g+ is acyclic. Indeed this digraph
arises from the union of Consts r and Constgyp: (where S’ has a segment as prolonged until A when
p = 2) by adding the vertices corresponding to the new face segments and their flat end point, and adding
the arcs incident to these vertices. But since the face segments have out-degree zero in the constraints
digraphs, there is no cycle in Constg«yp+« passing through a face segment. Thus a cycle would be in the
union of Constsypr and Constg:yp/. These two digraph being acyclic, this cycle should successively pass
through a segment of Constg/yp/, through one of the points A, B and C, and through a segment of
Constgyr. But this is impossible since in Constg:yps the only points that intersect M, A, B and C,
have in-degree zero.



- Since V(T') is the disjoint union of V(T1) and V(T») we have that a vertex v € V(T) if and only if
v eS*.

- Note that E(T) = E(Th) U E(Ty) U{aar = ac,} U{aas,...,aa,} U{bb1, ..., bby} U{cci,. .., ccr}, that A
was not a representative point in M (resp. was either an end point or a path (as,...,a,) point in M')
and that now it is a fan—a< (ap, . . ., a2)-point, that B was a flat face segment end in M (resp. was a path—
(b1,...,by)—point in M’) and that now it is a fan—b< (b, . .., by )—point that C was the crossing point of a
and ¢ in M (resp. was a path (c1,...,¢,) point in M’) and that now it is a fan ¢<(a,c¢,,...,c1) point.
Since the other representative points remain with the same corresponding graphs, one can easily check
(see Figure 10) that E(T) is exactly the set of edges induces by M*.

- Note that F(T) = (F(T1) \ acb) U F(Ts) U {aiaza,abib,beict U{aaaivy | 2 < i < p}U{bbibit1 | 1 <
i < p}U{ccicit1 | 2 < ¢ < p} U {ace,}. According to the face segments added in F* (the ones in
F*\ (FUF")), the faces induced by A, B and C, and since the other representative points remain with
the same corresponding graphs, one can easily check (see Figure 10) that F'(T') is exactly the set of faces
induced by M*.

a®

Fig. 10. The graphs corresponding to A, B and C in M (left), M’ (center) and M* (right).

Finally since T has a premodel M*, Corollary 2.15 implies that it has a full model, proving Theorem 2.5.
O

5 Conclusion

West conjectures that every planar graph is the intersection graph of segments using only four directions
[17]. Furthermore if the segment set is unambiguous, parallel segments induce a stable set, and the four
directions would correspond to a four coloring of the planar graph. This conjecture is true for some families
of planar graphs. Indeed, every bipartite planar graph has a representation with two directions [9,3,5] and
every triangle free planar graph (that is 3-colorable by Grotzsch’s theorem) has a representation with three
directions [1].

De Fraysseix and Ossona de Mendez proposed [4] the following generalization of Scheinerman’s Conjecture
: "Every planar linear hypergraph is the intersection hypergraph of segments in the plane.", where a linear
hypergraphs is an hypergraph such that two hyperedges intersect in at most one vertex. This generalization
does not holds since the second author found a counterexample [8].

In our proof we need the constraints digraph to be acyclic in order to perform local perturbations on the
segment set, like gliding or traversing. We wonder whether this condition is necessary: is it always possible
to do local perturbations in any flexible segment set R (with possibly cycles in Constgr)? The flexibility of
R is required since Pappus’s construction gives us a segment set with only one point that is internal in 3
segments, and such that some glidings are impossible.
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