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e.Abstra
t. Given a set S of segments in the plane, the interse
tion graph of S is the graph with vertexset S in whi
h two verti
es are adja
ent if and only if the 
orresponding two segments interse
t. Weprove a 
onje
ture of S
heinerman (PhD Thesis, Prin
eton University, 1984) that every planar graphis the interse
tion graph of some segments in the plane.1 Introdu
tionIn this paper, we 
onsider interse
tion models for planar graphs. A segment model of a graph G maps everyvertex v ∈ V (G) to a segment v of the plane so that two segments u and v interse
t if and only if uv ∈ E(G).Although this graph family is simply de�ned, it is not easy to manipulate. A
tually, even if this 
lass of graphsis small (there are less than 2O(n log n) su
h graphs with n verti
es [15℄) a segment model may be long toen
ode (in the models of some of these graphs the endpoints of the segments need at least 2
√

n bits to be
oded [13℄). There are also interesting open problems 
on
erning this 
lass of graphs. For example, we knowthat de
iding whether a graph G admits a segment model is NP-hard [11℄ but it is still open whether thisproblem belongs to NP or not. Here we fo
us on a 
onje
ture proposed by S
heinerman [16℄, stating thatevery planar graph has a segment model.Many work has been done toward this 
onje
ture. Several proofs [3,5,9℄ have been given for bipartiteplanar graphs. The 
ase of triangle-free planar graphs was proved by de Castro et al. [1℄ and re
ently deFraysseix and Ossona de Mendez [4℄ proved it for every planar graph that has a 4-
oloring in whi
h everyindu
ed 
y
le of length 4 uses at most 3 
olors.Another approa
h to this problem has been proposed [12,14℄. Sin
e it is known [6℄ that planar graphsare interse
tion graphs of Jordan ar
s in the plane and sin
e two non-parallel segments interse
t at moston
e, it was asked whether planar graphs are interse
tion graphs of Jordan ar
s in the plane if every pair ofJordan ar
s s1 and s2 interse
t at most on
e and in a non-tangent way (i.e. around their interse
tion point wesu

essively meet s1, s2, s1 and s2). It was already known when tangent interse
tion are allowed; indeed everyplanar graph is the 
onta
t graph of tou
hing 
ir
les [10℄. The authors and O
hem [2℄ answered positively tothis question. This approa
h of S
heinerman's 
onje
ture was de
isive sin
e by improving the proof of thisresult it yields a proof of S
heinerman's 
onje
ture that we present here. However, the 
onstru
tion we givehere does not exa
tly 
orrespond to a stret
hing of the strings of the 
onstru
tion given in [2℄.The paper is organized as follows. In Se
tion 2 we give some de�nitions. In parti
ular we de�ne premodelsand we outline how to obtain a segment model from a premodel. In Se
tion 3 we des
ribe premodels thatexist for 3-bounded W-triangulations, a family of plane graphs in
luding 4-
onne
ted triangulations. Thenin Se
tion 4 we �nally 
onstru
t segment models for general triangulations, whi
h implies the existen
e ofsegment models for general planar graphs.Due to spa
e limitations, some proofs are omitted and 
an be found in the full version of the paperatta
hed in appendix.2 PreliminariesA plane graph is an embedded planar graph. Given a plane graph G, let V (G), E(G) and F (G) be respe
tivelythe sets of verti
es, edges and inner fa
es of G. A near-triangulation is a plane graph in whi
h every inner fa
eis a triangle. A triangulation is a near-triangulation with a triangular outer fa
e. It is easy to see that everyplanar graph is the indu
ed subgraph of some triangulation. This implies that it is su�
ient to 
onsidertriangulations. Indeed if a planar graph G is isomorphi
 to the graph indu
ed by a set V (G) ⊆ V (T ) of



verti
es in a triangulation T , then by removing the segments 
orresponding to V (T ) \ V (G) from a segmentmodel of T , we 
learly obtain a segment model of G.In all the paper, the bold notations 
orrespond to geometri
al obje
ts like points, segments or lines. Forexample we will usually denote by v the segment 
orresponding to a vertex v and by (v) the line prolongingthis segment. Furthermore sin
e we 
onsider �nite planar graphs, the segment sets we 
onsider are all �nite.Given a segment set S, its set of representative points RepS is the set that 
ontains the interse
tion pointsand the ends of the segments in S. A segment set S is unambiguous if every segment s ∈ S has distin
tendpoints, and if parallel segments of S do not interse
t. From now on we use the following de�nition ofmodel.De�nition 2.1. Given a segment set S, its interse
tion graph GS is the graph with vertex set S and wheretwo verti
es are adja
ent if and only if the 
orresponding segments interse
t. Furthermore if (1) S is un-ambiguous, if (2) the interse
tion of any three segments of S is empty, and if (3) every endpoint belongs toexa
tly one segment, then S is a model for any graph G isomorphi
 to GS.For the proof in Se
tion 4 we need some geometri
al stru
tures to represent the triangular inner fa
es. Toea
h triangular inner fa
e abc we will asso
iate a fa
e segment, abc, acb or bca.De�nition 2.2. Given an unambiguous segment set S and three pairwise interse
ting segments a, b and c,a fa
e segment f = abc is a segment [p,q] su
h that:� p is the interse
tion point of a and b, and going around p we 
onse
utively meet a, f and b,� q is an internal point of c that does not belong to any other segment of S, and� none of its internal points belongs to any segment of S.The points p and q are respe
tively 
alled the 
ross-end and the �at-end of abc.Note that the se
ond item implies that fa
e segments are non-trivial, i.e. p 6= q. Note also that in thisde�nition a and b play the same role, so a fa
e segment abc is also a fa
e segment bac but it is not a fa
esegment acb.De�nition 2.3. Given an unambiguous segment set S, two fa
e segments f1 and f2 on S are non-interferingif one of the following holds:- The segments f1 and f2 do not interse
t.- The segments f1 and f2 have the same 
ross-end p and this point is the interse
tion point of exa
tlytwo segments of S, a and b. Furthermore, one of the lines (a) and (b) separates f1 and f2 in distin
thalf-planes.De�nition 2.4. A full model of a near triangulation T is a 
ouple M = (S, F ) of segments sets su
h that:� S is a model of T .� F is a set of non-interfering fa
e segments on S su
h that for ea
h inner fa
e abc of T , F 
ontains oneof the following fa
e segments: abc,acb,bca.� S ∪ F is unambiguous.The next theorem is the main result of the paper.Theorem 2.5. Every triangulation T has a full model M = (S, F ).2.1 PremodelsIn our proofs, we use a di�erent kind of model. The main di�eren
e with full models is that more than twosegments of S 
an interse
t in a same point.In the following, we 
onsider a segment set S and a set F of non-interfering fa
e segments on S, where
S ∪ F is unambiguous. Let us denote the segments of S (resp. F ) by s1, s2, . . . (resp. f1, f2, . . . ). Given arepresentative point p, its in
iden
e sequen
e I(p) is the undire
ted 
ir
ular sequen
e of segments (from
S ∪ F ) we meet by going around p. This sequen
e is undire
ted be
ause it will make no di�eren
e going
lo
kwise or anti-
lo
kwise. By extension, the partial topologi
al in
iden
e sequen
e of p, I∗(p) is the sequen
eobtained in the following way. Prolong every segment that ends at p and 
onsider its new in
iden
e sequen
e.2



Then repla
e every o

urren
e of si and fi that was not in I(p) before by (si) and (fi). It is 
lear that I(p)is a subsequen
e of I∗(p) (i.e. I(p) ⊆ I(p)). We say that I(p) is of the form ([r1], r2, . . . , rk) for ri ∈ S ∪F ,if either I(p) = (r1, r2, . . . , rk), I(p) = (r2, . . . , rk), or I(p) ⊆ ((r1), r2, . . . , rk) ⊆ I∗(p).Let us de�ne types for the representative points, depending on their in
iden
e sequen
e. These typesare not always entirely determined by the in
iden
e sequen
e and we will have to assign a type (among thepossible ones) to ea
h representative point. Furthermore, these types are in 
orresponden
e with some graphswe also des
ribe here.� A point is a segment end if its in
iden
e sequen
e is (s1). The 
orresponding graph is the single vertex
s1.� A point is a �at fa
e segment end if its in
iden
e sequen
e is (s1, f1, s1). The 
orresponding graph is thesingle vertex s1.� A point may be a 
rossing if it has an in
iden
e sequen
e of the form (s1, [f1], s2, [f2], s1, [s2]) or (s1, [f1], s2,

s1, [f2], s2). The 
orresponding graph is the edge s1s2.� A point may be a path�(s1, s2, . . . , sk)�point with k ≥ 2, if it has an in
iden
e sequen
e of the form
(s1, s2, . . . , sk, (s1), (s2)) (See Figure 1). Su
h a typed point is in 
orresponden
e with path�(s1, s2, . . . , sk),the graph with vertex set {s1, . . . , sk} and edge set {sisi+1 | 1 ≤ i < k}.

s2 sks1

s1 s2 sk s1 s2 skFig. 1. A path�(s1, s2, . . . , sk)�point, its partial realization, and its 
orresponding graph� A point may be a fan�s1⊳� (s2, . . . , sk)�point with k ≥ 2, if it has an in
iden
e sequen
e of the form
(s1, [f1], s2, . . . , sk, (s1), [f1], (s2)) (See Figure 2), with f1 = s1s2x. Note that sin
e f1 is a fa
e segmentit o

urs at most on
e in the in
iden
e sequen
e. Su
h a typed point is in 
orresponden
e with fan�s1⊳�
(s2, . . . , sk), the graph with a vertex s1 dominating a path (s2, . . . , sk).

s1

s2 s3 sk

s2 s3 sk s2 s3 sk

s1

s1

f1

f1

Fig. 2. A fan�s1⊳� (s2, . . . , sk)�point, its partial realization , and its 
orresponding graphIn fa
t, there are three more kinds of spe
ial points that are not detailed here but 
an be found in thefull version of the paper. 3



A
tually, the graphs we 
onsidered here are plane graphs, and their inner fa
es are the grey fa
es in the�gures. As in [4℄, we need a bipartite digraph to des
ribe the 
onstraints between segments and representativepoints.De�nition 2.6. Given a segment set R, the 
onstraints digraph ConstR is the bipartite digraph with vertexsets R and RepR, and where r ∈ R and p ∈ RepR are linked if and only if p ∈ r. More pre
isely, there is anar
 from p to r if p is an endpoint of r, otherwise (when p is an internal point of r) the ar
 goes from r to
p.Informally this graph des
ribes the fa
t that the position of a segment is determined by its endpoints, anddetermines the position of its internal representative points.De�nition 2.7. Given a segment set S, a set F of non-interfering fa
e segments on S and a fun
tion τ thatassigns a type to ea
h representative point, the triple M = (S, F, τ) is a premodel of a near-triangulation Tif the following holds:- The set S ∪ F is unambiguous and the digraph ConstS∪F is a
y
li
.- A vertex a ∈ V (T ) if and only if a ∈ S.- An edge ab ∈ E(T ) if and only if a and b interse
t in a point p su
h that the graph 
orresponding to

τ(p) 
ontains the edge ab.- A fa
e abc ∈ F (T ) if and only if one of the following holds:- either there exists a fa
e segment abc, acb or bca in F ,- or, a,b and c interse
t in a point p su
h that abc is an inner fa
e of the graph 
orresponding to τ(p).Note that a premodel M = (S, F, τ) of a near-triangulation T has a bounded number of representativepoints. There are at most 2|V (T )| segment ends, at most F (T ) �at fa
e segment ends, and at most E(T )points of another type (sin
e ea
h of them 
orresponds to at least one edge of T ).Remark 2.8. If a premodel M = (S, F, τ) of a near-triangulation T has 2|V (T )|+ |F (T )|+ |E(T )| represen-tative points, then (S, F ) is a full model of T .2.2 Lo
al PerturbationsIn this subse
tion we des
ribe how to transform a premodel M = (S, F, τ) of a near triangulation T into afull model M′ = (S′, F ′) of T . In the following the segments denoted by ri are segments of S ∪ F . Let usde�ne three basi
 moves: prolonging, gliding and traversing.Lemma 2.9 (prolonging). Consider a premodel M = (S, F, τ) of a near triangulation T with an interse
tionpoint p whi
h is the end of a segment s1 ∈ S. If for every segment s2 ∈ S that has an end in p, there isno dire
ted path from s2 to s1 in ConstS∪F , it is possible to prolong s1 a
ross p without 
reating a 
y
lein ConstS′∪F (where S′ is the new segment set). Furthermore, if the type τ(p) is still appli
able to p then
(S′, F, τ) remains a premodel of T .Remark 2.10. Consider a premodel M = (S, F, τ) with a point p that is the interse
tion of exa
tly twosegments from S, s1 and s2. By prolonging all the segments that end at p we obtain a segment set S′ su
hthat ConstS′∪F remains a
y
li
.A segment set R is �exible if every representative point p is internal for at most two segments of R. Notethat a

ording to the de�ned types for every premodel M = (S, F, τ), the set S ∪ F is �exible.De�nition 2.11. A move of a segment set R = {ri = [ai,bi] | 1 ≤ i ≤ |R|} is a segment set R′ su
h that
R′ = {r′i = [a′

i,b
′
i] | 1 ≤ i ≤ |R|}. An interpolation of this move is a 
ontinuous fun
tion de�ned for t ∈ [0, 1]that gives a move Rt of R su
h that R0 = R and R1 = R′.Lemma 2.12 (gliding). Consider a �exible and unambiguous segment set R su
h that ConstR is a
y
li
,and a representative point p of R. If the segments r1, r2, . . . , ri are 
onse
utive around p, if all the segments

r2, . . . , ri have an end at p and are in the same half-plane delimited by (s1) (See Figure 3), and if in ConstRthe vertex r1 
annot be rea
hed from any rj with 2 ≤ j ≤ i, then there exists a move R′ with an interpolation
Rt su
h that for every t ∈]0, 1]: 4



- The set Rt is unambiguous and ConstRt is a
y
li
.- The point p splits into two representative points pt
1 and pt

2, whi
h in
iden
e sequen
e are respe
tively
(rt

1, r
t
2, . . . , r

t
i, r

t
1) and the in
iden
e sequen
e of p without the o

urren
es of rt

2, . . . , r
t
i.- For every representative point q 6= p of R there is a representative point qt in Rt with exa
tly the sametopologi
al in
iden
e sequen
e.- There is no other representative point (i.e. |RepRt | = |RepR| + 1).- Every segment rt ∈ Rt (resp. representative point qt ∈ RepRt) that is not rea
hable from any pt

1 in
ConsttR is stati
, that is rt = r (resp. qt = q).

r1

r2 ri

r1

r2 ri

p p1 p2

Fig. 3. gliding of r2, . . . , ri on r1.Lemma 2.13 (traversing). Consider a �exible and unambiguous segment set R su
h that ConstR is a
y
li
,and a representative point p of R whi
h in
iden
e sequen
e is (r1, . . . , ri, . . . , rj , r1, rj+1, . . . , rk, ri) with
2 < i ≤ j ≤ k (See Figure 4). There exists a move R′ with an interpolation Rt su
h that for every t ∈]0, 1]:- The set Rt is unambiguous and ConstRt is a
y
li
.- The point p splits into i representative points pt

l , for 1 ≤ l ≤ i, whi
h in
iden
e sequen
e are (rt
i, r

t
2, . . . , r

t
i)for l = 1, (rt

1, r
t
l , r

t
1, r

t
l) for 1 < l < i, and (rt

1, r
t
i, . . . , r

t
j , r

t
1, rj+1, . . . , rk, rt

i) for l = i.- For every representative point q 6= p of R there is a representative point qt in Rt with exa
tly the sametopologi
al in
iden
e sequen
e.- There is no other representative point (i.e. |RepRt | = |RepR| + i − 1).- Every segment r ∈ R (resp. representative point q ∈ RepR) that is not rea
hable from pt
i in ConstRt isstati
, that is rt = r (resp. qt = q).

r2 ri ri
r2

p

rj
rj

rk rk

r1 r1

Fig. 4. traversingGiven an interse
tion point p in a premodel M = (S, F, τ) of T , a partial realization of p is an operationthat 
ombines a basi
 move at p and the addition of new fa
e segments (eventually none), and that yieldsanother premodel M′ = (S′, F ′, τ ′) of T . A simple example of a partial realization at p is prolonging asegment s a
ross p, 
hoosing s in su
h a way that τ(p) still applies and that the 
onstraints digraph remains5



a
y
li
. Su
h a partial realization is 
alled a maximization of p, and if p is already internal in two segmentswe say that this point is maximal. In a premodel, we say that a point p is simple if it is either a segmentend, a �at fa
e segment end, or a maximal point without any segment of S ending here (at p). Otherwise,we say that this point is spe
ial.Proposition 2.14. Consider a premodel M = (S, F, τ) of a near-triangulation T . Every spe
ial point p of
M that is maximal admits a partial realization.Proof. Note that sin
e p is spe
ial and maximal there are at least three segments from S interse
ting at p.We distinguish di�erent 
ases a

ording to the type of p.If this point is a path�(s1, s2, . . . , sk)�point we do a gliding of {s3, . . . , sk} on s2 to a new representativepoint q (by Lemma 2.12 sin
e p is not an end of s2). Let p and q be respe
tively typed as the 
rossingpoint of s1 and s2, and as a path�(s2, . . . , sk)�point (See Figure 1). Under these 
onditions the gliding keepsthe 
onstraints digraph a
y
li
 and preserves the topologi
al in
iden
e sequen
e of the other representativepoints (so that their type 
an remain un
hanged). Thus, sin
e the graph that 
orresponded to p (the path
(s1, . . . , sk)) is the union of the graphs 
orresponding to p and to q, we are done.If this point is a fan�s1⊳� (s2, . . . , sk)�point we do a traversing of {s3, . . . , sk} along s2 and through s1 toa new representative point q. We add the fa
e segments s1sisi−1, with 3 ≤ i ≤ k, and we let q be typed as apath�(s2, . . . , sk)�point (See Figure 2). Under these 
onditions the traversing keeps the 
onstraints digrapha
y
li
 and preserves the topologi
al in
iden
e sequen
e of the other representative points. Thus sin
e thegraph that 
orresponded to p (the fan�s1⊳� (s2, . . . , sk)) is the union of the graphs 
orresponding to the new
rossing points, to the new fa
e segments, to p and to q, we are done.For the other kinds of types, we refer to the full version of the paper. This 
on
ludes the proof of theproposition. ⊓⊔Now let us note that any partial realization in
reases the number of representative points. Sin
e a pre-model with the maximum number of representative points is a full model (Cf. Remark 2.8), we have thefollowing 
orollary.Corollary 2.15. Any premodel M = (S, F, τ) of a near-triangulation T admits a sequen
e of partial real-izations that yield a full model M′ = (S′, F ′) of T .3 The 
ase of 4-
onne
ted triangulations.Let T be a near-triangulation. A 
hord of T is an edge not in
ident to the outer fa
e but whi
h ends are onthe outer fa
e. A separating 3-
y
le C is a 
y
le of length 3 su
h that some verti
es of T lie inside C whereasother verti
es are outside. It is well known that a triangulation is 4-
onne
ted if and only if it 
ontains noseparating 3-
y
le.De�nition 3.1. A W-triangulation T is a 2-
onne
ted near-triangulation 
ontaining no separating 3-
y
le.Su
h a W-triangulation is 3-bounded if its outer boundary is the union of three paths, (a1, . . . , ap), (b1, . . . , bq),and (c1, . . . , cr), that satisfy the following 
onditions (see Figure 5):� a1 = cr, b1 = ap, and c1 = bq.� the paths are non-trivial ( i.e. p ≥ 2, q ≥ 2, and r ≥ 2).� there exists no 
hord aiaj , bibj, or cicj .This 3-boundary of T will be denoted by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).In the following, we will use the order on the three paths and their dire
tions, i.e. (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr) will be di�erent from (b1, . . . , bq)-(c1, . . . , cr)-(a1, . . . , ap) and (ap, . . . , a1)-(cr, . . . , c1)-(bq, . . . , b1).Property 1 Consider any W-triangulation T 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).(1) If p = 2 (see Figure 6, left), for any triangle BCD, there exists a premodel M = (S, F, τ) of T 
ontainedin the triangle BCD su
h that� every spe
ial point p of M is a point of bq = c1 = [BC], a2 = b1 = [BD] or cr = a1 = [CD],� B is a path�(b1, b2, . . . , bq)�point, 6



a1 = cr b1 = ap

c1 = bq

T

a2

b1

b2

c1

c2

Fig. 5. A 3-bounded W-triangulation T .� C is a path�(c1, c2, . . . , cr)�point,� D is a fan�a2⊳� (d1, . . . , ds, a1)�point (where d1, d2, . . . , ds are inner verti
es of T ) su
h that there isa fa
e segment in
ident only if s = 0 (i.e., D is a fan�a2⊳� (a1)).(2) If p > 2 (see Figure 6, right), for any triangle ABC there exists a point D inside this triangle and apremodel M = (S, F, τ) of T 
ontained in the polygon ABCD su
h that� every spe
ial point p of M is a point of ap = b1 = [AB], bq = c1 = [BC], [CD] (that is 
ontainedin a1 = cr) or [AD] (that is 
ontained in a2),� A is a path�(a2, . . . , ap)�point.� B is a path�(b1, b2, . . . , bq)�point,� C is a path�(c1, c2, . . . , cr)�point,� D is the 
rossing point of a1 and a2 (with possibly one fa
e segment in
ident to it 
orresponding tothe inner fa
e of T in
ident to a1a2),
b1

b2

bq

c1 c2

cr = a1

a2

a3

ap
c1 c2

cr = a1

b1
bq

b2

a2
d1

ds
D

B B

CC

D

AFig. 6. Property 1 for one W-triangulation T with p = 2 and one with p > 2.Note that in both 
ases, at most one fa
e segment is in
ident to D, sin
e a1a2 is in
ident to exa
tly oneinner fa
e of T . Furthermore sin
e path�points 
annot have in
ident fa
e segments, there is no fa
e segmentin
ident to A,B,C (resp. B,C) when p > 2 (resp. p = 2).This property is the 
ore of our 
onstru
tion and its proof 
an be found in the full version of the paper.Our proof is based on a de
omposition of 4-
onne
ted triangulations already used in [2,7,18℄.4 Proof of Theorem 2.5We prove that every triangulation T has a full model (S, F ) by indu
tion on the number k of separating3-
y
les in T . If k = 0 the triangulation T is a W-triangulation 3-bounded by (a, b)-(b, c)-(c, a), where a, b7



and c are the verti
es on its outer-boundary. Then Property 1 provides us a premodel M = (S, F, τ) of Tand by Corollary 2.15 we obtain a full model (S′, F ′) of T .If k ≥ 1, let C = (a, b, c) be a 3-
y
le su
h that the triangulation T ′ indu
ed by the verti
es on and inside
C does not 
ontain any separating 3-
y
le. Let T1 be the triangulation obtained by removing all the verti
esthat lie stri
tly inside the 
y
le C. Let T2 be the subgraph of T indu
ed by all the verti
es of T that lie stri
tlyinside the 
y
le C. By de�nition of C, T2 is either (A) a single vertex v or (B) a W-triangulation (see Figure7). In T1, the 
y
le C delimits a fa
e and is no more a separating 3-
y
le. Sin
e T1 has one separating 3-
y
le

a

b

c

a

b

c

Fig. 7. The 
ases (A) and (B).less than T , the indu
tion hypothesis implies that T1 admits a full model M = (S, F ). Sin
e abc is an innerfa
e of T1 there is a 
orresponding fa
e segment, say acb, in F and let respe
tively B and C be its �at endand its 
ross end. Note that there might be an other fa
e segment in
ident to C. If it exists we denote it acdsin
e it would 
orrespond to a fa
e acd adja
ent to the edge ac in T1. Sin
e F is non-interfering we know that
(a) or (c) separate acb and acd in distin
t half-planes. Here we assume, without loss of generality that theline (a) separates them. Now let ǫ > 0 be a real su
h that for every representative point p ∈ RepS∪F \{B,C}we have dist(p,acb) > ǫ, and let the region Rǫ be the set of points at distan
e at most ǫ from acb. Thede�nition of ǫ implies that (1) the only segments interse
ting Rǫ are a, b, c, acb and eventually acd if itexists; and that (2) the endpoints of a, b and c (resp. the �at end of acd) are not in Rǫ. Sin
e there is noinner fa
e abc in T we remove acb from F and we add some segments and fa
e segments in Rǫ to obtain afull model of the whole T .

acdacd

acb

a

vba

v

a

b

c c

b

vcb

acv

Fig. 8. Case (A): Modi�
ations inside Rǫ.Case (A): T2 is a single vertex v. Sin
e acb and acd (if it exists) are non-interfering, it is easy to draw inthe region Rǫ a segment v that only interse
t a, b, and c; and three fa
e segments vba, vcb, and acv su
hthat the set {vba,vcb,acv,acd} is non-interfering (see Figure 8). Now it is 
lear that from the model Mof T1 we have added a segment for v, three 
rossings for va, vb and vc, removed the fa
e segment of acb, andadded the fa
e segments of vba, acv and vcb; thus we have a full model of T .8
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Fig. 9. Case (B): Modi�
ations inside Rǫ.Case (B): T2 is a W-triangulation. Let a1, a2, . . . , ap be the neighbors of a inside the 
y
le (a, b, c) goingfrom c to b ex
luded. Similarly let b1, b2, . . . , bq (resp. c1, c2, . . . , cr) be the neighbors of b (resp. c) inside the
y
le (a, b, c) going from a to c (resp. from b to a) ex
luded. It is 
lear that a1 = cr, b1 = ap, and c1 = bq.Furthermore, sin
e there is no separating 3-
y
le inside C, we have that:� p, q, and r ≥ 2.� (a1, a2, . . . , ap, b2, . . . , bq, c2, . . . , cr) is a 
y
le, thus T2 is a W-triangulation.� T2 has no 
hord axay, bxby, or cxcy with y > x + 1.Thus T2 is a W-triangulation 3-bounded by (a1, a2, . . . , ap)-(b1, b2, . . . , bq)-(c1, c2, . . . , cr). Here we 
hoosethis parti
ular 3-boundary be
ause of the assumption that (a) separates acb and acd (if it exists). We nowapply Property 1 with respe
t to this 3-boundary and this implies that if p = 2 (resp. p > 2) then T2 hasa premodel M′ = (S′, F ′, τ ′) inside the triangle BCD (resp. the polygon ABCD), where A is a point of
a ∩ Rǫ (See Figure 9) and D is an internal point of [A,B] (resp. a point stri
tly inside ABC). If p = 2we prolong b1 = [BD] a
ross D until rea
hing A and note that sin
e all the spe
ial points lie on BCD,Lemma 2.9 implies that the 
onstraints digraph of M′ remains a
y
li
. Note also that a

ording to thede�nition of Rǫ, the full model M and the premodel M′ only interse
t at A, B and C. Now we are goingto merge M and M′ in order to 
onstru
t a premodel M∗ = (S∗, F ∗, τ∗) of the whole T . To do this, let
S∗ = S ∪S′ and F ∗ = (F \acb)∪F ′ ∪{a1a2a,ab1b,bc1c}; where a1a2a goes from D to a point of [A,C],
ab1b goes from A to a point of b ∩Rǫ, and bc1c goes from B to a point of c∩Rǫ (See Figure 9). Observethat F ∗ is non-interfering, in parti
ular we see that a1a2a does not interfere with another fa
e segment fat D, sin
e f would be inside ABCD. We now de�ne τ∗ as follows. Let A be a fan�a⊳� (ap, . . . , a2)�point,let B be a fan�b⊳� (bq, . . . , b1)�point, and let C be a fan�c⊳� (a, cr, . . . , c1)�point. If p > 2 the point D remainsthe 
rossing point of a1 and a2, even with its new in
ident fa
e segment. If p = 2 the point D was eithera fan�a2⊳� (d1, . . . , ds, a1)�point (for some verti
es d1, . . . , ds) or a fan�a2⊳� (a1)�point. In the �rst 
ase let Dbe a fan�a2⊳� (a1, ds, . . . , d1)�point (possible sin
e it has no in
ident fa
e segment in M′). In the se
ond 
aselet D be the 
rossing point of a1 and a2 with one or two in
ident fa
e segments. Note that in both 
asethe graph 
orresponding to D remains un
hanged. For the other representative points of M∗ let their typeremain as in M or M′.We now verify that M∗ is a premodel of T .- It is 
lear that S∗∪F ∗ is unambiguous and we show here that ConstS∗∪F∗ is a
y
li
. Indeed this digrapharises from the union of ConstS∪F and ConstS′∪F ′ (where S′ has a segment a2 prolonged until A when

p = 2) by adding the verti
es 
orresponding to the new fa
e segments and their �at end point, and addingthe ar
s in
ident to these verti
es. But sin
e the fa
e segments have out-degree zero in the 
onstraintsdigraphs, there is no 
y
le in ConstS∗∪F∗ passing through a fa
e segment. Thus a 
y
le would be in theunion of ConstS∪F and ConstS′∪F ′ . These two digraph being a
y
li
, this 
y
le should su

essively passthrough a segment of ConstS′∪F ′ , through one of the points A, B and C, and through a segment of
ConstS∪F . But this is impossible sin
e in ConstS′∪F ′ the only points that interse
t M, A, B and C,have in-degree zero. 9



- Sin
e V (T ) is the disjoint union of V (T1) and V (T2) we have that a vertex v ∈ V (T ) if and only if
v ∈ S∗.- Note that E(T ) = E(T1)∪E(T2)∪ {aa1 = acr} ∪ {aa2, . . . , aap}∪ {bb1, . . . , bbq}∪ {cc1, . . . , ccr}, that Awas not a representative point in M (resp. was either an end point or a path�(a2, . . . , ap)�point in M′)and that now it is a fan�a⊳� (ap, . . . , a2)�point, that B was a �at fa
e segment end in M (resp. was a path�
(b1, . . . , bq)�point in M′) and that now it is a fan�b⊳� (bq, . . . , b1)�point that C was the 
rossing point of aand c in M (resp. was a path�(c1, . . . , cr)�point in M′) and that now it is a fan�c⊳� (a, cr, . . . , c1)�point.Sin
e the other representative points remain with the same 
orresponding graphs, one 
an easily 
he
k(see Figure 10) that E(T ) is exa
tly the set of edges indu
es by M∗.- Note that F (T ) = (F (T1) \ acb) ∪ F (T2) ∪ {a1a2a, ab1b, bc1c} ∪ {aaiai+1 | 2 ≤ i < p} ∪ {bbibi+1 | 1 ≤
i < p} ∪ {ccici+1 | 2 ≤ i < p} ∪ {accr}. A

ording to the fa
e segments added in F ∗ (the ones in
F ∗ \ (F ∪F ′)), the fa
es indu
ed by A, B and C, and sin
e the other representative points remain withthe same 
orresponding graphs, one 
an easily 
he
k (see Figure 10) that F (T ) is exa
tly the set of fa
esindu
ed by M∗.
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Fig. 10. The graphs 
orresponding to A, B and C in M (left), M′ (
enter) and M
∗ (right).Finally sin
e T has a premodel M∗, Corollary 2.15 implies that it has a full model, proving Theorem 2.5.

⊓⊔5 Con
lusionWest 
onje
tures that every planar graph is the interse
tion graph of segments using only four dire
tions[17℄. Furthermore if the segment set is unambiguous, parallel segments indu
e a stable set, and the fourdire
tions would 
orrespond to a four 
oloring of the planar graph. This 
onje
ture is true for some familiesof planar graphs. Indeed, every bipartite planar graph has a representation with two dire
tions [9,3,5℄ andevery triangle free planar graph (that is 3-
olorable by Grötzs
h's theorem) has a representation with threedire
tions [1℄.De Fraysseix and Ossona de Mendez proposed [4℄ the following generalization of S
heinerman's Conje
ture: "Every planar linear hypergraph is the interse
tion hypergraph of segments in the plane.", where a linearhypergraphs is an hypergraph su
h that two hyperedges interse
t in at most one vertex. This generalizationdoes not holds sin
e the se
ond author found a 
ounterexample [8℄.In our proof we need the 
onstraints digraph to be a
y
li
 in order to perform lo
al perturbations on thesegment set, like gliding or traversing. We wonder whether this 
ondition is ne
essary: is it always possibleto do lo
al perturbations in any �exible segment set R (with possibly 
y
les in ConstR)? The �exibility of
R is required sin
e Pappus's 
onstru
tion gives us a segment set with only one point that is internal in 3segments, and su
h that some glidings are impossible.10
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