Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Conclusion

Complexity Results on Untangling Red-Blue Matchings

Arun Kumar Das – Indian Statistical Institute, Kolkata
 Sandip Das – Indian Statistical Institute, Kolkata
 Guilherme da Fonseca – Aix-Marseille Université and LIS, France
 Yan Gerard – Université Clermont Auvergne and LIMOS, France
 Bastien Rivier – Université Clermont Auvergne and LIMOS, France

Introduction

 $\begin{array}{l} \text{Matching} \\ \text{Fips} \\ \text{NP-Hard} \\ \mathbf{d}(\cdot), \mathbf{D}(\cdot) \\ \mathbf{D}(n) = O(n^3) \\ \text{History} \\ \text{Convex} \\ \text{Red-on-a-Line} \\ \text{Table} \\ \\ \text{NP-Hard} \\ \mathbf{d}(n) \leq \\ \mathbf{d}(n) \geq \\ \mathbf{D}(n) \leq \end{array}$

$\mathbf{D}(n) \geq$

Conclusion

Section 1

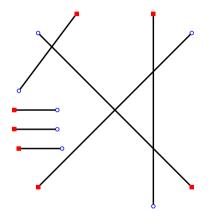
Introduction

Crossing-Free Matchings

Introduction

Matching Flips NP-Hard $\mathbf{d}(\cdot), \mathbf{D}(\cdot)$ $\mathbf{D}(n) = O(n^3)$ History Convex Red-on-a-Line Table NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Conclusion

- R: Set of n red points
- B: Set of n blue points
- Question 1: Can we match R to B using non-crossing line segments?
- Answer: Yes, and we can compute in $O(n \log n)$ time [HS92]



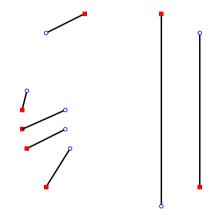
Crossing-Free Matchings

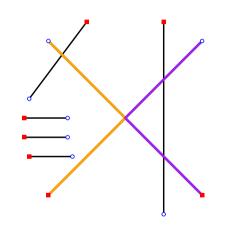
Introduction

$\begin{array}{l} \begin{array}{l} \mbox{Matching} \\ \mbox{Flips} \\ \mbox{Pl-Hard} \\ \mbox{d}(\cdot), \mbox{D}(\cdot) \\ \mbox{D}(n) = O(n^3) \\ \mbox{History} \\ \mbox{Convex} \\ \mbox{Red-on-a-Line} \\ \mbox{Table} \\ \mbox{NP-Hard} \\ \mbox{d}(n) \leq \\ \mbox{d}(n) \geq \\ \mbox{D}(n) \leq \\ \mbox{D}(n) > \end{array}$

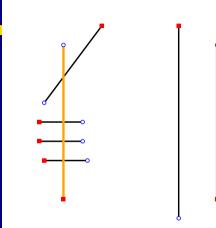
Conclusion

- R: Set of n red points
- B: Set of n blue points
- Question 1: Can we match R to B using non-crossing line segments?
- Answer: Yes, and we can compute in $O(n \log n)$ time [HS92]

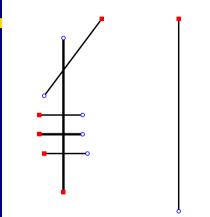




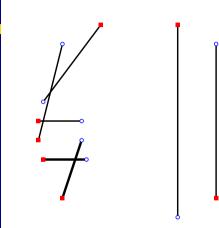
- A flip replaces a crossing pair of segments by non-crossing segments
- Question 2: Will flipping always lead to a crossing-free matching?
- Answer: Yes, the total Euclidean length decreases and there are only n! possible matchings
- Question 3: How many flips?
- Answer: Hard to say...



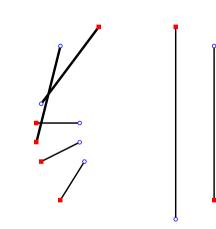
- A flip replaces a crossing pair of segments by non-crossing segments
- Question 2: Will flipping always lead to a crossing-free matching?
- Answer: Yes, the total Euclidean length decreases and there are only n! possible matchings
- Question 3: How many flips?
- **Answer:** Hard to say...



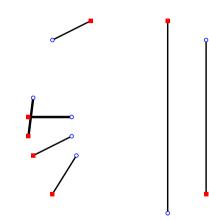
- A flip replaces a crossing pair of segments by non-crossing segments
- Question 2: Will flipping always lead to a crossing-free matching?
- Answer: Yes, the total Euclidean length decreases and there are only n! possible matchings
- Question 3: How many flips?



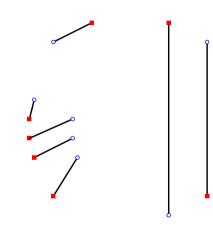
- A flip replaces a crossing pair of segments by non-crossing segments
- Question 2: Will flipping always lead to a crossing-free matching?
- Answer: Yes, the total Euclidean length decreases and there are only n! possible matchings
- Question 3: How many flips?



- A flip replaces a crossing pair of segments by non-crossing segments
- Question 2: Will flipping always lead to a crossing-free matching?
- Answer: Yes, the total Euclidean length decreases and there are only n! possible matchings
- Question 3: How many flips?



- A flip replaces a crossing pair of segments by non-crossing segments
- Question 2: Will flipping always lead to a crossing-free matching?
- Answer: Yes, the total Euclidean length decreases and there are only n! possible matchings
- Question 3: How many flips?

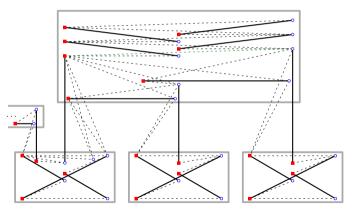


- A flip replaces a crossing pair of segments by non-crossing segments
- Question 2: Will flipping always lead to a crossing-free matching?
- Answer: Yes, the total Euclidean length decreases and there are only n! possible matchings
- Question 3: How many flips?
- Answer: Hard to say...

NP-Hardness

Introduction Matching Flips NP-Hard $\mathbf{d}(\cdot), \mathbf{D}(\cdot)$ $\mathbf{D}(n) = O(n^3)$ History Convex Red-on-a-Line Table NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Conclusion

We show that finding the minimum number of flips is NP-hard
In fact, even a constant-factor approximation is NP-hard

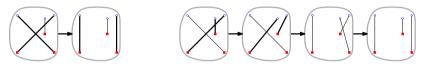


Little \mathbf{d} and Big \mathbf{D}

Introduction Matching Flips NP-Hard $\mathbf{d}(\cdot), \mathbf{D}(\cdot)$ $\mathbf{D}(n) = O(n^3)$ History Convex Red-on-a-Line Table NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$

- $\mathbf{D}(n) \ge$
- Conclusion

Some untangle sequences are shorter than others

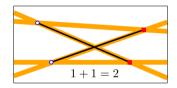


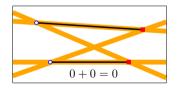
- **d**(n): length of the **shortest** untangle sequence (worst-case)
- **D**(n): length of the **longest** untangle sequence
- Clearly: $\mathbf{d}(n) \leq \mathbf{D}(n)$

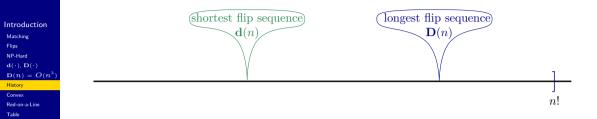
Cubic Upper Bound for D(n) [BM16, vL81]

- Consider n^2 lines by red-blue pairs
- Potential of segment s: number of lines properly crossing s
- Potential of matching:
 sum of the segment potentials
- \blacksquare Initial potential $\leq n(n-1)^2$
- \blacksquare Flip reduces potential by at least 2
- Hence,

$$\mathbf{D}(n) \le \frac{n(n-1)^2}{2} = \binom{n}{2}(n-1)$$

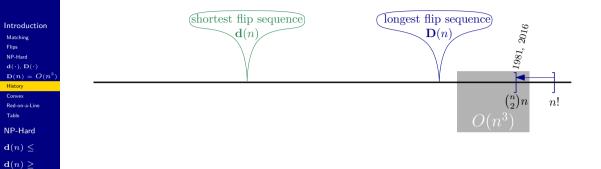




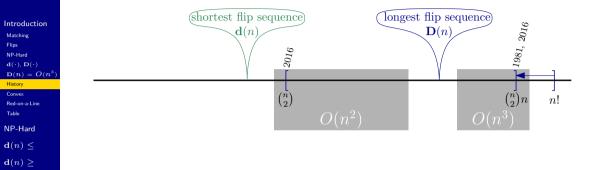


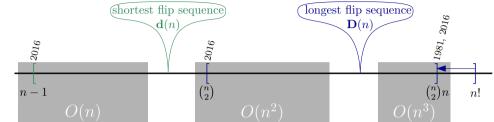
- $\mathsf{NP} ext{-Hard}$ $\mathbf{d}(n) \leq$
- $\mathbf{d}(n) \geq$
- $\mathbf{D}(n) \leq$
- $\mathbf{D}(n) \geq$
- Conclusion

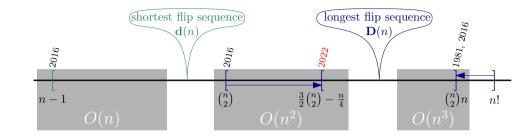
 $\mathbf{D}(n) \leq \mathbf{D}(n) \geq$ Conclusion

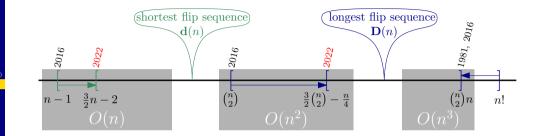


 $\mathbf{D}(n) \leq \mathbf{D}(n) \geq$ Conclusion









Convex Case

- General bounds have large gaps
- What if the points are in convex position?
 - Number of crossings decreases at each flip

longest flip sequence)

 $\mathbf{D}(n)$

 $\binom{n}{2}$

2016

 $\hfill \hfill \hfill$

2019

2n - 2

(shortest flip sequence)

 $\mathbf{d}(n)$

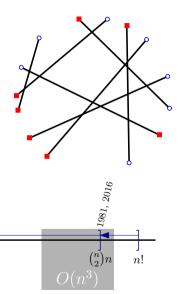
2022

 $\frac{3}{2}n - 2$

2016

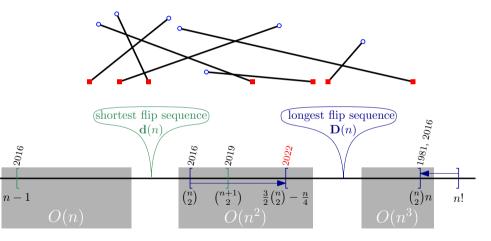
n-1

 \blacksquare Almost tight bounds for $\mathbf{d}(n)$



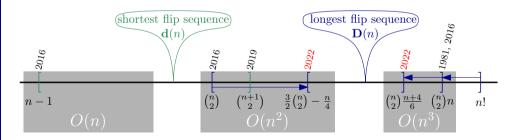
Red-on-a-Line Case

• What if the red points are colinear?



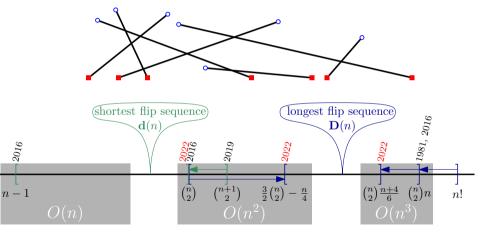
Red-on-a-Line Case

What if the red points are colinear?



Red-on-a-Line Case

What if the red points are colinear?



State of the Art Bounds

Introduction Matching Flips NP-Hard $\mathbf{D}(n) = O(n^3)$ History Convex Red-on-a-Line Table NP-Hard $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \ge$ Conclusion

$\mathbf{d}(n)$ bounds	lower	upper
general convex red-on-a-line	$rac{3}{2}n-2$, new $rac{3}{2}n-2$, new $n-1$, [BM16]	$\binom{n}{2}(n-1)$, [BM16, vL81] 2n-2, [BMS19] $\binom{n}{2}$, new
$\mathbf{D}(n)$ bounds	lower	upper
general convex red-on-a-line	$\begin{array}{c} \frac{3}{2}\binom{n}{2} - \frac{n}{4}, \text{ new} \\ \binom{n}{2}, \text{ [BM16]} \\ \frac{3}{2}\binom{n}{2} - \frac{n}{4}, \text{ new} \end{array}$	$\binom{n}{2}(n-1)$, [BM16, vL81] $\binom{n}{2}$, [BMS19] $\binom{n}{2}\frac{n+4}{6}$, new

Introduction

$\frac{\text{NP-Hard}}{\text{RPM 3SAT}}$ $\frac{\text{Variable}}{\text{OR}}$ $\frac{\text{Clause}}{\text{Padding}}$ $\frac{\text{d}(n) \leq}{\text{d}(n) \geq}$ $\frac{\text{d}(n) \leq}{\text{D}(n) \leq}$

Conclusion

Problem:

Section 2

NP-Hard

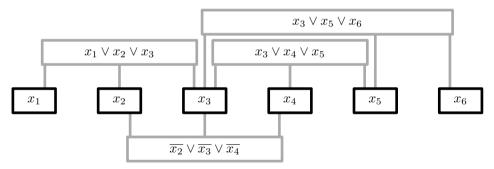
Input: Matching M, integer kOutput: Is there an untangle sequence of length at most k?

RPM 3-SAT

Introduction NP-Hard RPM 3SAT Variable OR Clause Padding Everything $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Conclusion

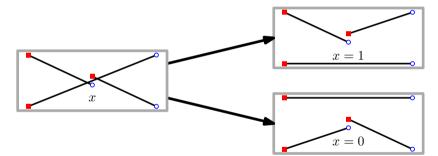
• Variation of 3-SAT [DBK12]:

- Clauses are all positive or all negative
- Planar orthogonal drawing



Variable Gadget

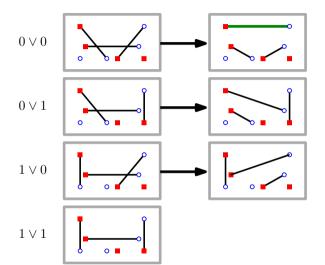
• Variable gadgets can be flipped to be *true* or *false*



OR Gadget

Used to build clauses

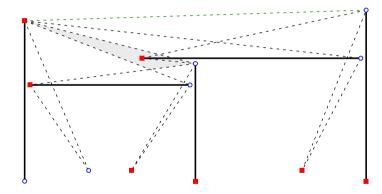
Introduction NP-Hard RPM 3SAT Variable Clause Padding Everything $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Conclusion



Clause Gadget

Clause gadgets are 2 OR gadgets to have 3 inputs

Clause gadgets connect to variable gadgets

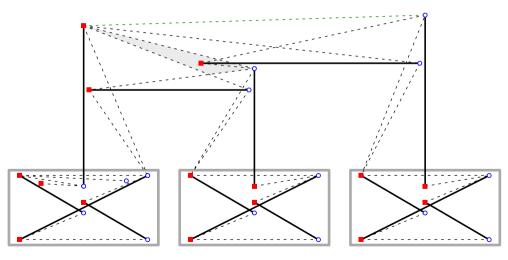


Clause Gadget

Introduction

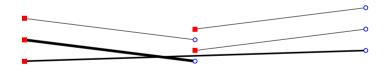
NP-Hard RPM 3SAT Variable OR Padding Everything $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Conclusion

- \blacksquare Clause gadgets are $2~{\rm OR}$ gadgets to have $3~{\rm inputs}$
- Clause gadgets connect to variable gadgets



- $\begin{array}{l} \mbox{Introduction} \\ \mbox{NP-Hard} \\ \mbox{RPM 3SAT} \\ \mbox{Variable} \\ \mbox{OR} \\ \mbox{Clause} \\ \mbox{Clause} \\ \mbox{Clause} \\ \mbox{d}(n) \leq \\ \mbox{d}(n) \leq \\ \mbox{D}(n) \leq \\ \mbox{D}(n) \geq \end{array}$
- Conclusion

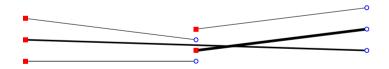
- Padding gadgets serve to increase the number of flips
- Each clause has a padding gadget
- If the clause is not satisfied, the padding gadget is flipped



$\begin{array}{l} \mbox{Introduction} \\ \mbox{NP-Hard} \\ \mbox{RPM 3SAT} \\ \mbox{Variable} \\ \mbox{OR} \\ \mbox{Clause} \\ \mbox{Clause} \\ \mbox{Clause} \\ \mbox{d}(n) \leq \\ \mbox{d}(n) \leq \\ \mbox{D}(n) \leq \\ \mbox{D}(n) \geq \end{array}$

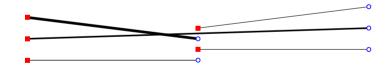
Conclusion

- Padding gadgets serve to increase the number of flips
- Each clause has a padding gadget
- If the clause is not satisfied, the padding gadget is flipped



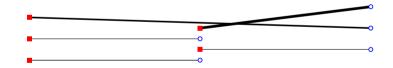
- $\begin{array}{l} \mbox{Introduction} \\ \mbox{NP-Hard} \\ \mbox{RPM 3SAT} \\ \mbox{Variable} \\ \mbox{OR} \\ \mbox{Clause} \\ \mbox{Everything} \\ \mbox{d}(n) \leq \\ \mbox{d}(n) \leq \\ \mbox{D}(n) \leq \\ \mbox{D}(n) \geq \end{array}$
- Conclusion

- Padding gadgets serve to increase the number of flips
- Each clause has a padding gadget
- If the clause is not satisfied, the padding gadget is flipped



- $\begin{array}{l} \mbox{Introduction} \\ \mbox{NP-Hard} \\ \mbox{RPM 3SAT} \\ \mbox{Variable} \\ \mbox{OR} \\ \mbox{Clause} \\ \mbox{Padding} \\ \mbox{Clause} \\ \mbox{d}(n) \leq \\ \mbox{d}(n) \leq \\ \mbox{D}(n) \leq \\ \mbox{D}(n) \geq \end{array}$
- Conclusion

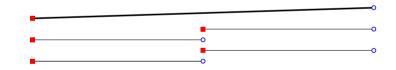
- Padding gadgets serve to increase the number of flips
- Each clause has a padding gadget
- If the clause is not satisfied, the padding gadget is flipped



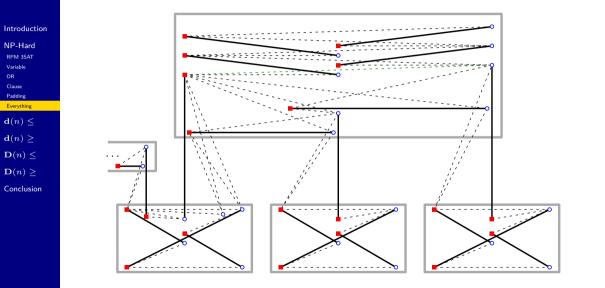
$\begin{array}{l} \mbox{Introduction} \\ \mbox{NP-Hard} \\ \mbox{RPM 35AT} \\ \mbox{Variable} \\ \mbox{OR} \\ \mbox{Clause} \\ \mbox{Padding} \\ \mbox{Everything} \\ \mbox{d}(n) \leq \\ \mbox{d}(n) \leq \\ \mbox{D}(n) \leq \\ \mbox{D}(n) \geq \end{array}$

Conclusion

- Padding gadgets serve to increase the number of flips
- Each clause has a padding gadget
- If the clause is not satisfied, the padding gadget is flipped



All Gadgets Together



Introduction NP-Hard

$\mathbf{d}(n) \leq$

States Algorithm Analysis

 $\mathbf{d}(n) \geq$

 $\mathbf{D}(n) \leq$

 $\mathbf{D}(n) \geq$

Conclusion

Section 3

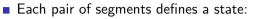
$\mathbf{d}(n) \le \binom{n}{2}$

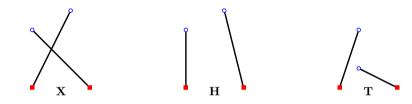
for the red-on-a-line case

${\bf X},\,{\bf H},\,\text{and}\,\,{\bf T}$ States

Introduction NP-Hard $\mathbf{d}(n) \leq$

States Algorithm Analysis $\mathbf{d}(n) \ge$ $\mathbf{D}(n) \le$ $\mathbf{D}(n) \ge$ Conclusion





Convex case:

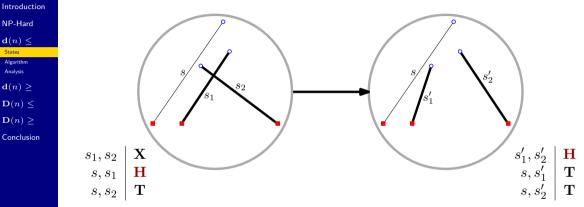
- No T states
- \blacksquare Every flip increases $|\mathbf{H}|$
- Hence at most $\binom{n}{2}$ flips

What if the points are **not** in **convex** position?

|H| May Not Increase

States Algorithm Analysis

In general, |**H**| may **not increase**:



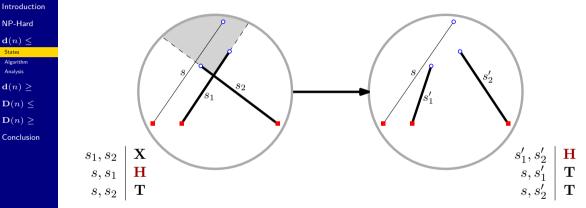
• Multiple copies of s would make $|\mathbf{H}|$ decrease

■ **|H**| decreases if the upper cone is empty

|H| May Not Increase

NP-Hard $\mathbf{d}(n) \leq$ States Algorithm Analysis

 $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \ge$ Conclusion In general, $|\mathbf{H}|$ may **not increase**:



- Multiple copies of s would make $|\mathbf{H}|$ decrease
- |**H**| decreases if the upper cone is empty

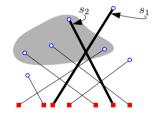
Introduction NP-Hard

- $\mathbf{d}(n) \leq \frac{1}{2}$
- $\frac{\text{Algorithm}}{\text{Analysis}}$ $\mathbf{d}(n) \geq \mathbf{c}(n) \leq \mathbf{c}(n)$
- $\mathbf{D}(n) \leq \mathbf{D}(n) \geq$
- Conclusion

- To bound $\mathbf{d}(n)$ we can **choose** segments to flip
- **Top segment**: segment with the topmost blue point

Algorithm for Red-on-a-Line

- Always flip top segment s₁ with top segment s₂ among segments that cross s₁
- If s₁ has no crossing, solve both sides of s₁ recursively



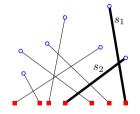
Introduction NP-Hard

- $\mathbf{d}(n) \leq \frac{1}{2}$
- Algorithm Analysis $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$
- $\mathbf{D}(n) \ge \mathbf{D}(n) \ge \mathbf{D}(n)$
- Conclusion

- To bound $\mathbf{d}(n)$ we can **choose** segments to flip
- **Top segment**: segment with the topmost blue point

Algorithm for Red-on-a-Line

- Always flip top segment s₁ with top segment s₂ among segments that cross s₁
- If s₁ has no crossing, solve both sides of s₁ recursively



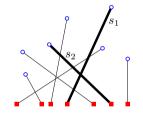
Introduction NP-Hard

- $\mathbf{d}(n) \leq \frac{1}{2}$
- Algorithm Analysis $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$
- $\mathbf{D}(n) \ge \mathbf{D}(n) \ge \mathbf{D}(n)$
- Conclusion

- To bound $\mathbf{d}(n)$ we can **choose** segments to flip
- **Top segment**: segment with the topmost blue point

Algorithm for Red-on-a-Line

- Always flip top segment s₁ with top segment s₂ among segments that cross s₁
- If s₁ has no crossing, solve both sides of s₁ recursively



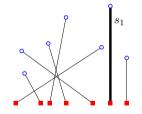
Introduction NP-Hard

- $\mathbf{d}(n) \leq \frac{1}{2}$
- Algorithm Analysis $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$
- $\mathbf{D}(n) \leq \mathbf{D}(n) \geq 0$
- Conclusion

- To bound $\mathbf{d}(n)$ we can **choose** segments to flip
- **Top segment**: segment with the topmost blue point

Algorithm for Red-on-a-Line

- Always flip top segment s₁ with top segment s₂ among segments that cross s₁
- If s₁ has no crossing, solve both sides of s₁ recursively



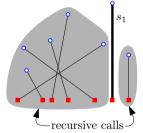
Introduction NP-Hard

- $\mathbf{d}(n) \leq \frac{1}{2}$
- Algorithm Analysis
- $\mathbf{d}(n) \ge$ $\mathbf{D}(n) \le$
- $\mathbf{D}(n) \geq$
- Conclusion

- To bound $\mathbf{d}(n)$ we can **choose** segments to flip
- **Top segment**: segment with the topmost blue point

Algorithm for Red-on-a-Line

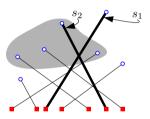
- Always flip top segment s₁ with top segment s₂ among segments that cross s₁
- If s₁ has no crossing, solve both sides of s₁ recursively



Analysis of the Number of Flips

NP-Hard $\mathbf{d}(n) \leq$ States Algorithm Analysis $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Conclusion

Introduction



Lemma:

Flipping the top segments s_1, s_2 increases the number of **H** pairs

- We do not count the **H** pairs between different recursive calls
- Total number of pairs: $\binom{n}{2}$
- Hence,

$$\mathbf{d}(n) \le \binom{n}{2}$$

Introduction NP-Hard $\mathbf{d}(n) \leq \mathbf{d}(n) \geq \mathbf{F}_{\text{Ence}}$

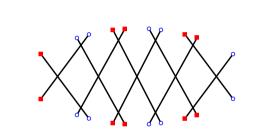
 $\mathbf{D}(n) \leq \mathbf{D}(n) \geq$

Conclusion

Section 4

$$\mathbf{d}(n) \ge \frac{3}{2}n - 2$$

for the convex case

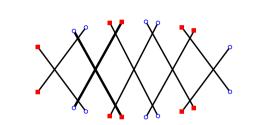


10 segments, 13 crossings

Fence with n segments has

$$\frac{3}{2}n-2$$
 crossings

Lemma:



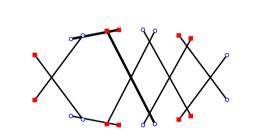
10 segments, 13 crossings

Fence with n segments has

$$\frac{3}{2}n-2$$
 crossings

Lemma:



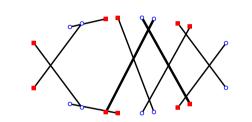


10 segments, 12 crossings

Fence with n segments has

$$\frac{3}{2}n-2$$
 crossings

Lemma:

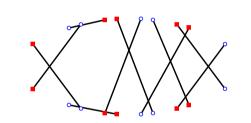


10 segments, 11 crossings

Fence with n segments has

$$\frac{3}{2}n-2$$
 crossings

Lemma:



10 segments, 10 crossings

Fence with n segments has

$$\frac{3}{2}n-2$$
 crossings

Lemma:

Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$

 $\mathbf{D}(n) \leq$ Observers Potential Sum $\mathbf{D}(n) \geq$

Conclusion

Section 5

 $\mathbf{D}(n) \le \binom{n}{2} \frac{n+4}{6}$

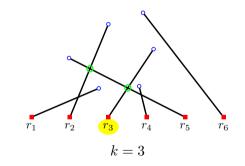
for the red-on-a-line case

k-crossings and k-observed crossings

NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ Observers Potential Sum $\mathbf{D}(n) \geq$ Conclusion

Introduction

- Red points numbered from left to right r₁,..., r_n and consider r_k
- *k*-**pair**: Pair of segments with red points *r_i*, *r_j* and *i* ≤ *k* ≤ *j*
- Project blue points from r_k
- k-observed crossing: projected segments cross
- crossing k-pairs are k-observed crossing



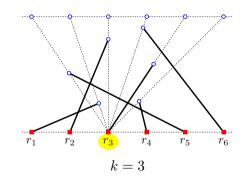
k-crossings and k-observed crossings

 $\begin{array}{l} \mathsf{NP-Hard} \\ \mathbf{d}(n) \leq \\ \mathbf{d}(n) \geq \\ \mathbf{D}(n) \leq \\ \hline \\ \begin{array}{l} \mathsf{Observers} \\ \mathsf{Potential} \\ \mathsf{Sum} \\ \\ \mathbf{D}(n) \geq \end{array}$

Conclusion

Introduction

- Red points numbered from left to right r₁,..., r_n and consider r_k
- k-pair: Pair of segments with red points r_i, r_j and i ≤ k ≤ j
- Project blue points from r_k
- k-observed crossing: projected segments cross
- crossing k-pairs are k-observed crossing



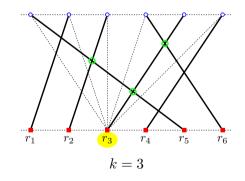
k-crossings and k-observed crossings

NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ Observers Potential Sum $\mathbf{D}(n) >$

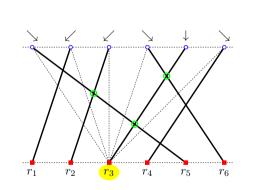
Introduction

Conclusion

- Red points numbered from left to right r₁,..., r_n and consider r_k
- *k*-pair: Pair of segments with red points r_i, r_j and $i \le k \le j$
- Project blue points from r_k
- k-observed crossing: projected segments cross
- crossing k-pairs are k-observed crossing



Potential



- Φ_k: Number of k-pairs forming k-observed crossings
- By number of pairs i, j with $i \neq j$ and $1 \leq i \leq k \leq j \leq n$:

$$\Phi_k \le k(n-k+1) - 1 = k(n+1) - k^2 - 1$$

Lemma:

 Φ_k decreases for each flipped $k\text{-}\mathrm{crossing}$

Sum

NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ Observers Potential Sum

Introduction

 $\mathbf{D}(n) \geq$ Conclusion

• Φ : Sum of Φ_k

$$\Phi = \sum_{k=1}^{n} \Phi_k \le \sum_{k=1}^{n} \left(k(n+1) - k^2 - 1 \right) = (n+1) \sum_{k=1}^{n} k - \sum_{k=1}^{n} k^2 - n = \binom{n}{2} \frac{n+4}{3}$$

- Φ decreases by at least 2 for each flip (1 unit for k corresponding to each red point of the flip)
- Hence, for red-on-a line $\mathbf{D}(n) \leq {n \choose 2} \frac{n+4}{6}$
- Compare to $\mathbf{D}(n) \leq {n \choose 2}(n-1)$ in general

Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$

Butterfly

Conclusion

Section 6

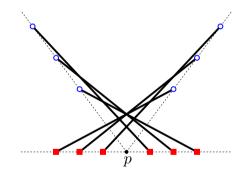
$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$

for the red-on-a-line case

Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

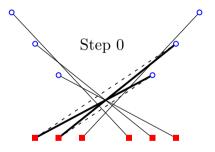
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

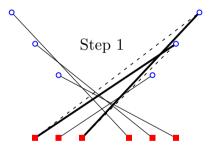
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

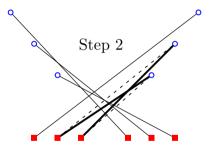
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

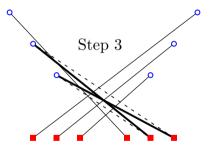
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

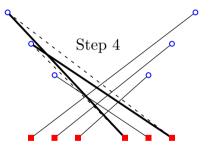
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

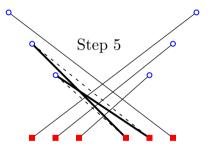
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

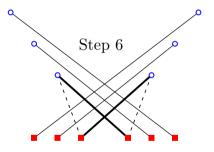
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

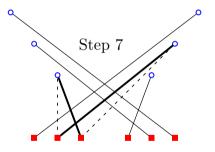
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

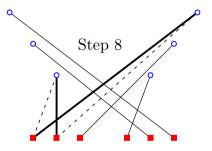
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

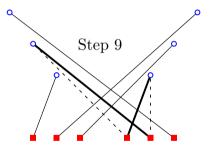
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

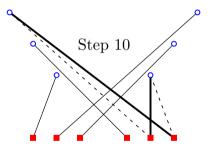
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

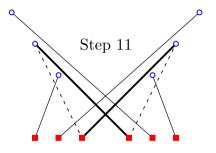
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

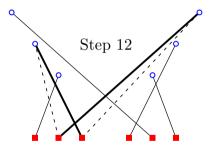
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

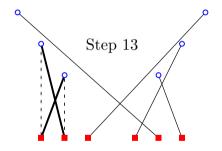
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

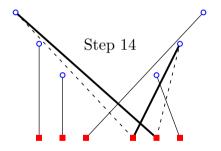
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

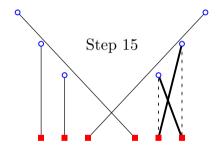
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

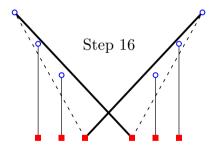
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

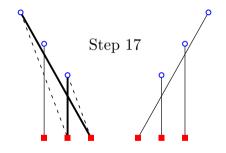
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

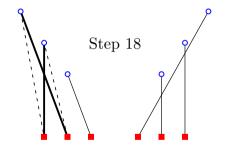
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

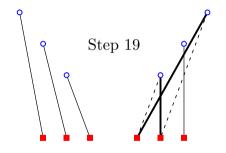
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

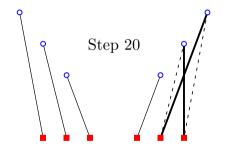
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

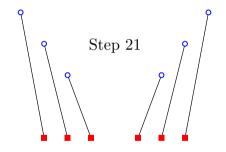
$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Butterfly

Conclusion

$$\mathbf{D}(n) \ge \frac{3}{2} \binom{n}{2} - \frac{n}{4}$$



Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$

Conclusion NP-Hard Bounds References

 $\mathbf{D}(n) \geq$

Referen Thanks

Section 7

Conclusion

Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ **D**(n) \geq **Conclusion** NP-Hard Bounds References

Thanks

1 The shortest flip sequence...

- **1** for a **TSP** tour?
- 2 for a red-on-a-line matching?
- **3** for a **convex** instance?

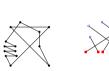


1 The shortest flip sequence...

- **1** for a **TSP** tour?
 - 2 for a red-on-a-line matching?
- **3** for a **convex** instance?

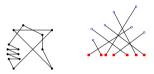
- Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$
- Conclusion NP-Hard Bounds References Thanks

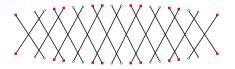
- 1 The shortest flip sequence...
 - **1** for a **TSP** tour?
 - 2 for a red-on-a-line matching?
 - **3** for a **convex** instance?



- Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Conclusion
- NP-Hard Bounds References Thanks

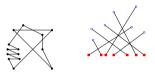
- 1 The shortest flip sequence...
 - **1** for a **TSP** tour?
 - 2 for a red-on-a-line matching?
 - **3** for a **convex** instance?

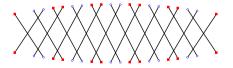


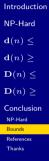


- Introduction NP-Hard $\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Conclusion
- NP-Hard Bounds References Thanks

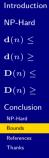
- 1 The shortest flip sequence...
 - **1** for a **TSP** tour?
 - 2 for a red-on-a-line matching?
 - **3** for a **convex** instance?
- 2 What about the **longest** flip sequence?

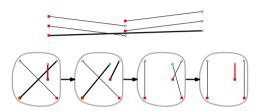




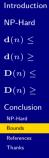


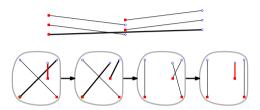
- Better bounds if the input is a crossing-free matching plus an extra segment?
- 2 Can we avoid flipping the same pair of segments twice?
- What is the number of flips involving a fixed **point**? A fixed **segment**?
- 4 What about **non-bipartite** matchings?
- 5 What about **TSP** tours?



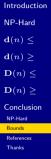


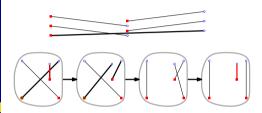
- Better bounds if the input is a crossing-free matching plus an extra segment?
- 2 Can we avoid flipping the same pair of segments twice?
 - What is the number of flips involving a fixed **point**? A fixed **segment**?
- 4 What about **non-bipartite** matchings?
- 5 What about **TSP** tours?





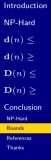
- Better bounds if the input is a crossing-free matching plus an extra segment?
- 2 Can we avoid flipping the same pair of segments twice?
- 3 What is the number of flips involving a fixed **point**? A fixed **segment**?
- What about non-bipartite matchings?
- 5 What about **TSP** tours?

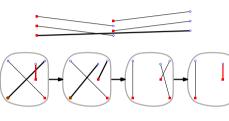




- Better bounds if the input is a crossing-free matching plus an extra segment?
- 2 Can we avoid flipping the same pair of segments twice?
- 3 What is the number of flips involving a fixed **point**? A fixed **segment**?
- 4 What about **non-bipartite** matchings?

5 What about **TSP** tours?

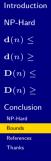


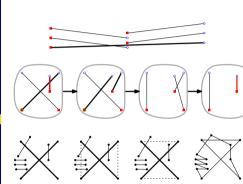


 \times \times \times

- Better bounds if the input is a crossing-free matching plus an extra segment?
- 2 Can we avoid flipping the same pair of segments twice?
- 3 What is the number of flips involving a fixed **point**? A fixed **segment**?
- 4 What about **non-bipartite** matchings?

5 What about **TSP** tours?





- Better bounds if the input is a crossing-free matching plus an extra segment?
- 2 Can we avoid flipping the same pair of segments twice?
- 3 What is the number of flips involving a fixed **point**? A fixed **segment**?
- 4 What about **non-bipartite** matchings?
- 5 What about **TSP** tours?

References

Introduction NP-Hard	[BM16]	Édouard Bonnet and Tillmann Miltzow. Flip distance to a non-crossing perfect matching. Computing Research Repository, abs/1601.05989, 2016.
$\mathbf{d}(n) \leq$ $\mathbf{d}(n) \geq$ $\mathbf{D}(n) \leq$ $\mathbf{D}(n) \geq$ Conclusion NP-Haid Bounds References Thanks	[BMS19]	Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Flip distance to some plane configurations. <i>Computational Geometry</i> , 81:12–21, 2019.
	[DBK12]	Mark De Berg and Amirali Khosravi. Optimal binary space partitions for segments in the plane. International Journal of Computational Geometry & Applications, 22(03):187–205, 2012.
	[HS92]	John Hershberger and Subhash Suri. Applications of a semi-dynamic convex hull algorithm. <i>BIT Numerical Mathematics</i> , 32(2):249–267, 1992.
	[vL81]	Jan van Leeuwen. Untangling a traveling salesman tour in the plane. In 7th Workshop on Graph-Theoretic Concepts in Computer Science, 1981.

Thank You

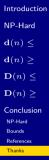


Photo by Gilbert Garcin