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Abstract
Given a rectilinear matching between n red points and n blue points in the plane, we consider the
problem of obtaining a crossing-free matching through flip operations that replace two crossing
segments by two non-crossing ones. We first show that (i) it is NP-hard to α-approximate the
shortest flip sequence, for any constant α. Second, we show that when the red points are colinear,
(ii) given a matching, a flip sequence of length at most

(
n
2

)
always exists, and (iii) the number of

flips in any sequence never exceeds
(

n
2

)
n+4

6 . Finally, we present (iv) a lower bounding flip sequence
with roughly 1.5

(
n
2

)
flips, which disproves the conjecture that

(
n
2

)
, reached in the convex case, is the

maximum. The last three results, based on novel analyses, improve the constants of state-of-the-art
bounds.

Related Version arxiv.org/abs/2202.11857

1 Introduction

We consider the problem of untangling a planar rectilinear red-blue matching. We are given
a set of 2n points in the plane, partitioned into a set R of n red points, and a set B of n

blue points, in general position (no three colinear points, unless they have the same color).
A configuration is a set of n line segments where each point of R is matched to exactly one

point of B, i.e. a perfect rectilinear red-blue matching. A flip is a combinatorial operation
changing a configuration into another [7, 16]. In our case, a flip replaces two crossing segments
by two non-crossing ones (Figure 1).

The reconfiguration graph of R, B is the directed simple graph whose vertices V are the
configurations, and such that there is a directed edge from a configuration M1 to another one
M2 whenever a flip transforms M1 into M2. Note that the reconfiguration graph is acyclic [6].
Let S ⊆ V be the set of sinks, which corresponds to the crossing-free configurations. Given
two configurations u, v ∈ V, let P(u, v) be the set of directed paths from u to v. Given a
path P , let the length of P , denoted |P |, be the number of edges in P . The distance from u
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Figure 1 A flip. Red points are represented by solid squares and blue points by hollow circles.

to v, denoted d(u, v), is the minimum path length from u to v. The distance from u to S,
d(u, S), also abbreviated as d(u), is the minimum path length from u to a configuration in S.
We are interested in two parameters of this reconfiguration graph:

d(R, B) = max
u∈V

min
v∈S

min
P ∈P(u,v)

|P | and D(R, B) = max
u∈V

max
v∈S

max
P ∈P(u,v)

|P | .

This leads to the definitions of d(n) and D(n) respectively as the maximum of d(R, B)
and D(R, B) with |R| = |B| = n. An untangle sequence is a path in the reconfiguration
graph ending in S. Intuitively, d corresponds to the minimum length of an untangle sequence
in the worst case, while D corresponds to the longest untangle sequence.

We also consider a more specific version of the problem where the red points are colinear [4],
say, on the x-axis. As the flips on each half-plane defined by the x-axis are independent, we
additionally suppose all blue points to lie on the upper half-plane without loss of generality.
The matchings in this case are called red-on-a-line matchings.

Related work. The parameters d, D have been studied in several different contexts with
similar definitions of a flip, but considering other configurations.

In 1981, an O(n3) upper bound on D(n) was stated in the context of optimizing a TSP
tour [23] (the configurations are polygons). This upper bound should be compared to the
exponential lower bound on D(n) when the flips are not restricted to crossing segments, as
long as they decrease the Euclidean length of the tour [10]. The convex case (i.e. the case
where the points are in convex position) has been studied in [20, 25].

In the non-bipartite version of the rectilinear perfect matching problem, there are two
possible pairs of segments to replace a crossing pair. This additional choice yields an n2/2
upper bound on d(n) [6].

It is also possible to relax the flip definition to all operations that replace two segments
by two others with the same four endpoints, whether they cross or not, and generalize the
configurations to multigraphs with the same degree sequence [12, 13, 16]. In this context,
finding the shortest path from a given configuration to another in the reconfiguration graph
is NP-hard, yet 1.5-approximable [2, 3, 11, 24]. If we additionally require the configurations
to be connected graphs, the same problem is NP-hard and 2.5-approximable [8].

Reconfiguration problems in the context of triangulations are widely studied [19]. A
flip consists of removing one edge and adding another one while preserving a triangulation.
It is know that Θ(n2) flips are sufficient and sometimes necessary to obtain a Delaunay
triangulation [14, 17]. Determining the flip distance between two triangulations of a point
set [18, 21] and between two triangulations of a simple polygon [1] are both NP-hard.

Considering perfect matchings of an arbitrary graph (instead of the complete bipartite
graph on R, B), a flip amounts to exchanging the edges in an alternating cycle of length
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Table 1 Lower and upper bounds on d(n) and D(n) for red-blue matchings.

d(n) bounds D(n) bounds
lower upper lower upper

general 1.4n(a), Thm. 5.2
(

n
2

)
(n − 1), [6, 23] 3

2

(
n
2

)
− n

4
(b), Thm. 5.1

(
n
2

)
(n − 1), [6, 23]

convex 1.4n(a), Thm. 5.2 2n − 2, [4]
(

n
2

)
, [6]

(
n
2

)
, [4]

red-on-a-line n − 1, [6]
(

n
2

)
, Thm. 3.1 3

2

(
n
2

)
− n

4
(b), Thm. 5.1

(
n
2

)
n+4

6 , Thm. 4.1

(a) For n multiple of 20.
(b) For even n.

four. It is then PSPACE-complete to decide whether there exists a path from a configuration
to another [5]. There is, actually, a wide variety of reconfiguration contexts derived from
NP-complete problems where this same accessibility problem is PSPACE-complete [15].
Many other reconfiguration problems are presented in [22].

Getting back to our context of rectilinear red-blue matchings, the values of d and D have
been determined almost exactly in the convex case (see Table 1). Notice that the n − 1 lower
bound on d(n) carries to both the general and red-on-a-line cases [6]. It is notable that the
upper bound on D(n) is also the best known bound on d(n) and has not been improved
since 1981 [23].

Contributions. We show in Section 2 that it is NP-hard to α-approximate the shortest
untangle sequence starting at a given matching, for any fixed α ≥ 1.

The following results are summarized in Table 1. An improved lower bound on d(n)
in the convex case is presented in Section 5.2. The remainder of the paper considers the
red-on-a-line case. In Section 3, we slightly improve the former

(
n+1

2
)

upper bound on
d(n) [4], using a simpler algorithm and a novel analysis. In Section 4, we asymptotically
divide by 6 the historical

(
n
2
)
(n − 1) upper bound on D(n) [6, 23], using a different potential

argument.
In Section 5.1, we present a counter-example to the intuitive conjecture that the longest

untangle sequence is attained in the convex case (where the number of crossings is maximal).
We take advantage of points that are not in convex position to increase the lower bound by
a factor of 3

2 . This red-on-a-line lower bound on d(n) carries over to the general case (and
even to the case of general perfect matchings without color distinction among the points).
The weaker conjecture that D(n) is quadratic [6] still holds, though.

2 NP-Hardness

In this section, we sketch the reduction of a known NP-complete problem, called rectilinear
planar monotone (RPM ) 3-SAT [9], to the following problem. The full proof is presented in
the ArXiv version.
▶ Problem 1. Let α ≥ 1 be a constant.
Input: M , a red-blue matching.
Output: An untangle sequence starting at M of length at most α times d(M).

▶ Theorem 2.1. Problem 1 is NP-hard for all α ≥ 1.

In RPM 3-SAT, the graph of a CNF formula is the bipartite graph with the variables and
clauses as vertices, and where there is an edge between a variable and a clause if and only if
the clause contains the variable. A CNF formula is monotone if each clause contains either
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only positive or only negative variables. An RPM 3-CNF formula is a monotone formula
whose graph can be drawn with no intersection, and with the three following conventions
(Figure 2). (i) The variables and the clauses are represented by axis-parallel rectangles. (ii)
The variable rectangles lie on the x-axis. (iii) The positive clause rectangles are above the
x-axis, the negative ones, below. We call such a drawing the planar embedding of Φ.

x1 x2 x3 x4 x5 x6

x1 ∨ x2 ∨ x3 x3 ∨ x4 ∨ x5

x3 ∨ x5 ∨ x6

x2 ∨ x3 ∨ x4

Figure 2 A planar embedding of an RPM 3-CNF formula.

The idea of the reduction is that, given an RPM 3-CNF formula Φ, we draw a rectilinear
red-blue matching MΦ of polynomial size such that all the untangle sequences starting at
MΦ are of length at most k1 if Φ is satisfiable, and of length at least k2 if Φ is not satisfiable.

x = 0

x = 1

x

Figure 3 A variable gadget.

b4

r4

r6 b6
b5

r5

r8 b8

b7

r7b9 r10 r11

Figure 4 A clause gadget.
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The aforesaid matching MΦ is built upon the planar embedding of Φ. The variable
rectangles are replaced by variable gadgets (Figure 3). The clause rectangles together with
the corresponding edges are replaced with clause gadgets (Figure 4). A clause gadget consists
of two OR gadgets, working like OR gates, and is connected to a padding gadget (Figure 5).
If a clause is satisfied, then any untangle sequence of the two OR gadgets will end without
creating any crossing in the padding gadget. If a clause is not satisfied, then any untangle
sequence of the two OR gadgets will end creating a crossing in the padding gadget, which
will trigger an arbitrary long series of flips, thus ensuring an arbitrary gap k2 − k1.

...

. . . . . .

. . .. . .

x y z

b4

r4

r6 b6
b5

r5

r8 b8

b7

r7b9 r10 r11

b12

r9

r12

b13
r13

r15

r14

b14

b15

...

Figure 5 A clause gadget with padding connected to its variable gadgets, with branching on x.

3 Upper Bound on d(n)

In this section, we give some insight into the proof of the following upper bound.

▶ Theorem 3.1. In the red-on-a-line case, d(n) ≤
(

n
2
)
.

The proof consists of the analysis of the number of flips performed by the following
recursive algorithm. We assume general position (no two blue points at same height). Let
the top segment of a red-on-a-line matching be the segment with the topmost blue endpoint.

s1s2

M2

Figure 6 A red-on-a-line matching with s1 as the top segment. The top segment of M2 is s2.
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Algorithm 1:
Input : M , a red-on-a-line matching.
Output : An untangle sequence starting at M .

0 If R = B = ∅, then stop.
1 Let M2 be the set of segments crossing s1, the top segment of M (Figure 6). If M2 is

not empty, flip s1 and s2, the top segment of M2, and repeat Step 0.
2 Recursively call the algorithm on the sub-matchings on both sides of the updated top

segment of M .

X-state H-state T-state

Figure 7 The three different states of pairs of segments.

The idea behind Algorithm 1 stems from the following observations. We define three
states for a pair of segments: state X, when the segments are crossing, state H, when the
segments are not crossing and their endpoints are in convex position, and state T, when
the endpoints are not in convex position (Figure 7). In the convex case, a flip increases the
number of H-pairs of at least 1 unit, providing the

(
n
2
)

upper bound on D(n). However, the
number of H-pairs may decrease in the general case. Figure 8 shows two such situations
where there is one H-pair involving the segment s before the flip, and none after the flip.
Algorithm 1 avoids these situations by choosing to flip top segments. The full proof, presented
in the ArXiv version, involves state tracking, a novel approach to analyse flip sequences.

s
s1

s2
s′2

s′1

s

s1
s2

s′2

s′1

s s2

s1 H X
s X

s s′
2

s′
1 X H
s T

s s2

s1 H X
s T

s s′
2

s′
1 T H
s T

Figure 8 Two cases where the number of H-pairs decreases. The flipped pair is s1, s2.

4 Upper Bound on D(n)

In this section, we sketch the proof of the following upper bound.

https://arxiv.org/abs/2202.11857


A. K. Das, S. Das, G. D. da Fonseca, Y. Gerard, and B. Rivier 67:7

▶ Theorem 4.1. In the red-on-a-line case, D(n) ≤
(

n
2
)

n+4
6 .

Let r1, . . . , rn be the red points, ordered from left to right. Theorem 4.1 is a corollary of
the following bound on the number of flips involving rk.

▶ Lemma 4.2. In the red-on-a-line case, the number of flips involving the red point rk is at
most (k − 1)(n − k) + n − 1.

r1 r2 r3 r4 r5 r6

Figure 9 The two crossing pairs that may undergo a 3-flip (k = 3) immediately are circled.

The upper bound of Theorem 4.1 is obtained by computing the sum
∑n

k=1(k − 1)(n −
k) + n − 1 of the number of flips involving each red point, and then dividing this sum by 2,
since each flip is counted twice (once for each red point).

The proof of Lemma 4.2 comes from a stronger lemma bounding the number of k-flips by
(k − 1)(n − k) + n − 1, where a k-flip is a flip of a pair of segments rib, rjb′, with i ≤ k ≤ j

(see Figure 9, where k = 3). The proof is fully presented in the ArXiv version.

5 Lower Bounds

In this section, we sketch the proof of the following lower bounds.

▶ Theorem 5.1. In the red-on-a-line case, for even n, D(n) ≥ 3
2
(

n
2
)

− n
4 .

▶ Theorem 5.2. In the convex case, for n multiple of 20, d(n) ≥ 1.4 · n.

5.1 Lower Bound on D(n)

In order to define the starting configurations of lower bounding untangle sequences, we first
provide some ad hoc definitions. We call a red-on-a-line convex matching an n-star when
the maximum crossing number is attained, i.e. all the

(
n
2
)

pairs of segments are crossing. For
convenience, we say that an n-star looks at a point p if its blue points are all on a common
line, and if p is the intersection of this line with the line on which the red points lie. We also
say that two red-blue point sets R, B and R′, B′ are fully crossing if all the pairs of segments
of the form rb, r′b′ are crossing, where (r, b, r′, b′) ∈ R × B × R′ × B′. Two matchings are
fully crossing if their underlying red-blue point sets are fully crossing.

An m-butterfly is a red-on-a-line matching consisting of two fully crossing m-stars both
looking at the same point p, where p is a median of the 2m red points (Figure 10). The
existence of an untangle sequence of length 3

2
(2m

2
)
− m

2 , starting at an m-butterfly is presented
in the ArXiv version.

EuroCG’22
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pr1 r2 r3 r4 r5 r6

Figure 10 The 3-butterfly used to lower bound D(6).

5.2 Lower Bound on d(n)
An improved lower bound on d(n) in the convex case comes from running a breadth-first
search on the 20-segment configuration in Figure 11 and finding a minimum untangle sequence
length of 24. Arranging multiple copies of this configuration, we get d(n) ≥ 1.4 · n for n

multiple of 20. The source code is available on github.com/gfonsecabr/untangling.

Figure 11 The convex configuration used to show that d(20) ≥ 28.

6 Concluding Remarks

Untangle sequences of TSP tours have been investigated since the 80s, when a cubic upper
bound on D(n) has been discovered [23]. This bound also holds for matchings and has not
been improved ever since. Except for the convex case, there are big gaps between the lower
and upper bounds, as can be seen in Table 1. Experiments on tours and matchings have
shown that, in all cases tested, the cubic upper bound is not tight and the lower bounds
seem to be asymptotically tight.

Untangle sequences have many unexpected properties which make the problem harder
than it seems at first sight. The following questions remain open.
1. If we add a new segment to a crossing-free matching, what is the maximum length of an

untangle sequence? Notice that an o(n2) bound would lead to an o(n3) bound for d(n).
2. Is it always possible to find an untangle sequence that does not flip the same pair of

segments twice? Using a balancing argument, we can show that the number of distinct
flips in any untangle sequence is O(n8/3).

3. What is the maximum number of flips involving a given point? The classic potential [23]
provides a quadratic bound which leads again to D(n) = O(n3).

4. Is there a potential that provides better bounds?

We proved the NP-hardness of computing the shortest untangle sequence for a red-blue
matching. What is the complexity of computing the shortest untangle sequence for a TSP

https://github.com/gfonsecabr/untangling
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tour, for a red-on-a-line matching, or even for a convex instance? What about the longest
untangle sequences?
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