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Abstract

The inability to answer proximity queries efficiently for spaces of dimension d > 2 has led to the
study of approximation to proximity problems. Several techniques have been proposed to address
different approximate proximity problems. In this paper, we present a new and unified approach to
proximity searching, which provides efficient solutions for several problems: spherical range queries,
idempotent spherical range queries, spherical emptiness queries, and nearest neighbor queries. In
contrast to previous data structures, our approach is simple and easy to analyze, providing a clear
picture of how to exploit the particular characteristics of each of these problems. Despite the simplic-
ity and generality of our data structures, our complexities essentially match the most efficient data
structures known and often offer small improvements. As applications of our approach, we provide
simple and practical data structures that match the best previous results up to logarithmic factors,
as well as advanced data structures that improve over the best previous results for all aforementioned
proximity problems.

1 Introduction

The term prozimity refers informally to the quality of being close to some point or object. Proximity
data structures arise from numerous applications in science and engineering because it is a fundamental
fact that nearby objects tend to exert a greater influence and have greater relevance than more distant
objects. The inability to answer proximity queries efficiently for spaces of dimension d > 2 has motivated
study of approximate solutions to proximity problems. In recent years, a number of different techniques
have been proposed for solving these problems. In order to obtain the best performance, the technical
elements of these solutions vary considerably, depending on the type of problem being solved and the
properties of the underlying entities. Each variant involves its own particular construction and analysis.
Consequently, it is difficult to obtain a clear understanding of the basic mechanisms underlying these
approaches. In this paper, we present efficient solutions for several approximate proximity problems, all
within a simple and unified framework.
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Abstractly, a prozimity search problem involves preprocessing a multidimensional point set into a
data structure in order to efficiently answer queries based on distances. Consider a set P of n points in
d-dimensional Euclidean space, for a constant d > 2. In problems involving aggregation, it is useful to
associate each point p € P with a weight, w(p), which is assumed to be drawn from some commutative
semigroup (S,+). For example, range queries involve computing the semigroup sum of points lying
within some region. In such cases, properties of the semigroup may be exploited in order to obtain the
most efficient solution. An important semigroup property is idempotence, which means that x + z = z,
for all x € S. (As an example, consider the integers under maximum or minimum.)

In this paper we consider the following fundamental proximity problems. In each case, we are given a
query point ¢ and possibly a radius r. We present each problem in its exact form, but each has a natural
approximation version, given an approximation parameter 0 < & < 1. Points within distance r(1 — &) of
g must be considered and only points within distance (1 + ) may be considered.

e Spherical range queries: Given a query point ¢ and a radius r, determine the number of points of
P (or more generally, the semigroup sum of the weights of the points) lying within distance r from
q. If the semigroup is idempotent, this is called an idempotent spherical range query.

e Spherical emptiness queries: This can be viewed as a special case of an idempotent range query in
which the goal is to determine whether any point of P lies within distance r of q.

e Nearest neighbor queries: Given a query point ¢ determine the closest point of P to ¢ and its
associated distance 7.

Spherical emptiness queries and nearest neighbor queries are strongly related. Given the nearest
neighbor p of a query point ¢, we can determine whether the ball of radius r centered at g is empty
by comparing r and ||pg||. In the approximate version, we can answer nearest neighbor queries by
computing a constant-factor approximation of the nearest neighbor and then performing a binary search
with O(log %) spherical emptiness queries [[9]. In this paper, we will present methods for answering
approximate spherical emptiness queries, and results for approximate nearest neighbor queries will follow
as corollaries.

Prior results. Approximate nearest neighbor queries in spaces of fixed dimension have been widely
studied. Data structures with O(n) storage space and query times no better than O(logn+1/¢¢~1) have

been proposed by several authors [8, 8, [0, [d]. In subsequent papers, it was shown that query times could
be reduced, at the expense of greater space [0, I3, T4, 23]. Although different tradeoffs were achieved,
in all cases the products of the e terms in the storage and query times are roughly O(1/e%71). These
space-time tradeoffs were improved in [2, B, G]. It was shown that O( logn+1/ 5(12;1) query time could be
achieved with essentially O(n) storage, and generally it is possible to achieve space-time tradeoffs where
the product of the € terms in the storage and the square of the query time is roughly O(1/e9~1).

Early results on approximate range searching for general semigroups provided query times of O(log n+
1/e?=1) with O(n) space [[@]. Space-time tradeoffs for idempotent spherical range searching were presented
in [B]. It was shown there that, given a tradeoff parameter v € [1,1/¢], queries can be answered in time
O(logn + (log é)/(ay)d%l) with O(nvy?/e) storage. The tradeoff was later extended to handle spherical
range queries for arbitrary semigroups in O(log(ny) 4+ 1/(e7)%"!) time with O(nvy%log 1) storage [A]. An
approach for arbitrary semigroups that is more similar in spirit to ours is presented in [1], but it is limited
to query times in Q(logn +1/ 5%), and it does not benefit from the assumptions of idempotence or
emptiness.

The best space-time tradeoffs for answering approximate nearest neighbor queries are based on Ap-
proxzimate Voronoi Diagrams (or AVDs) [G, I9]. While answering an approximate nearest neighbor query
with an AVD consists of a simple point location in a quadtree, building and analyzing the AVDs require
relatively sophisticated machinery, including WSPDs, sampling, BBD-trees, separation properties, bisec-
tor sensitivity, and spatial amortization. To extend AVDs to handle spherical range queries, several new
tools were introduced [@, B]. The cells of the AVD are divided into three different types, with different
query-answering mechanisms and analyses for each.



Our results. We present a new and unified approach to proximity searching. We place all the afore-
mentioned proximity queries within a unified framework, providing a clear picture of how to exploit the
peculiarities of each problem. We do so without using most of the AVD machinery, thus obtaining data
structures that are easy both to implement and analyze. Even so, our complexities essentially match
the most efficient data structures known and often offer small improvements. As applications of our
approach, we provide simple and practical data structures that match the best previous tradeoffs up to
logarithmic factors, as well as advanced data structures that improve over the best previous results for
all aforementioned proximity problems.

Our approach is based on a well-known data structure, the compressed quadtree (described in Sec-
tion ). To perform a search involving a query ball b, the search algorithm begins by computing a
constant number of cells in the compressed quadtree that cover b. Each cell locally answers the query
for the portion of the ball that lies within the cell. To achieve low storage, we divide the cells into two

types:

(i) Cells enclosing a large number of points store a data structure whose storage is not dependent on
that number. We call this data structure an insensitive module. The insensitive module is generally
a table where a query is answered by performing a single lookup.

(ii) Cells with a small number of points store a data structure whose storage benefits from the low
number of points. We call this data structure an adaptive module. The adaptive module can either
be as simple as a list of points where queries are answered by brute force or as complex as the most
efficient data structures known for exact range searching.

Since our framework is modular, we can plug the appropriate building blocks to obtain different
data structures. By plugging simple and practical data structures, we obtain bounds that match the
best known bounds up to logarithmic factors. Alternatively, we can plug advanced exact data struc-
tures in order to obtain small improvements to the most efficient data structures known for all afore-
mentioned proximity problems. For example, with 6(71) storage, we can perform approximate nearest
neighbor queries in O(1 /5%) time using only simple data structures, matching the best bound previ-
ously known [B], or 5(1 /5%+ﬁ) time by using exact data structures for halfspace emptiness queries
from [22]. (Throughout, O(z) stand for O(z polylog(n,1/¢)).) As another example, we can answer
idempotent spherical range queries in polylogarithmic time with O(n/e4t1)
data structures, thus matching the best bound previously known [H], or with O(n/e?) storage using
exact data structures for halfspace range searching from [Z1]. Also, using only simple data structures,

storage using only simple

we can answer general spherical queries in 5(1 /5%) time with 5(n/5%) storage, thus offering an
improvement by a factor of O(1/4/2) over the best previous bounds [, &].

Next, we highlight the most efficient tradeoffs obtained using our approach. The tradeoffs are de-
scribed as a function of the tradeoff parameter v € [1,1/¢]. Although the improvements are not dramatic,
they are significant because they show that our method, while being both simpler and more unified, also
offers new insights into the computational complexities of these problems.

e For general spherical range searching with query time 5(1 /(e7)471), we improve the best previous
storage [, d] from O(n’y ) to O(ny?~(1+e+?)). This improves the storage by a factor of O(v/(1+
£7?)) for the same query time.

e For idempotent spherical range searching with query time 5(1 / (57)%), we improve the best
previous storage [6] from O(ny?/e) to O(ny?~2/\/). This improves the storage by a factor of
O(y/7/¢) for the same query time.

d—1

e For nearest neighbor searching, the best previous result [2, B, B] has query time (1/ ey) z )

d=1) We improve this result to query time 5(1/(57)¥+ ) with storage
O(ny?2), for even d > 4. For odd d > 3, we obtain query time 0(1/ €y) 53 ) with stor-

age 6(n7d 2o ) .

with storage 6(n’y

The insensitive modules are of special interest because they work in the absolute error model [I6],
providing more efficient tradeoffs for approximate spherical range searching in this model. The insensitive



general module can be used to reduce the e-dependency in algorithms for approximating the smallest
k-enclosing disk [20] and the unit disk enclosing the most points [I77].

In Section B we introduce our general approach, starting with a simple concrete example. In Section B
we describe the modules and the corresponding data structures for different query types.

2 Framework

In this section, we present our new approach as a general framework and show how to analyze its com-
plexity. First, we review preliminary results on compressed quadtrees. Second, as concrete illustration,
we present a simple data structure for approximate spherical emptiness. Finally, we generalize this data
structure to an abstract framework for approximate proximity searching.

2.1 Quadtrees

A quadtree is a hierarchical decomposition of the data points induced by a hierarchical partition of the
space into d-dimensional hypercubes. The root of the quadtree corresponds to the whole set of data
points. An internal node has 2¢ children corresponding to the sets of points in the disjoint subdivisions
of the parent hypercube. A leaf is a node which contains a single data point. A quadtree bozx is defined
recursively as the original bounding hypercube or the hypercubes obtained by evenly dividing a quadtree
box.

A compressed quadtree, is obtained by replacing all maximal chains of nodes that have a single non-
empty child by a single node associated with the coordinates of the smallest quadtree box containing
the data points. The size of a compressed quadtree is O(n) and there are many different ways to build
a compressed quadtree with n points in O(nlogn) time [8, IF, I8]. Even though the height of the tree
can be as much as ©(n), we can efficiently search a compressed quadtree by using an auxiliary structure
which can be a simple hierarchy of separators [[8], a skip-quadtree [T5], or a BBD-tree [§]. An important
type of query that these auxiliary structures answer in O(logn) time is called a cell query [IR]. Let T
be a compressed quadtree for the set of points P. Given a query quadtree box Q, a cell query consists
of finding the unique cell Q' in T such that PN Q = PN Q' if it exists. The quadtree box Q' exists if
PNQ # 0 and Q' is unique because T is compressed.

Let v be a vertex in a compressed quadtree associated with a quadtree box [, of diameter §,.
Consider a grid with cells of diameter €4, subdividing [J,,. Let ¢, denote the number of non-empty grid
cells (that is, those containing a point of P). Since there are O(n) nodes in T and ¢, < ()% by a packing
argument, it follows that »_ . c, = O(n(%)d). The following technical lemma, which will be useful in
analyzing the storage requirements of our data structures, shows that the sum is significantly smaller.

Lemma 2.1. For any compressed quadtree T with n points,

1
ZCU :O<nlog€>.

veT
Consequently, the number of nodes v with ¢, > o is O(n(log1/e) /).

Proof. The proof proceeds by a charging argument, where each of the O(n) quadtree nodes receives up
to O(log %) charges from the ancestors of the node. Assume without loss of generality that  is a power of
1/2 and consider an internal node v. Let S; be the set of quadtree nodes corresponding, by cell queries,
to the non-empty grid cells of diameter &4, subdividing [J,. A node in S; may have arbitrarily small
diameter because of compression, but the parent of a node in S; has diameter at least 6,,. Let Sy be the
set of parents of the nodes in S;. We have |Sa| > |S1]/2¢ = ¢,/2¢. Node v assigns ¢, /|S2| = O(1) charges
to each cell in Ss, so the sum of charges over all nodes is equal to ), ¢,. Since a node v only receives
charges from ancestors of diameter at most d, /¢, each node receives at most O(log %) charges. O

2.2 A Simple Data Structure for Approximate Spherical Emptiness

To illustrate our new approach, we demonstrate how to use it to answer approximate spherical emptiness
queries. Given a query ball b of radius r and ¢ > 0, the algorithm must return “yes” if the expanded ball
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Figure 1: Spherical emptiness cells: (a) for the case ¢, < 1/e(=1/2 and (b) for the case ¢, > 1/e4=1/2,

Part (c) illustrates the correctness proof when ¢, > 1/g(d=1/2,

of radius r(1 4 €) is empty and “no” if the contracted ball of radius r/(1 + ¢) is nonempty. The basis
of our data structure is a compressed quadtree, together with any data structure that can answer cell
queries in time O(logn). Each leaf node in the compressed quadtree simply stores the single point (if
any) contained in it. Each internal node v will store a set S, of O(min(c,, 1/e(4~1/2)) points. We shall
see that the approximate emptiness of a ball b of radius r > 24, with respect to the points of P N[,
can be reduced to a simple brute-force test of whether S, Nb = (. We consider two cases, depending on
the size of ¢,.

If ¢, < 1/e@=D/2 consider a grid with cells of diameter €6, subdividing [J,,, and set S, to be the set
of at most ¢, center points of the nonempty grid cells (see Figure M(a)). Since the set S, is obtained by
moving the points in O, by at most €§, and the query ball has radius r > 26,, testing the approximate
emptiness of b with respect to P N[, reduces to testing whether S, N b is empty.

On the other hand, if ¢, > 1/e(4=1/2 we use a coreset construction like the one in [2]. Consider
ball of radius 4, centered at [J,’s center, and let A be a B-dense set of points on the boundary of this
ball, for 3 = §,+/2/2. (That is, given any point a’ on the boundary of the ball, there is a point a € A
such that ||aa’|| < 6,+/2/2.) By a simple packing argument, we may assume that |A] = O(1/(d=1)/2),
For each a € A, we compute its nearest neighbor among P N[J,. Let S, be the resulting set of nearest
neighbors (see Figure D(b)). Next, we show that this set is sufficient to approximately answer the query.

Since the case when the query ball completely contains [, is trivial, we may assume that the center
of the query ball (of radius r > 24,) is at distance at least §, from any point in O,. For a given query
point ¢ and its nearest neighbor ¢’, there exists a € A such that ||ga|| +||aq’|] < |l¢¢’||(1+¢€). This follows
by a simple application of the Pythagorean Theorem on the pair of right triangles defined by the obtuse
triangle Agaq’ (see Figure M(c)). Letting g, denote the nearest neighbor of @ among the points inside
0o, it follows that [|qqal| < llgall + llagal < [lqall + [lag|| < (1 + &)llaq'|]-

To answer a query for a ball b of radius r, we start by locating a set V of O(1) quadtree boxes
of diameter at most r/2 that disjointly cover b N P. This task can be performed in O(logn) time by
determining the intersection of b with a grid (of side length 9 [log2(r/ 2\/&)J) and then performing the
corresponding cell queries. As mentioned above, we answer the query by a simple brute-force test that,
for each v € V, S, Nb = . Since we consider only a constant number of cells, each storing O(1/e(4=1/2)
points, the total query time is O(logn + 1/e(4=1/2),

To analyze the storage, note that, by Lemma B the number of nodes with ¢, > 1/5(61*1)/2 is
O(nel@=1/21og 1). Since the storage for each node is O(1/e(¢=1/2)  the total storage for the nodes with
¢y > 1/eld=1/2 is O(nlog 1). The storage for each node with ¢, < 1/e(@=1/2 is O(¢,). By Lemma 71,
the sum of ¢, for all nodes in the quadtree is O(n log %), hence the total storage is O(n log %)

This simple construction provides a very concise proof of Corollary 1.1 from [3], up to O(log %) factors.
Lemma 2.2. Given a set of n points in d-dimensional space, there exists a data structure of space
O(nlog é) that can answer approzimate spherical emptiness queries in time O(logn + 1/e@=1/2) " and

approximate nearest neighbor queries in time O(logn + (log é)/s(d_l)/z).



2.3 Abstract Framework

We now introduce our framework in an abstract setting. The basis of the data structure is a compressed
quadtree equipped with an auxiliary structure to answer cell queries. Each internal node v in the
compressed quadtree stores a data structure (called a module) that answers approximate spherical queries
for a ball of radius r > 26, with respect to the points that are inside ,. If v is a leaf node, then we
simply store the single point contained in [J,,.

Define a module to be a data structure that takes two inputs: a box [J and a set of points X contained
in this box. A module answers e-approximate spherical queries with respect to X for balls of radius 26,
where 0 is the size of 0. Let k = | X]|, and let s(k) denote the module’s storage bound. We distinguish
between two types of modules. A module is insensitive if its storage s(k) depends only on ¢, regardless
of the number of points in 0. For the remaining modules, called adaptive, f(k) = s(k)/k is assumed to
be a nondecreasing function of k. For a threshold parameter « to be specified, if ¢, > «, then node v
stores an insensitive module for the box UJ, and the set of points PN,. Otherwise, v stores an adaptive
module for the box [, and the set of center points of the grid cells defining c,.

To answer a query for a ball of radius r, we start by identifying a set V' of O(1) quadtree boxes
of diameter at most r/2 that disjointly cover the points in the query ball, in O(logn) time. Then, we
answer the query inside each of these cells and combine the results. For the sake of approximate nearest
neighbor queries, it is useful to observe that, if we are performing multiple queries with consecutive
spheres whose radii vary within a constant factor of each other, this O(logn) term is incurred only for
the first query.

Analysis. Let t denote the query time for the module with the largest query time used. Since we are
performing a constant number of queries among the quadtree cells after O(logn) time to perform cell
queries, our data structure has query time O(logn + t). We generally choose the modules in a manner
to make the query time equal to ¢ for all modules, unless this is not an option in the tradeoff.

Let S denote the storage for each node that uses the insensitive module. Note that this is the same
for all nodes, regardless of the number of points in the node. Since the insensitive module is used only
for nodes v with ¢, > «, by Lemma I, the total storage for the insensitive-module nodes is

0] (nslog 1> .
« €

Let s(c,) denote the storage for the adaptive module with query time ¢ storing the ¢, points in
O,. Recall that ¢, < « for all nodes v where the adaptive module is used. Since f(c,) = s(¢,)/cy
is monotonically increasing in ¢, for an adaptive module, we have s(c,)/c, < s(a)/a. Thus, the total
storage for all the adaptive module nodes is

3 s<cv>:§js<0v>.cv<S@Z%:o(mg%gi)

veT veT v veT
cy<a

The following theorem summarizes the complexity of data structures built with our framework.

Theorem 2.3. For any threshold parameter o, given an insensitive module with query time t and storage
S, and an adaptive module with query time t and storage s(a) for a points, we can build a spherical
range searching data structure (for a semigroup compatible with the modules) with O(logn + t) query

time and storage
1
0 <n<5+8@~>> log ) ,
e €

A generator G is a region of the space whose sum Zpe pnc wW(p) is precomputed in the data structure.
Most insensitive modules (in this paper, all except the ones for the emptiness version) have generators
defined irrespective of the point set. The preprocessing for such an insensitive module in a given node
v can be performed by simple brute force, examining each out of the ¢, points in v for each of the S
generators. The preprocessing time for v is then O(¢,S). Summing for all v we have a total preprocessing
for the insensitive module of

Zv: O(c,S) = S;O(cv) =0 (nS log i) .



It is often possible to reduce the preprocessing time by using techniques that are specific to each
module, generally computing the weight of a generator in a bottom-up fashion by answering special
queries using the data structures for the children of v, as done in [, 06].

The preprocessing for an adaptive module can be performed from scratch for each quadtree node. The
adaptive modules described in this paper fall into two categories. The first category contains modules
defined by lists of points and can easily be preprocessed in a linear time. The second category contains
modules that use exact range searching data structures. These modules can be preprocessed in near-
linear time using the standard preprocessing for the corresponding data structure. Faster preprocessing
time may be possible by using specific properties of the module.

3 Modules

In this section, we consider the design of efficient modules to be used in our framework. Recall that a
module is a data structure for the following simple range searching problem: Preprocess a set of n points,
inside a box of diameter 9, in order to efficiently answer approximate spherical queries where the radius
of the query ball is at least 26. We remark that, when addressing the design of modules, n refers to the
number of points stored just in the module.

We consider three cases, general spherical range queries, idempotent queries and emptiness queries.
We present each of these cases in the next three sections.

3.1 General Spherical Range Queries

In the most general version, we cannot assume any properties about the commutative semigroup. The
modules designed for the general version can also be used for the idempotent or emptiness versions. The
simplest (and surprisingly useful) adaptive module has both O(n) storage and query time. We call this
a brute force module, and it consists of a list of the n points where queries are answered in O(n) time by
inspecting each point individually™.

A much more sophisticated adaptive module consists of reducing spherical range searching to halfspace
range searching by lifting the points onto a (d 4+ 1)-dimensional paraboloid and then using Matousek’s
exact range searching data structure [21]. Storage is m € [n, n%*1/log®™! n], preprocessing is O(n'*# +
mlog® n) for arbitrarily small 3, and query time is O(n/m!/(@+1)). We call this an ezact general module.
Next, we describe an insensitive module.

Let x1,...,x4 denote the orthogonal axes. We call the x4 axis vertical, the hyperplane determined
by the remaining axes horizontal, and use standard terms such as top with respect to these directions.
Without loss of generality, we assume that the box of diameter § intersects only a portion of the query
ball boundary that has normal vectors within an angle at most 7/4 of the vertical axis. Separate data
structures can be defined for a constant number of rotated sets of points.

Consider a d — 1 dimensional grid subdividing the horizontal hyperplane into cells of diameter p < 9,
for a parameter p to be defined later. Each of these cells induces a prism inside the bounding hypercube
in the vertical direction, which we call a column. The column has height O(J) and size O(p) in the
horizontal directions. Next, we define a data structure to answer approximate spherical range queries,
in time O(1), corresponding to the portion of the query ball that is contained in a column. The number
of columns in the box, which we will denote by C, is O((§/p)¢1).

For simplicity, we scale down the space by p, making the horizontal diameter of the column equal
to 1 and the height &' = ©(5/p). We describe a data structure with absolute approximation error ¢,
irrespective of the radius of the query ball (as in the absolute error model [I6]).

Let B be a ball of radius r > 2 centered on the vertical axis and tangent to the horizontal hyperplane
xq = 0. We define f(r) = r — v/r?2 — 1 as the length of a vertical segment connecting B to a point at
distance 1 from the origin in the horizontal hyperplane x4, = 0. Consider two balls of radius r and r’
that are tangent to each other at a point within the column. If | f(r') — f(r)| < ¢, then it is easy to see
that these balls approximate each other inside the column, in the sense that any point on intersection of
the column with the boundary of one ball is within (vertical) distance of ¢ of a point on the boundary
of the other ball. Let R be the set of radii < 1/¢ such that f(r) is a multiple of ¢.

1In the AVD context, this module corresponds to a list of representatives.



Next, we analyze |R|. It is easy to show that f(r) < 1/r (by setting r = secz with 0 < z < 7/2,
and applying standard trigonometric identities). Since r > 2¢’, we have f(r) < 1/4§’, and therefore
IRl = O(1 +1/(5'6)).

Let G be a set of balls of radius 7/, for each ' € R, centers with vertical coordinates in increments
of ¢, and centers with horizontal coordinates defined by the vertices of a horizontal grid with cells of
diameter ¢r’. Consider that G only has balls such that the normal vectors inside the column are within
an angle at most /4 of the vertical axis, since other balls can be handled using a suitable rotation. We
always have a ball g € G whose boundary is within vertical distance ¢ of a tangent ball to the query ball
inside the column. The set of balls G define a data structure with O(1) query time for query balls of
radius r > 26’ inside a column of horizontal diameter 1. For each radius r’, the set G has H = O(1/¢%"1)
horizontal coordinates and, since we only store balls that have normal vectors within an angle at most
/4 of the vertical axis, G has V = O(¢’'/¢) vertical coordinates,

1Y &
G| = |RIHV = O (<1+ W) ¢d> .

To change the scale back to columus of diameter p with error £§, we set &’ = 6/p and ¢ = €d/p, from

which we have
2 pi—1
'G':O((”asa> 5>

To obtain the data structure for the whole bounding box, we build a set of balls for each column,
cropping the balls to inside the corresponding columns. Let v € [1,1/¢] be a parameter to control the
space-time tradeoff. Setting p = de7y, and multiplying by the C'= O((§/p)?~!) columns we have storage

1
S=clG) =0 <(1+572) Ed) .

Next, we describe an adaptive module based on the previous idea. Instead of having V = O(1/e)
balls in C = O(1/(e7)%!) columns, we only consider balls that have a point on the boundary of the
ball. Therefore, if the box has n points, the total storage is n|R|H = O(n(1 + ey?)y¢~1). The query
time increases by an O(log é) factor because we need to perform a binary search for each column.

The following lemma summarizes the complexities of the modules for the general version.

Lemma 3.1. There are adaptive modules for general spherical range queries with:

(7) query time and storage t = s(n) = O(n) (brute force module),
(i1) query time t = O(n/m" @41 and storage m € [n,n*'/log® n] (exact general module), and
(iii) query timet = O((log 1)/(e7)?™1) and storage S = O(n(1+ev*)y*~1), fory € [1,1/e] (approzimate
general module).

There is an insensitive module for general spherical range queries with query time t = O(1/(e)4™1)
and storage S = O((1 + &v?) /), for v € [1,1/¢] (insensitive general module).

Applications. The modules from Lemma B can be used together with Theorem EZ3 to obtain the
following data structures for spherical range searching. If we use the insensitive general module and
the brute force module, setting o = 1/(e7)%~1, then we obtain query time O(logn + «) with storage
O(ny¥=1(1+ev?)(log L)/e). If we use only the approximate general module (by setting a = n), then we
have query time O(logn + (log 1)/(e7)4") with storage O(ny*~! (1 +&v%)log 1).

3.2 Idempotent Spherical Range Queries

To the best of our knowledge, no exact range searching data structure benefits from idempotence. There-
fore, we introduce no adaptive module for the idempotent version. It is not known how to exploit idem-
potence in exact range searching. Thus, we introduce no adaptive module for this case. The insensitive
module for the idempotent case is strongly based on the insensitive general module, albeit much more
efficient. In the idempotent version, the generators can overlap, therefore we do not need to crop the
balls inside each column as in the insensitive general module. A careful look at the insensitive module



shows that the same balls are used by essentially all columns. Therefore, the storage for a single column
is equal to the total storage. In the idempotent and emptiness versions, we set p = §,/€7 to obtain query
time O(1/(7)4=1/2), We have storage S = |G| = O((y/e)(@+1)/2).

Lemma 3.2. There is an insensitive module for idempotent spherical range queries with query time
t = 0(1/(e7)4V/2) and storage S = O((v/)4+D/2), for v € [1,1/¢] (insensitive idempotent module).

Applications. The insensitive idempotent module from Lemma B= can be used together with The-
orem 3 to obtain the following data structures for the idempotent version. If we use brute force as
the adaptive module and set o = 1/(7)@~1/2 then we obtain query time O(logn + «) with storage

O(ny?(log %)/5) If we use the exact general module and set o = 1/;3%'ydz;27 then we obtain query time
O(logn + 1/(57)(12;1) with storage O(n’yd_% (log %)/ﬁ)

3.3 Spherical Emptiness Queries

Halfspace emptiness is a well studied problem. Exact data structures for halfspace emptiness are much
more efficient than for general semigroups. By lifting the points onto a (d + 1)-dimensional paraboloid
and then using Matousek’s halfspace emptiness data structure [22] we obtain an adaptive module with
storage m € [n,n[%21] and query time O(n/m/[4/21). We call this an ezact emptiness module.

To obtain an insensitive module for the emptiness version, we simply modify the insensitive idempo-
tent module in order to store only the vertical coordinate of the center of the bottommost non-empty ball
for each horizontal coordinate of the center. Therefore, storage is reduced by a factor of O(1/¢). Storage
becomes O(y(¢+1/2 /2(@=1)/2) with the same O(1/(e7)(*1/2) query time. Note that this insensitive
module generalizes the one used in Section P22

We can improve upon this by adapting constructs from [6] (such as the Concentric Ball Lemma) and
using exact data structure for spherical emptiness. As a result, it is possible to obtain an insensitive
module whose storage is O(y(4t1/2/e(d=1)/2) and whose query time is O(1/(ev)(¢=3)/2+1/4) for even d
and O(1/(gv)(4=3)/2+2/(d+1)) for odd d. The technical details are omitted.

The following lemma summarizes the complexities of the modules for the emptiness version.

Lemma 3.3. There is an adaptive module for spherical emptiness with query time t = 6(n/m1”d/ﬂ)
and storage m € [n,nl%?1] (exact emptiness module).

There is an insensitive module for spherical emptiness with query time t = O(1/(ev)4=1/2) and
storage S = O(y(@+1)/2/d=0/2) " for ~ € [1,1/¢] (insensitive emptiness module). There is also an
insensitive module for the emptiness version with query time t = 5(1/(57)(d_3)/2+1/d for evend > 4 and
t = O(1/(e7)@=3/2+2/@HD)Y for odd d > 3 and storage S = O( (/2 /e(@=D/2) (advanced insensitive
emptiness module).

Applications. The modules from Lemma B3 can be used together with Theorem P=3 to obtain the
following data structures. If we use the brute force module, the insensitive emptiness module, and set
a = 1/(e7)4Y/2 we have query time O(logn 4+ a) with storage O(n~y? logé). If we use the exact
emptiness module and the e-kernel module, then we have O(n) storage and query time O(1/ 5%+5) for
even d and 6(1 / 5%*'%) for odd d. If we use the exact emptiness module and the advanced insensitive
emptiness module, then we obtain query time O(1/(e)(4=3)/2+1/d) with storage O(ny*~2) for even d > 4.
For odd d > 3, we obtain query time O(1/(ey)(@=3)/2+2/(d+1)) with storage O(ny¢—2+2/(4+1)) Note that
the sublinear storage should not be considered. The previous tradeoff was obtained setting the query
time to O(logn + 1/(6’}/)‘12;1), as usual in the literature, but a faster query time is possible with O(n)
storage.

We remind the reader that the tradeoffs for spherical emptiness can be used for approximate nearest
neighbor searching with an O(log %) overhead in the ¢ term of the query time.
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