
Approximate Polytope Membership Queries

Sunil Arya∗

Department of Computer Science and Engineering
The Hong Kong University of

Science and Technology
Clear Water Bay, Kowloon, Hong Kong

arya@cse.ust.hk

Guilherme D. da Fonseca†

Departamento de Informática Aplicada
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Abstract

We consider an approximate version of a fundamental geometric search problem, polytope
membership queries. Given a convex polytope P in Rd, presented as the intersection of
halfspaces, the objective is to preprocess P so that, given a query point q, it is possible to
determine efficiently whether q lies inside P subject to an error bound ε.

Previous solutions to this problem were based on straightforward applications of classic
polytope approximation techniques by Dudley (1974) and Bentley et al. (1982). The former
yields minimum storage, and the latter yields constant query time. A space-time tradeoff can
be obtained by interpolating between the two. We present the first significant improvements
to this tradeoff. For example, using the same storage as Dudley, we reduce the query time
from O(1/ε(d−1)/2) to O(1/ε(d−1)/4). Our approach is based on a very simple algorithm.
Both lower bounds and upper bounds on the performance of the algorithm are presented.

To establish the relevance of our results, we introduce a reduction from approximate
nearest neighbor searching to approximate polytope membership queries. We show that
our tradeoff provides significant improvements to the best known space-time tradeoffs for
approximate nearest neighbor searching. Furthermore, this is achieved with constructions
that are much simpler than existing methods.

1 Introduction

The field of computational geometry has witnessed the emergence of a number of results on
geometric approximations. This has included efficient algorithms and data structures for ap-
proximate retrieval problems, such as approximate nearest neighbor searching and approximate
range searching [3–5, 10, 14, 18, 21, 29]. It has also included algorithms for approximations
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of statistical properties of geometric objects, as exemplified by work on coresets and cluster-
ing [1, 8, 11, 20, 22, 26]. Both areas of study have revealed a number of deep relationships
between the accuracy of approximation, the combinatorial complexity of the approximating
structures, and (for retrieval problems) the tradeoffs between the space and query times.

Convex polytopes are central to computational and combinatorial geometry. In this paper,
we consider a fundamental search problem related to convex polytopes. Given a convex polytope
P in Rd, presented as the intersection of a set of halfspaces, the polytope membership problem
involves preprocessing P so that it is possible to determine efficiently whether a given query
point q lies within P . This problem is dually equivalent to answering halfspace emptiness
queries in Rd, and, as we shall see, our approximation algorithm for this problem will reveal
new insights into approximate nearest neighbor searching.

Polytope membership queries find applications in many geometric areas, such as linear
programming queries, ray shooting, nearest neighbor searching, and the computation of convex
hulls [9, 12, 23, 25, 28]. In dimension d ≤ 3, it is possible to build a data structure of linear size
that can answer such queries in logarithmic time [16]. In higher dimensions, however, all exact
data structures with roughly linear space take Õ(n1−1/bd/2c) query time [24], which, except in
small dimensions, is little better than brute-force search.

Throughout, we assume that P is a convex polytope lying within the hypercube [−1, 1]d,
which is represented as the intersection of the set of halfspaces that define its facets. Given
ε > 0, we say that P ′ is an ε-approximation to P if the Hausdorff distance between P and P ′ is
at most ε. (Typically, polytope approximation is defined relative to P ’s diameter, but by scaling
P to lie within [−1, 1]d, there is no loss of generality in this absolute formulation.) Dudley [17]
showed that, for any convex body in Rd, it is possible to construct an ε-approximating polytope
with O(1/ε(d−1)/2) facets. This bound is asymptotically tight in the worst case. Dudley’s
approximation has many applications in the construction of coresets [1].

Given a polytope P , a positive real ε, and a query point q, an ε-approximate polytope
membership query determines whether q lies inside or outside of P , but it may return either
answer if q’s distance from P ’s boundary is at most ε. Approximate polytope membership
queries arise in a number of applications, such as collision detection [19], training a support
vector machine [7], and approximate nearest neighbor searching [14].

1.1 Polytope Membership Queries

Dudley’s construction provides a näıve solution to the approximate polytope membership prob-
lem. Construct an ε-approximation P ′, and determine whether q lies within all its bounding
halfspaces. This approach takes O(1/ε(d−1)/2) query time and space. An alternative simple
solution was proposed by Bentley et al. [6]. Create a d-dimensional grid with cells of diameter ε
and, for every column along the xd-axis, store the two extreme xd values where the column in-
tersects P . This algorithm produces an approximation P ′ with O(1/εd−1) facets. Given a query
point q, it is easy to determine if q ∈ P ′ in constant time (assuming a model of computation
that supports the floor function), but the space required by the approach is O(1/εd−1).

These two extreme solutions raise the question of whether a tradeoff is possible between
space and query time. Before presenting our results, it is illustrative to consider a very simple
method for generating such a tradeoff. Given r ∈ [ε, 1], subdivide the bounding hypercube into
a regular grid of cells of diameter r and, for each cell that intersects the polytope’s boundary,
apply Dudley’s approximation to this portion of the polytope. By a straightforward packing
argument, the number of occupied cells is O(1/rd−1). Since each cell is of diameter O(r),
each can be approximated to absolute error ε using O((r/ε)(d−1)/2) facets per cell. Subject to
minor technical details, the result is a data structure of space O(1/(εr)(d−1)/2) and query time
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O((r/ε)(d−1)/2). This interpolates nicely between the two extremes for ε ≤ r ≤ 1.
Given the optimality of Dudley’s approximation, it may be tempting to think that the

above tradeoff is optimal, but we will demonstrate that it is possible to do better. (To see
why, observe that each piece of the polytope’s boundary carries only a portion of the polytope’s
total curvature. Clarkson has shown that, when curvature is constrained, Dudley’s bound is
not tight [15].) Our main result is that it is possible to achieve significantly better space-time
tradeoffs for approximate polytope membership. We show first that it is possible to build a data
structure with storage O(1/ε(d−1)/2) (the same as Dudley) that allows polytope membership
queries to be answered significantly faster, in O(1/ε(d−1)/4) time. In order to provide a tradeoff,
we show that, by iterating a suitable generalization of this construction, it is possible to produce
a succession of structures of increasingly better search times. The tradeoff is expressed (both
in discrete and continuous forms) in the following theorem.

Theorem 1.1 Given a polytope P in [−1, 1]d and ε > 0:

(i) Given an integer constant k≥1, it is possible to answer ε-approximate polytope member-
ship queries in time t = 1/ε(d−1)/2k ≥ 1 from a data structure of space

O

(
1/ε

(d−1)
“

1− k

2k

”

)
.

(ii) Given a real constant α ≥ 2, it is possible to answer ε-approximate polytope membership
queries in time t = 1/ε(d−1)/α ≥ 1 from a data structure of space

O

(
1/ε

(d−1)
“

1− 1

2blog2 αc−
blog2 αc−1

α

”)
.

By way of contrast, observe that, if we express the tradeoff resulting from the above grid-
based construction in this form, the space bound is O(1/ε(d−1)(1−1/2k)) for the same query time.
These space-time tradeoffs are presented visually in Figure 1(a). (The lower bound shown in
the figure will be discussed later.)
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Figure 1: The multiplicative factor in the exponent of the 1/ε term for (a) polytope membership
queries and (b) approximate nearest neighbor (ANN) queries. The O(1) term in the exponent
corresponds to a constant that does not depend on d.
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The data structure and its construction are both extremely simple. The data structure
consists of a quadtree of height O(log(1/ε)), where each leaf cell stores a set of halfspaces
whose intersection approximates the polytope’s boundary within this cell. A query is answered
by performing a point location in the quadtree followed by a brute force inspection of the
halfspaces in the node. The data structure is constructed by the following recursive algorithm,
called SplitReduce. It is given the polytope P , the approximation parameter ε, and the desired
query time t. The initial quadtree box is Q = [−1, 1]d.

SplitReduce(Q):

1. Let P ′ be an ε-approximation of Q ∩ P .
2. If the number of facets |P ′| ≤ t, then Q stores the hyperplanes bounding P ′.
3. Otherwise, split Q into 2d quadtree boxes and invoke SplitReduce on each such box.

Although the algorithm itself is deceptively simple, the analysis of the storage as a function
of the query time t is nontrivial. The algorithm is correct provided that, in the first step,
the polytope P ′ is any ε-approximation, but the storage efficiency depends on the assumption
that the number of facets of P ′ is approximately minimal. (This will be made precise in
Section 2.) In addition to proving upper bounds on the space complexity of the above algorithm,
we will establish a lower bound by demonstrating that, for α ≥ 2 and for query time t =
1/ε(d−1)/α, there exists a polytope for which this algorithm produces a data structure of space
Ω
(
1/ε(d−1)(1−2

√
2/α+3/α)−1

)
(see Figure 1(a) and Theorem 3.1).

1.2 Approximate Nearest Neighbor Queries

As further evidence of the value of this new perspective, we present a useful consequence for
approximate nearest neighbor searching. In the approximate nearest neighbor (ANN) problem
we are given a set S of n points in d-dimensional space, and we are to preprocess S in order
to answer the following queries efficiently. Given a point q, find a point p ∈ S whose Euclidean
distance does not exceed 1+ε times the distance from q to its nearest neighbor. Data structures
for ANN searching have been proposed by several authors [10, 14, 18, 21, 29].

The best space-time tradeoffs [4] for approximate nearest neighbor searching have query
time roughly O(1/εd/α) with storage roughly O(n/εd(1−2/α)), for α ≥ 2. To better understand
the tradeoff, note that the product of the ε terms in the storage and the square of the query
time is O(1/εd). These results are based on a data structure called an approximate Voronoi
diagram (AVD). Assuming an AVD-based approach, lower bounds were also proved in [4]. The
upper and lower bounds nearly match in both extremes: linear storage and logarithmic query
time. By violating the AVD model, small improvements were obtained in [3]. Still, all previous
data structures with query time Õ(1/ε(d−O(1))/α) have storage Ω(n/ε(d−O(1))(1−2/α)), where the
O(1) term in the exponent does not depend on d.

Given the maturity of this problem, one might expect that a significant increase in the 2/α
term in the exponent would involve fairly complex methods. We show that this is not the
case by showing that better better tradeoffs can be achieved for approximate nearest neighbor
searching through a simple reduction to the approximate polytope membership problem.

For example, the existing AVD-based tradeoff provides a query time of roughly O(1/εd/4)
with space O(n/εd/2). By applying our polytope membership data structure, we can reduce
the space bound to roughly O(n/εd/4) for the same query time. More generally, our reduction
implies the following improved space-time tradeoffs for ANN queries (expressed both in discrete
and continuous forms).

Theorem 1.2 Given a set of n points in Rd and ε > 0:
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(i) Let k ≥ 1 be an integer constant. There is a data structure for approximate nearest
neighbor searching with query time O(log n + (log(1/ε))/εd/2k

) and storage

O

(
n/ε

d
“

1− k+1

2k

”

)
.

(ii) Let α ≥ 2 be a constant. There is a data structure for approximate nearest neighbor
searching with query time O(log n + (log(1/ε))/εd/α) and storage

O

(
n/ε

d
“

1− 1

2blog2 αc−
blog2 αc

α

”)
.

These space-time tradeoffs together with known upper bounds and lower bounds [4] are
illustrated in Figure 1(b). Although the connection between the polytope membership problem
and ANN has been noted before by Clarkson [14], we are the first to provide a reduction that
holds for point sets with unbounded aspect ratio.

The remainder of the paper is organized as follows. In Section 2, we present our analysis for
the SplitReduce algorithm. The lower bound analysis is presented in Section 3. The application
to approximate nearest neighbor searching is discussed in Section 4. Concluding remarks follow
in Section 5.

2 Upper Bound for Polytope Membership

In this section, we present upper bounds for the storage of the data structure obtained by the
SplitReduce algorithm for a given query time t. We start by discussing the first step of the
algorithm.

Step 1 consists of obtaining a polytope P ′ that ε-approximates Q∩P . Some polytopes can be
approximated with far fewer than the Θ(1/ε(d−1)/2) facets generated by Dudley’s construction.
For example, a simplex can be represented exactly with d+1 facets. The problem of generating
a minimum-facet ε-approximation to a polytope can be reduced to a set cover problem [27].
By applying the well known greedy set-cover heuristic, it is possible to produce such an ap-
proximation in which the number of facets exceeds the optimum by a factor of O(log(1/ε)).
In particular, the set cover instance consists of one set for each facet f of the polytope, and
the corresponding set contains all facets that are approximated by f ’s supporting hyperplane.
Clarkson [13] presented a somewhat more complicated algorithm that does better. He showed
that if c is the smallest number of facets required to approximate P , then it is possible to obtain
an approximation with O(c log c) facets in O(nc2 log n log c) randomized time, where n is the
number of facets of P .

For simplicity, we assume that the algorithm used in Step 1 produces an approximation to
Q∩P with a minimum number of facets. In the full version it will be shown that an application
of Dudley’s algorithm to an appropriate subset of P suffices for our purposes. An alternative is
to apply Chan’s coreset construction [11] to P and then run Clarkson’s approximation algorithm
on the result. This yields a preprocessing time of Õ(n + 1/ε3(d−1)/2) but increases the query
time by a negligible factor of O(log(1/ε)).

For completeness, let us now describe Dudley’s algorithm. Given a bounded polytope P , let
the size of P , denoted σP , be the side length of the smallest axis aligned box Q that contains P .
Through an appropriate translation we may assume that the center of Q is the origin. Dudley’s
algorithm obtains an approximation P ′ as follows. Let B be a ball of radius σP

√
d centered

at the origin. (Note that P ⊂ B.) Place a set W of Θ((σP /ε)(d−1)/2) points on the surface of

5



B such that every point on the surface of B is within distance O(
√

εσP ) of some point in W .
For each point w ∈ W , let w′ be its nearest point on the boundary of P . We call these points
samples. For each sample point w′, take the supporting halfspace passing through w′ that is
orthogonal to the vector from w′ to w. P ′ is the intersection of these halfspaces.

A key element in the analysis of Dudley’s construction is that, for each point p on the bound-
ary of P , there is a sample point w′ in the above construction (subject to a suitable adjustment
of the constant factors) whose distance from p is at most

√
εσP , and the distance from p to the

supporting hyperplane at w′ is at most ε. In summary, we may view Dudley’s approximation
as producing a set of Θ((σP /ε)(d−1)/2) halfspaces, where each halfspace is responsible for ap-
proximating a region of P ’s boundary of diameter at most

√
εσP . We exploit the limited range

of each Dudley halfspace in the following lemma.

Lemma 2.1 Given a polytope P and ε > 0, Dudley’s method produces a collection of O((σP /ε)(d−1)/2)
halfspaces whose intersection ε-approximates P . Furthermore, given a square grid of side length
O(

√
εσP ), we may associate each halfspace with O(1) grid cells, such that this halfspace is used

for approximating the boundary of P within only these cells.

Recall that our algorithm takes four inputs: polytope P , box Q, query time t, and ap-
proximation error ε. For simplicity, we refer to the algorithm as SplitReduce(Q), since the
parameters P , t, ε remain unchanged throughout the recursive calls. The output of our algo-
rithm is a quadtree whose leaf cells induce a subdivision of Q. Each leaf cell L stores a set of
tL ≤ t halfspaces whose intersection approximates P ∩ L, where tL is the minimum number of
halfspaces required to approximate P ∩ L. The storage of this quadtree is defined as the total
number of stored halfspaces over all the leaf cells. Before establishing the space-time tradeoff,
we show that the algorithm produces a data structure with query time t = Θ(1/ε(d−1)/4) and
the same storage as Dudley’s algorithm, O(1/ε(d−1)/2).

Lemma 2.2 The output of SplitReduce(Q) for

t ≥
(σQ

ε

)(d−1)/4
≥ 1

is a quadtree with storage O((σQ/ε)(d−1)/2).

Proof : Let T denote the quadtree produced by the algorithm. For each leaf cell L of T , let
tL be the number of halfspaces stored in L. We will show that

∑
L tL ≤ (σQ/ε)(d−1)/2, which

establishes the desired storage bound.
Towards this end, we first prove a lower bound on the size of any leaf cell L. We assert that

there exists a constant c1 such that every leaf cell L has size σL ≥
√

εσQ/c1. The assertion
follows from Lemma 2.1. In particular, the standard Dudley technique applied to a cell of size√

εσQ/c1 produces at most cD(σQ/c1ε)(d−1)/4 halfspaces, where cD is the constant arising from
Dudley’s method. By choosing c1 to be a sufficiently large constant, the number of halfspaces is
at most t, and the termination condition of our algorithm implies that such a cell is not further
subdivided.

Let PD be the polytope obtained by applying Dudley’s algorithm to P ∩ Q. Combining
our assertion with Lemma 2.1 (where P ∩ Q plays the role of P in the lemma), each bounding
halfspace of PD is used in approximating O(1) leaf cells. We assign each halfspace of PD to
these leaf cells. The correctness of Dudley’s algorithm implies that the halfspaces assigned to
any cell L provides an approximation of P ∩L. Thus, tL is no more than the number of Dudley
halfspaces assigned to L. Since the number of halfspaces of PD is O((σQ/ε)(d−1)/2), it follows
that

∑
L tL = O((σQ/ε)(d−1)/2), which completes the proof. ut

6



We now use the previous lemma as a base case in order to extend the space-time tradeoff
to other query times.

Theorem 2.3 Let α ≥ 2 be a constant. The output of SplitReduce(Q) for t = (σQ/ε)(d−1)/α ≥ 1
is a quadtree with storage

O

((σQ

ε

)(d−1)
“

1− 1

2blog2 αc−
blog2 αc−1

α

”

)
.

Proof : Let k = blog2 αc. Our proof proceeds by induction on a constant number of steps k.
The base case case k = 1 corresponds to Lemma 2.2. Next, assume that the theorem holds for
1, . . . , k − 1, that is, for α < 2k. We need to prove that the theorem holds for 2k ≤ α < 2k+1.

Let T denote the quadtree produced by the algorithm with 2k ≤ α < 2k+1. Let T ′ denote the
subtree induced by cells of size at least √εσQ/2. Arguing exactly as in the proof of Lemma 2.2,
the sum

∑
L tL over all leaf cells of T ′ is O((σQ/ε)(d−1)/2). The leaf cells of T ′ that have

tL ≤ t are not refined by the algorithm and their total storage clearly satisfies the bounds of
the theorem.

We now consider the subset L of leaf cells of T ′ such that for L ∈ L we have tL > t. By
Markov’s inequality, |L| = O((σQ/ε)(d−1)/2)/t = O((σQ/ε)(d−1)( 1

2
− 1

α)). Also, the size of the
cells in L is between √

εσQ/2 and √
εσQ, since larger cells would have been subdivided.

Recall that the induction hypothesis states that the theorem holds for α < 2k. Since the size
of the cells L in L is σL ≤ √

εσQ, we have t = (σL/ε)(d−1)/α′
, where α′ ≤ α/2 for sufficiently

small ε ≤ σQ/4 (if ε > σQ/4, then the theorem holds trivially). Therefore, we can use the
induction hypothesis to obtain the following storage for each cell L ∈ L:

O

((σL

ε

)(d−1)
“

1− 1

2k−1 −
k−2
α′

”

)

= O

((σQ

ε

)(d−1)
“

1
2
− 1

2k − k−2
α

”

)
.

We then multiply by |L| = O((σQ/ε)(d−1)( 1
2
− 1

α)) completing the induction with total storage

O

((σQ

ε

)(d−1)
“

1− 1

2k − k−1
α

”

)
.

ut

Note that the height of the quadtree obtained by SplitReduce is O(log(1/ε)), since cells of
size ε are not subdivided. Therefore, it is straightforward to locate the quadtree cell containing
the query point in O(log(1/ε)) time. Theorem 1.1 follows as a straightforward consequence.

3 Lower Bound for Polytope Membership

In this section, we present lower bounds on the space-time tradeoffs obtained by our algorithm
for polytope membership. Our main result is the following.

Theorem 3.1 Let α ≥ 2 be a constant. There exists a polytope P such that the output of
SplitReduce([−1, 1]d) for t = 1/ε(d−1)/α ≥ 1 is a quadtree with storage

Ω
(

1/ε
(d−1)

“

1−2
q

2
α

+ 3
α

”

−1
)

.
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Our approach is similar to the lower bound proof of [4]. It is based on constructing a
hypercylinder that takes dimension k, 1 ≤ k ≤ d− 2 as a parameter, and bounding the storage
requirements of our data structure for it. We carry out this analysis in Lemma 3.3. Later, we
will determine the value of k that yields the best lower bound on the storage as a function of
t, ε, and d. The following preliminary lemma will be useful in Lemma 3.3.

Lemma 3.2 In any dimension d ≥ 2, there exists a polytope P0 of diameter at most ∆ such
that any polytope P ′

0 that approximates P0 requires Ω
(
(∆/ε)

d−1
2

)
facets.

Proof : Consider a d-dimensional ball B of radius ∆/2. We first show that any polytope PB

that approximates B to within error 2ε must have at least Ω((∆/ε)(d−1)/2) facets. To see this,
consider a hyperplane H passing through any facet of PB. Translate H so it passes through a
point x on the boundary of B. Clearly, x must be within distance 2ε of H. Applying Pythagoras’
theorem, it follows that all points within distance 2ε of H are contained in a spherical cap that
is centered at x and has angular radius O(

√
ε/∆). By a simple packing argument, it follows

that PB must have Ω((∆/ε)(d−1)/2) facets.
Next, consider any polytope P0 that approximates B to within error ε. It follows from the

triangle inequality property of Hausdorff distances that any polytope that approximates P0 to
within error ε approximates B to within error 2ε, and hence requires Ω((∆/ε)(d−1)/2) facets.

ut

Lemma 3.3 Let k and t be integers, where 1 ≤ k ≤ d−2, 1 ≤ t ≤ 1/ε(d−1)/2, and let 0 < ε ≤ 1.
There exists a polytope P such that the output of SplitReduce([−1, 1]d) for P is a quadtree with

storage Ω
(

t
(

1
εt2/(d−k−1)

)k
)

.

Proof : By Lemma 3.2, there exists a d-dimensional polytope of unit diameter that requires
at least Ω(1/ε(d−1)/2) = Ω(t) facets. It follows that Ω(t) is a lower bound on the space of the
quadtree generated by our algorithm for this polytope.

We next tackle the more interesting case when the lower bound given by the lemma is better
than Ω(t). Consider an infinite polyhedral hypercylinder C whose “axis” is a k-dimensional lin-
ear subspace K defined by k of the coordinate axes, and whose “cross-section” (i.e., intersection
with any (d−k)-dimensional hyperplane orthogonal to K) is the polytope P0 given in Lemma 3.2
for dimension d − k. It follows from Lemma 3.2 that we can choose ∆ = O(εt2/(d−k−1)) such
that any polytope P ′

0 that approximates P0 requires at least (2d + 1)t facets. Define polytope
P to be the truncated cylinder obtained by intersecting C with the hypercube [−1, 1]d.

We may assume that ∆ ≤ 1 since otherwise the bound given by the lemma is no better than
Ω(t). We will show that the output of our algorithm for input P is a quadtree with storage as
given in the lemma.

Consider a set X of points that are at least ∆ apart placed on the intersection of [−1, 1]d with
the k-dimensional axis of the hypercylinder C. By a simple packing argument, we can ensure
that the number of points in X is at least Ω(1/∆k). Let P X

0 denote the set of cross-sections of
C passing through the points of X. Consider the set of leaf cells of the quadtree that overlap
any cross-section P0 ∈ P X

0 . Recall from our construction that these cells must together contain
at least (2d + 1)t facets. We say that a leaf cell is large if its size is at least ∆ and small if its
size is less than ∆. By a simple packing argument, the number of large leaf cells intersecting
P0 is at most 2d. Since each leaf cell contains at most t facets, the large leaf cells can together
contain at most 2dt facets. It follows that at least t facets are contained in the small leaf cells
intersecting P0. Noting that small leaf cells cannot intersect two cross-sections of P X

0 , since they
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are at least ∆ apart, it follows that the total space used by all the small leaf cells together is at
least Ω(t|X|) = Ω(t/∆k) = Ω(t(1/(εt2/(d−k−1)))k), which proves the lemma. ut

We next determine the value of k that yields the best lower bound in the above lemma, as a
function of t, ε, and d. To put the lower bound in a more convenient form, set t = 1/ετ , where
0 ≤ τ ≤ (d − 1)/2. Up to constant factors, we obtain a lower bound on the storage of(

1
ε

)k+τ( d−3k−1
d−k−1 )

.

To derive the best lower bound for fixed τ , we select k to maximize the exponent. Setting
the derivative to zero, we obtain k = (d − 1) −

√
2τ(d − 1). (Although this value of k is not

necessarily an integer, the resulting error is captured by the “ − 1” term in the exponent of
Theorem 3.1.) Substituting this value of k, the exponent in the lower bound is

(d − 1) − 2
√

2τ(d − 1) + 3τ.

Finally, setting τ = (d− 1)/α, where α ≥ 2 is a constant, this simplifies to (d− 1)(1− 2
√

2/α+
3/α), which proves Theorem 3.1.

4 Approximate Nearest Neighbor Searching

In this section, we present a novel reduction from approximate nearest neighbor searching to
approximate polytope membership. Using our solution for the approximate polytope mem-
bership problem, we obtain significant improvements to the efficiency of approximate nearest
neighbor searching. In order to determine the actual approximate nearest neighbor, instead of
simply approximating its distance, we make the following assumption. When the query point
is reported as outside the polytope, the approximate polytope membership data structure also
returns a halfspace that defines a facet of the polytope and does not contain the query point.
It is easy to modify our data structure to obtain such a witness.

The reduction is based on the approximate Voronoi diagram (AVD) construction from [4].
The AVD construction uses a BBD tree where each leaf cell of the BBD tree stores a set of
representative points. In the AVD, a query is answered by locating the leaf cell that contains
the query point and then determining the nearest representative from the corresponding cell,
exactly or approximately. The cells of a BBD tree correspond to the set theoretic difference of
two quadtree boxes.

The following lemma is central to our reduction and follows easily from the proofs of Lemmas
6.1 and 8.1 in [4]. Given a cell Q in a BBD tree, let σQ denote the side length of Q and let
BQ be the ball of radius 2

√
dσQ whose center coincides with the center of Q’s outer box. The

lemma is illustrated in Figure 2.

Lemma 4.1 Let 0 < ε ≤ 1/2 be a real parameter and S be a set of n points in Rd. It is
possible to construct a BBD tree T with O(n log(1/ε)) nodes, where each leaf cell Q stores a
subset RQ ⊂ S satisfying the following properties:

(i) RQ is an ε-representative set for Q (that is, for any point q in Q, one of the points in RQ

is an approximate nearest neighbor of q).
(ii) At most one point of RQ is contained in the ball BQ, and the remaining points of RQ are

contained in the annulus cBQ \ BQ for some constant c.
(iii) The total number of representatives over all the leaf cells is O(n log(1/ε)).
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BQ

Figure 2: Illustration of Lemma 4.1.

Moreover, it is possible to compute the tree T and the sets RQ for all the leaf cells in total time
O(n log n log(1/ε)) and the cell that contains a query point can be located in O(log n+log log 1/ε)
time.

The following lemma explains how to connect Lemma 4.1 with approximate polytope mem-
bership queries.

Lemma 4.2 Let 0 < ε ≤ 1/2 be a real parameter and consider a quadtree box Q and a set of
points RQ as in Lemma 4.1. Given a data structure for approximate polytope membership in
(d+1)-dimensional space with query time td+1 and storage sd+1, it is possible to preprocess RQ

into an ANN data structure for Q with O(td+1 log(1/ε)) query time and O(sd+1) storage.

Proof : Since at most one point of RQ is contained in BQ, the corresponding point may be
inspected separately without increasing the complexity bounds. Therefore, we can safely assume
for simplicity that all points in RQ are contained in the annulus cBQ \ BQ for some constant
c > 1.

We make use of the following well known reduction from exact nearest neighbor searching
to vertical ray shooting [2]. First, translate and scale the space in a way that the center of Q
coincides with the origin and the side length of Q is 1. Let U denote the (d + 1)-dimensional
paraboloid xd+1 = x2

1 + . . . + x2
d and pU denote the vertical projection of a given d-dimensional

point p onto U . In order to answer nearest neighbor queries among the point set RQ, we map
each point p ∈ RQ into a hyperplane tangent to the paraboloid U at pU . The nearest neighbor
q′ of a query point q corresponds to the first hyperplane hit by the vertical ray emanating
downwards from the point qU . Call this intersection point q′U . Also, the squared distance ‖qq′‖2

(in the scaled space) is equal to the length of this vertical ray segment, ‖qUq′U‖.
Since RQ ⊂ cBQ \ BQ, we know that the distance between q and its nearest neighbor q′

is at least
√

d > 1. Consequently, a point q′ε ∈ RQ with ‖qq′ε‖ ≤ ‖qq′‖ + ε is an approximate
nearest neighbor of q and any hyperplane within vertical distance ε of q′U corresponds to a
valid approximate answer. In order to locate such a hyperplane, we perform a binary search
involving O(log(1/ε)) polytope membership queries, using the fact that ‖qq′‖ = Θ(1). Each
search is answered by invoking the approximate polytope membership data structure, where the
polytope is obtained using the hyperplanes tangent to the paraboloid and additional hyperplanes
to bound the polytope into a box of constant size containing all relevant queries. ut

Combining the previous two lemmas, we obtain the following theorem.
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Theorem 4.3 Let 0 < ε ≤ 1/2 be a real parameter and S be a set of n points in Rd. Given
a data structure for approximate polytope membership in (d + 1)-dimensional space with query
time td+1 and storage sd+1, it is possible to preprocess S into an ANN data structure with
O(log n + td+1 log(1/ε)) query time and O(n log(1/ε) + nsd+1/td+1) storage.

Proof : Construct a BBD-tree and the sets RQ as in Lemma 4.1. For the nodes with |RQ| ≤
td+1 log(1/ε), simply store the set RQ and answer the corresponding queries by brute force. For
the nodes with |RQ| > td+1 log(1/ε), use the construction from Lemma 4.2. The cell containing
the query point can be located in O(log n + log log 1/ε) time. The bound for the total storage
follows from the fact that the total number of representatives

∑
|RQ| = O(n log(1/ε)) and the

number of nodes with more than td+1 log(1/ε) representatives is O(n/td+1). ut

By combining this with Theorem 1.1, we establish Theorem 1.2. While the previous data
structure is not formally in the AVD model, we note that it is possible to convert it to the AVD
model with an overhead of O(log(1/ε)) in the storage and query time.

5 Concluding Remarks

In this paper, we have investigated a fundamental geometric retrieval problem, approximate
polytope membership queries. We have presented the first nontrivial space-time tradeoffs for
this problem. Our approach results in a very simple search structure, namely a quadtree whose
leaves store a finite set of halfspaces. The construction algorithm, called SplitReduce, is also very
simple and arguably of fundamental interest. It involves first computing an approximation of the
intersection of a polytope and a quadtree box, and then splitting the box if this approximation
involves an excessive number of halfspaces.

In spite of the simplicity of this algorithm, its analysis is nontrivial. Although we have
demonstrated significant improvements over a näıve tradeoff, our best lower bound suggests
that there is hope in believing that the algorithm’s performance may be significantly better.

We have also presented a reduction of approximate nearest neighbor searching to approxi-
mate polytope membership queries. Surprisingly, this results in a remarkably simple construc-
tion for approximate nearest neighbor searching that provides significantly better space-time
tradeoffs than any known structures. Further improvements in the space-time tradeoffs for
approximate polytope membership queries will result in commensurate improvements in the ef-
ficiency of approximate nearest neighbor searching. Given the importance of convex polytopes
in many other aspects of computer science, the study of approximate retrieval problems related
to these objects is likely to be of broad interest.
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