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Abstract

Deciding whether a graph can be embedded in a grid using only unit-
length edges is NP-complete, even when restricted to binary trees. How-
ever, it is not difficult to devise a number of graph classes for which the
problem is polynomial, even trivial. A natural step, outstanding thus
far, was to provide a broad classification of graphs that make for poly-
nomial or NP-complete instances. We provide such a classification based
on the set of allowed vertex degrees in the input graphs, yielding a full
dichotomy on the complexity of the problem. As byproducts, the previ-
ous NP-completeness result for binary trees was strengthened to strictly
binary trees, and the three-dimensional version of the problem was for
the first time proven to be NP-complete. Our results were made possible
by introducing the concepts of consistent orientations and robust gadgets,
and by showing how the former allows NP-completeness proofs by local
replacement even in the absence of the latter.

1 Introduction

A grid GM×N has vertex set V (GM×N ) = {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N}, and
edge set E(GM×N ) = {(i, j)(k, l) : |i−k|+ |j− l| = 1, (i, j), (k, l) ∈ V (GM×N )}.
Grids are often thought of in terms of their usual graphical representation, where
vertices are the intersection points of lines that cross over each other in a regular
pattern, as illustrated in Figure 1(a). Grids are planar bipartite graphs.

A unit-length embedding (or embedding, for short, throughout the whole text)
is a mapping from the vertex set of a graph G to a subset of the points of a grid,
along with an incidence-preserving assignment of the edges of G to unit-length
grid segments. We refer to such set of points and unit-length segments as a grid
drawing. Two embeddings are equal if they correspond to the same drawing,
short of rotation, translation and reflection.

A partial grid is any subgraph (not necessarily induced) of a grid, and can
also be characterized as a graph that admits a unit-length embedding. Grid
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Figure 1: (a) The grid G3,5. (b) Unit-length embedding for a {1,2,4}-tree.

embeddings are widely studied due to applications in VLSI design [12] and
simulation of parallel architectures [9]. Unfortunately, deciding whether a graph
admits a unit-length embedding is NP-complete [1], even when restricted to
binary trees [8]. Indeed the so-called logic engine paradigm for proving the NP-
hardness of problems in Graph Drawing is described in [5], where the seminal
references [1, 8] and further applications [6, 7] are discussed. On the other hand,
in the context of Graph Theory, the recognition of partial grid graphs is often
stated as an open problem [2, 3].

Let G be a graph. The vertex and edge sets of G are denoted V (G) and
E(G), respectively, and dG(v) stands for the degree of vertex v in G. Now let
D be a set of integers. We say G is a D-graph if, for all v ∈ V (G), we have
dG(v) ∈ D, e.g. paths are {1,2}-graphs, cycles are {2}-graphs, a complete graph
on n vertices is a {n− 1}-graph etc. Figure 1(b) illustrates a {1,2,4}-tree.

The Partial-Grid Recognition problem (PGR) asks whether a graph G
is a partial grid. In this paper, we establish the problem’s complexity dichotomy
into polynomial and NP-complete when the input is restricted to D-graphs, for
every D ⊆ {1, 2, 3, 4}, thus exhausting all possible sets whose elements can
be found as vertex degrees in partial grid graphs. All graphs we consider are
connected, since the problem can be solved independently for each connected
component of a disconnected graph. Moreover, we will certainly use the facts
that, (i) if the problem is NP-complete for D-trees, then it is also NP-complete
for D′-trees, D′ ⊃ D, and for D-graphs and D′-graphs—allowing cycles—as
well (superset property); and, analogously, if the problem is polynomial for D-
graphs, then it is also polynomial for D′-graphs, D′ ⊂ D, and for D-trees and
D′-trees as well (subset property).

In Section 2, we revisit the seminal NP-completeness proofs and define the
basic concepts for the sections to come.

Section 3 is the core of the present paper, addressing the complexity of each
outstanding case—we either prove its NP-completeness, or state its triviality,
or give a polynomial-time algorithm when applicable.

Additionally, motivated by recent advances in three-dimensional chip man-
ufacturing [4, 10, 11], we consider the natural three-dimensional version of the
problem in Section 4. We then illustrate the power of our techniques by proving
simple theorems that settle the complexity classes of recognizing 3d partial grids
for the vast majority of acceptable input degrees.

Section 5 closes the paper with concluding remarks and open problems.

2 Consistent orientations and immersibility

Let G be a graph. We say fG : E(G) → {0, 1} is a consistent orientation for
G when it holds that, if G is a partial grid, then there is an embedding for G
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Figure 2: Grid embedding for Bhatt and Cosmadakis’s extended skeleton Sϕ

associated to the 3CNF formula ϕ = (x2∨x3∨x4)∧(x1∨x2∨x4)∧(x1∨x3∨x4).
The existence of such embedding for Sϕ relates to the existence of a satisfying
assignment for ϕ, namely (x1, x2, x3, x4) = (T, T, T, F ).

where every edge in {xy ∈ E(G) : fG(xy) = 0} is drawn horizontally, and every
edge in {xy ∈ E(G) : fG(xy) = 1} is drawn vertically on the grid. Note that,
if G is not a partial grid, then any boolean function is a consistent orientation
for G.

We say two graphs G1, G2 have the same immersibility if (i) both G1 and
G2 are partial grids, or (ii) neither G1 or G2 is a partial grid.

In [1], Bhatt and Cosmadakis proved that deciding the existence of unit-
length embeddings for arbitrary trees is NP-complete. Their proof was based
on the reduction of the well-known NP-complete problem Not-All-Equal
3CNF SAT (not-all-equal conjunctive-normal-form satisfiability with 3 literals
per clause) to the problem of deciding the existence of a unit-length embedding
for a special {1,2,4}-tree they define, called the extended skeleton (see Figure 2).
This problem is referred to as the Bhatt-Cosmadakis problem.

Though we will not give the details of such special tree here, the following
fact is of utmost importance:

Fact 1. If Sϕ is an extended skeleton, then a consistent orientation for Sϕ can
be determined in polynomial time.

Proof. An extended skeleton Sϕ comprises a subgraph Zϕ, called skeleton, and
a set of edges in Sϕ \Zϕ, called flags (flags are shown in bold lines, in Figure 2).
The skeleton is itself a partial grid which cannot accept two distinct embeddings,
due to the rigidity granted by its main and transversal spinal cords (the main
spinal cord can be easily pinpointed in Figure 2—it comprises the long path of
4-degree vertices drawn in a straight horizontal line). The flags, on their turn,
can only be embedded with the same orientation as the edges in the main spinal
cord. On these grounds, the algorithm in Figure 3 gives a consistent orientation
for Sϕ in polynomial time, and Fact 1 follows.

The seminal proof of Bhatt and Cosmadakis shows it is NP-complete to de-
cide whether an extended skeleton is a partial grid, hence PGR is NP-complete
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Extended Skeleton Consistent Orientation (Sϕ : extended skeleton)

1. for each uv in E(Sϕ) do
1.1. fSϕ

(uv) ← −1 // mark the orientation of all edges as undefined
2. F ← {uv ∈ E(Sϕ) : dSϕ(u) = 1, dSϕ(v) = 2} // flags
3. Zϕ ← Sϕ \ F // skeleton
4. P ← {p : p is a maximal path of 4-degree vertices in Zϕ}
5. let m be the only path in P containing some vertex with two

2-degree neighbors in Zϕ // main spinal cord
6. T ← P \ {m} // transversal spinal cords
7. for each uv in m do
7.1. fSϕ(uv) ← 0 // main spinal cord oriented horizontally
8. for each t in T do
8.1. for each uv in t do
8.1.1 fSϕ(uv) ← 1 // transversal spinal cords oriented vertically
9. for each uv in Zϕ s.t. dZϕ(u) = 2 do
9.1. fSϕ

(uv) ← 1 // edges connecting transversal to main spinal cords
// oriented vertically

10. for each uv in E(Zϕ) s.t. dZϕ(u) = 4, fSϕ(uv) = −1 do
10.1. if there exist w, z ∈ V (Zϕ) s.t. fSϕ(uw) = 0, fSϕ(uz) = 0 then
10.1.1 fSϕ(uv) ← 1 // at most two horizontal edges allowed!
10.2. else
10.2.1 fSϕ(uv) ← 0
11. for each uv in F do
11.1. fSϕ(uv) ← 0 // flags oriented horizontally
12. return fSϕ

Figure 3: Algorithm to determine consistent orientations for extended skeletons.

for {1,2,4}-trees and, consequently, for {1,2,3,4}-trees.
The NP-completeness for {1,2,3}-trees (binary trees) was demonstrated by

Gregori [8], who conceived an ingenious binary tree called the U-tree. U-trees
can be linked to one another by an edge between two of their vertices. Such
vertices can be selected among four special vertices (in each U-tree), called the
U-tree’s interconnectors. The U-tree is illustrated in Figure 4, where the hor-
izontal interconnectors x, z and the vertical interconnectors y, w are indicated.
Gregori proved that, by replacing each vertex of an extended skeleton Sϕ with
a U-tree, the resulting {1,2,3}-tree U(Sϕ) is a partial grid if and only if the
original {1,2,3}-tree Sϕ is. We call such operation the U-tree substitution, and
its output is the U-tree-transformed skeleton. The U-tree substitution therefore
preserves the immersibility of extended skeletons, and the NP-completeness re-
sult followed. (We remark that Fact 1 was used implicitly in Gregori’s NP-
completeness proof by local replacement, since a consistent orientation for the
extended skeleton Sϕ is needed in [8] to ensure that U(Sϕ) has the same im-
mersibility as Sϕ.)

Again, since the reader can find all the details of the U-tree substitution in
the referenced paper, we underline the one single fact we will later depend upon:

Fact 2. If U(Sϕ) is a U-tree-transformed skeleton, then a consistent orientation
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Figure 4: Grid embedding for Gregori’s U-tree.

for U(Sϕ) can be determined in polynomial time.

Proof. Let U be the U-tree graph and let Sϕ be the extended skeleton that ought
to be submitted to a U-tree substitution. Unlike extended skeletons, whose
elements conform with some associated boolean formula, U is a fixed, predefined
graph that accepts a small number of well-known embeddings (e.g. the one given
in Figure 4). Thus, a consistent orientation fU : E(U) → {0, 1} is known.
Now, a U-tree-transformed skeleton U(Sϕ) is entirely made of interconnected
U-trees, one for each vertex in the extended skeleton Sϕ being transformed.
Thus, any edge uv ∈ U(Sϕ) is either an internal edge and belongs to some
copy of U or is an external edge linking two adjacent copies of U . It happens
that, when Sϕ is submitted to a U-tree substitution, every edge of Sϕ that is
horizontal, according to some (polynomially obtainable) consistent orientation
fSϕ : E(Sϕ) → {0, 1}, yields an also horizontal alignment of the U-trees that
replace its incident vertices. In other words, the vertices u and v between
which an horizontal external edge exists in U(Sϕ) will have been selected among
the horizontal interconnectors of the U-trees they belong to. Analogously, if
the original edge in Sϕ has a vertical orientation according to fSϕ , then the
corresponding U-trees will be tied to one another via vertical interconnectors as
well (and they will be linked to one another by a vertical external edge). This
way, 90◦-rotations of U-trees shall never take place, keeping the orientation of
the internal edges untouched in U(Sϕ), exactly as given by fU .

The function defined below combines both fU and fSϕ to obtain a consistent
orientation fU(Sϕ) : E(U(Sϕ)) → {0, 1} for U(Sϕ), completing the proof.

fU(Sϕ)(uv) =
{

fU (uv) if uv is internal,
fSϕ(s(u)s(v)) if uv is external.

In the expression above, vertices s(u), s(v) ∈ Sϕ are those which were sub-
stituted by the U-trees that contain u, v ∈ U(Sϕ), respectively.

5



(a)

(b)

a x11

x12

b

c d

w

y

zx

Figure 5: (a) The {2,3} gadget (double ladder). (b) Double-ladder substitution.

3 Complexity dichotomy

In the first part of this section, we prove that PGR is NP-complete for some
input degree sets. The second part is devoted to the polynomially decidable
cases. For the sake of clarity, in both parts we start the approach to each new
case by stating the degree set under consideration thenceforth.

3.1 NP-complete cases

In the forthcoming proofs, we take for granted that PGR belongs to NP, re-
gardless of the restrictions imposed to its input, as one can always check the
soundness of a given embedding in polynomial time.

Let G be a partial grid, sv, vt ∈ E(G). If edges sv and vt appear as two
consecutive segments of the same grid line (row or column) in some embedding
of G, we say they constitute a pair of collinear edges. Analogously, if there is
an embedding of G in which sv and vt appear with a 90o angle between them,
we say they form a pair of orthogonal edges.

{2,3}-graphs

In this section, we introduce a special {2,3}-graph called the double ladder.
Figure 5(a) presents its only existing embedding, where vertices x, y, z, w are
again seen as interconnectors, since edges connecting different double ladders can
only be incident to two such vertices. We mark that the circular ordering of the
interconnectors is fixed, that is, they cannot switch positions among themselves.
For this reason, we say x, z (and w, y as well) constitute a pair of opposed
interconnectors, whereas all other pairs of interconnectors are consecutive.

6



Let G be a graph. We define the double-ladder substitution as the linear-
time operation that obtains the graph L(G) such that: (i) there is a bijection
between each vertex v in G and a double ladder l(v) in L(G); and (ii) there is
a bijection between each edge uv in G and an edge linking an interconnector of
l(u) to an interconnector of l(v) in L(G). Such interconnectors are said to have
become active. Figure 5(b) illustrates the result of a double-ladder substitution
applied to the highlighted subgraph in Figure 2.

The double-ladder substitution does not necessarily preserve the immersibil-
ity of the original graph when the active interconnectors are chosen arbitrar-
ily. The problem with structures like the double ladder, which present a fixed
permutation of the interconnectors, is that they might not mimic the exact be-
havior of the original vertex they are meant to emulate. Indeed, if a pair of
opposed (respectively, consecutive) interconnectors of l(v) are chosen to link
l(v) to l(s) and l(t) during the double-ladder substitution, then the resulting
graph L(G) will only possibly admit embeddings in which those double ladders
appear collinearly (resp. orthogonally), thus destroying the equivalence between
the immersibility of G and that of L(G) in case sv, vt ∈ G happen not to be
collinear (resp. orthogonal) edges.

In order to preserve the immersibility of the original graph, it is mandatory
that the choice of interconnectors match some feasible relative positioning of its
edges, in case the graph is a partial grid. Although it may not be always easy
to tell collinear from orthogonal pairs of edges in a given graph, Fact 1 makes
that a trivial task for extended skeletons.

Lemma 3. Double-ladder substitution—with appropriately chosen interconnect-
ors—preserves the immersibility of extended skeletons.

Proof. Let Sϕ be an extended skeleton. By Fact 1, a consistent orientation fSϕ

for all the edges of Sϕ can be determined in polynomial time. That is to say
fSϕ provides us with a trustworthy relative positioning (collinear/orthogonal)
of all edges incident to a common vertex. In order to match that positioning, it
suffices that, for sv, vt ∈ G, the double-ladder substitution on graph G employs
a pair of opposed (resp. consecutive) interconnectors of l(v) to have it linked to
l(s) and l(t) if sv, vt are collinear (resp. orthogonal).

Since a double ladder occupies a perfect 5× 5 grid square in any unit-length
embedding, the placement of the double ladder graphs in some embedding for
L(Sϕ) shall always be met by a corresponding placement of Sϕ’s vertices on a
grid that is 5 times smaller. Edges linking one double ladder to another always
occur between two adjacent 5 × 5 squares in the grid, therefore only edges of
unit length will be required in the reduced grid. For the converse, we argue
that, since the choice of interconnectors never disagrees with some consistent
orientation of the edges of the extended skeleton, an embedding for an extended
skeleton Sϕ will always lead to an embedding for L(Sϕ) in a grid that is 5 times
larger.

Theorem 4. PGR is NP-complete for {2,3}- and {2,3,4}-graphs.
Proof. Since Bhatt-Cosmadakis is NP-complete and it can be polynomially
reduced—via double-ladder substitution on its input—to PGR restricted to
{2,3}-graphs, the latter problem is NP-complete as well. The NP-completeness
for {2,3,4}-graphs follows.
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Figure 6: (a) The {2,4} gadget (C4). (b) Rotation of 45◦. (c) Square substitu-
tion.

The acyclic case does not apply, for there are no trees without leaves.

{2,4}-graphs

To prove the NP-completeness of the problem for {2,4}-graphs, our strategy
will be identical to that just seen for {2,3}-graphs. We introduce an appropriate
substitution procedure that preserves the immersibility of the extended skeleton.

The replacement structure we use is a simple C4, or square (shown in Fig-
ure 6(a), in solid lines), whose vertices are regarded as interconnectors. Surpris-
ingly, the C4 shall replace both vertices and edges of the original graph, in what
we call the square substitution. In the square substitution, each vertex v of the
original graph G gives rise to a square q(v) in the resulting graph Q(G), and
each edge uv ∈ G corresponds to another C4, call it q(uv), in Q(G), linking q(v)
to q(u) using opposed interconnectors of q(uv). Figure 6(c) shows the result of
the square substitution applied to the highlighted subgraph in Figure 2. Notice
that it looks as though the original graph had been rotated 45◦, as depicted in
Figure 6(b).

Lemma 5. Square substitution—with appropriately chosen interconnectors—
preserves the immersibility of extended skeletons.

Proof. Here again, despite the fixed circular permutation of the interconnectors
of a C4, the foreknowledge of consistent orientations for extended skeletons
(Fact 1) allows active interconnectors to be suitably chosen in q(v). Let Sϕ be
an extended skeleton and let Q(Sϕ) be the result of some such orientation-aware
square substitution. We want to prove that Sϕ admits a unit-length embedding
if and only if Q(Sϕ) does.

Suppose Sϕ is a partial grid graph. Then, there is a unit-length embedding
Γ for Sϕ such that the relative position of every pair of edges sv, vt ∈ Sϕ

matches the (only) relative position of q(sv), q(vt) allowed by that particular
choice of interconnectors of q(v). Now, it is always possible to obtain a unit-
length embedding Γ′ for Q(Sϕ) as follows. For each vertex v located at a grid
point with coordinates (i, j) in Γ, place the topmost, leftmost vertex of q(v) at
h(i, j) = (2i + 2j,−2i + 2j). Now place q(uv), for every edge uv ∈ Sϕ, at the
unit-area square that intersects both q(u) and q(v).

For the converse, suppose Γ′ is a unit-length embedding for Q(Sϕ). We will
show this implies the existence of a unit-length embedding Γ for Sϕ. Without
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Figure 7: The {1,3} gadget (three-plug tree).

loss of generality, let the topmost vertex in the leftmost column of Γ be located
at the grid’s origin. The function h : Z2 → Z2 just defined is clearly bijective.
Then, for each square q(v) located at a unit-area square whose topmost, leftmost
corner has coordinates (i, j), i, j even (for these are, by construction, the C4

associated to vertices, not edges, of Sϕ), place vertex v at coordinates h−1(i, j) =
( i−j

4 , i+j
4 ) of an initially empty embedding Γ. Now link vertices u, v by a unitary

segment, in Γ, if there is a C4 in Γ′ intersecting both q(u) and q(v), and Γ is a
unit-length embedding for Sϕ.

Theorem 6. PGR is NP-complete for {2,4}-graphs.
Proof. By Lemma 5, Bhatt-Cosmadakis reduces to PGR for {2,4}-graphs,
hence the latter is NP-complete.

Again, since there are no trees without degree-1 vertices, the problem on
{2,4}-graphs cannot be restricted to trees.

{1,3}-graphs

The idea is basically the same. We introduce an appropriate gadget (one that
is a {1,3}-tree, in this case) and an associated transformation that, given an
extended skeleton Sϕ, produces a {1,3}-tree Q(Sϕ) with the same immersibility.

The gadget we employ is the one shown in Figure 7. We call it the three-plug
tree. As usual, interconnectors are the labeled vertices in the figure.

We define the three-plug substitution analogously to the double-ladder substi-
tution, only replacing the double ladder with the three-plug tree. The three-plug
substitution has an odd characteristic, though. Since the three-plug tree only
presents 3 interconnectors, the input of a three-plug substitution is restricted
to graphs with maximum degree not greater than 3. We want to show that
Bhatt-Cosmadakis reduces polynomially to the problem of deciding whether
a {1,3}-tree is a partial grid. But extended skeletons, which are the input of the
Bhatt-Cosmadakis problem, present degree-4 vertices, hence the three-plug
substitution cannot be applied to extended skeletons directly.

This apparent hindrance is solved by first transforming the extended skeleton
into a {1,2,3}-tree—with its same immersibility—via Gregori’s U-tree substitu-
tion. Then, the resulting U-tree-transformed skeleton U(Sϕ), which has no
4-degree vertices, can be submitted to the three-plug substitution uneventfully,
obtaining a {1,3}-tree T (U(Sϕ)), still with the same original immersibility.
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Lemma 7. Three-plug substitution—with appropriately chosen interconnectors—
preserves the immersibility of U-tree-transformed extended skeletons.

Proof. Just like in the double ladder, interconnectors in the three-plug tree
will always appear in the same circular permutation. This could have posed
a problem to the desired immersibility preservation of the process, were it not
for the fact that we know of a consistent orientation for U-tree-transformed
skeletons (by Fact 2). Thus, with active interconnectors of the three-plug trees
chosen appropriately, and because two adjacent three-plug trees will always
occupy a rigid 7×14 rectangle, the graph T (U(Sϕ)) resulting from a three-plug
substitution on U(Sϕ) will admit a unit-length embedding if and only if U(Sϕ)
does.

Theorem 8. PGR is NP-complete for {1,3}- and {1,3,4}-trees.
Proof. Same strategy here. By Lemma 7 and the fact that U-tree substitu-
tion preserves the immersibility of extended skeletons (proved by Gregori [8]),
Bhatt-Cosmadakis reduces to PGR for {1,3}-trees, hence the latter problem
is NP-complete. The NP-completeness for {1,3,4}-trees follows, by the superset
property.

Theorem 9. PGR is NP-complete for strictly binary trees.

Proof. A strictly binary tree is a connected, acyclic graph whose vertices fall in
one of three categories: (i) 1-degree vertices (the tree’s leafs); (ii) a single 2-
degree vertex (the tree’s root); and (iii) 3-degree vertices (the internal vertices).
After transforming an extended skeleton Sϕ into T (U(Sϕ)) via three-plug substi-
tution, the resulting graph comprises a series of interconnected three-plug-trees.
Take any 1-degree vertex v that sits next to a non-used grid point in the known
embedding of the three-plug tree (say, for example, the topmost vertex in Fig-
ure 7) and give it a new neighbor w not yet in the graph. Vertex v has become
a 2-degree vertex, and the whole graph T (U(Sϕ)) is now a strictly binary tree,
rooted in v, with the same immersibility as Sϕ. This completes the proof.

3.2 Polynomial cases

{1,2}-graphs

Trivial. A path on n vertices can always be laid out on a straight line of a 1×n
grid, and any even cycle on 2k vertices can be embedded on a 2× k grid. Odd
cycles are not bipartite and therefore cannot be partial grids.

{3,4}-graphs

Theorem 10. No unit-length embedding exists for {3}-, {4}- or {3,4}-graphs.
Proof. Suppose there is a unit-length embedding Γ for a graph with no vertices
of degree 1 or 2. Let v be the topmost vertex in the leftmost column of Γ. Since
all other vertices are placed below or to the right of v, v can have at most 2
neighbors, a contradiction.
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Figure 8: Proof of Theorem 11: examples of incomplete unit-area squares σ
present in connected, non-grid, partial grids.

{1,4}-graphs

Theorem 11. A {1,4}-graph is a partial grid if and only if its degree-4 vertices
induce a grid. PGR is therefore polynomial for {1,4}-graphs.
Proof. Let G be a connected {1,4}-graph. If the subgraph of G induced by all
its vertices of degree 4 is a grid, then there is always a unit-length embedding
for G, in which the degree-4 vertices occupy all points of an M ×N rectangle,
surrounded by the 2(M + N) degree-1 vertices, which are necessarily adjacent
to the vertices in the boundaries of such rectangle.

Now, let Γ be a unit-length embedding for G, and let G′ be the graph
induced by all degree-4 vertices of G. Since G is a partial grid, G′ is a partial
grid as well. Moreover, G′ must be connected, since G is itself connected and
the vertices in G \ G′ have degree 1. Suppose, by contradiction, that G′ is a
connected partial grid that is not a grid graph (i.e. the image of its grid mapping
does not correspond to all the points and segments of an M × N rectangle in
the grid). This hypothesis implies the existence of some unit-area square σ (see
Figure 8), in Γ, containing at least 2 but no more than 3 edges of G′. Without
loss of generality, let u, v ∈ G′ be incident to two such edges and placed at the
extremes of a diagonal of σ. Since u and v have degree 4 in G, the two other
diagonally opposed corners of σ must correspond to vertices s, t ∈ G which are
necessarily adjacent to both u and v. Thus, the degree of s and t, in G, is at
least 2, hence exactly 4, therefore s and t must belong to G′ as well. As a result,
σ contains 4 edges us, sv, vt, tu of G′, a contradiction.

A polynomial-time recognition of grids can be achieved as follows. First,
locate the 4 vertices of degree 2 and the 2(M + N) − 4 vertices of degree 3
present in the graph. They define the boundaries of an M × N rectangle in
the grid. Now, recursively place each degree-4 vertex at the fourth point of a
unit-area square already containing two of its neighbors (diagonally opposed in
the grid) and one of its non-neighbors. Repeat this procedure inwardly, starting
from the rectangle corners, until the vertices of degree 4 have matched the inner
points of the rectangle (in which case the graph is a grid) or until such matching
does not exist (in which case it is not).

4 Three-dimensional partial grids

A 3d grid GK×L×M has as vertex set the points {1, . . . , K} × {1, . . . , L} ×
{1, . . . , M}. Two vertices are adjacent if their distance is exactly 1. A 3d
partial grid is any subgraph (not necessarily induced) of a 3d grid. The 3d grids
and 3d partial grids are bipartite, but not necessarily planar. The 3d Partial
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Figure 9: A partial grid and its corresponding prism.

Grid Recognition problem (3d-PGR) consists of deciding whether a given
graph is a 3d partial grid. Its NP-completeness was previously unknown.

Vertices of a 3d grid have degree at most 6. Thus, a complete dichotomy
would need to consider 26 − 1 = 63 possible nonempty subsets. Although
providing a complete dichotomy for three-dimensional partial grids is beyond
the scope of this paper, it is perhaps surprising that the techniques developed
for the two-dimensional case settle the complexity of all but 13 out of those 63
cases, as we show next.

We define the prism of a graph G as the simple graph with vertices
V (G) × {0, 1} and edge (u, i)(v, j) if (i) u = v or (ii) i = j and uv ∈ E(G).
A partial grid and the corresponding prism are illustrated in Figure 9. The
following theorem uses the prism operator to interrelate the immersibilities of
partial grids and 3d partial grids.

Theorem 12. A graph G is a partial grid if and only if the prism of G is a 3d
partial grid.

Proof. If G is a partial grid, then the prism of G is a 3d partial grid because the
three dimensional embedding can be obtained by placing two copies of the two-
dimensional embedding on adjacent parallel planes. To prove the converse, we
note that the C4 graphs sharing opposing edges form a rigid structure that can
only be embedded in a 3d grid space as two copies of G on parallel planes.

The previous theorem, along with the superset property, can leverage our
previous (two-dimensional) results to show that 32 out of the 63 nonempty
subsets of {1, 2, 3, 4, 5, 6} are NP-complete.

Given a set D and a positive integer k, we define D + k = {d + k : d ∈ D}.
Corollary 13. If PGR is NP-complete for D-graphs then 3d-PGR is NP-
complete for (D + 1)-graphs.

Proof. The problem is clearly in NP, since the embedding provides a polynomial
certificate. To prove the NP-hardness we reduce PGR to 3d-PGR using the
prism graph. Note that if G is a D-graph, then the prism of G is a (D+1)-graph.
Correctness follows from Theorem 12.

Next, we present an extension of Corollary 13, which proves the NP-com-
pleteness of 7 additional subsets.

Corollary 14. If PGR is NP-complete for (D1 ∪D2)-graphs then 3d-PGR is
NP-complete for ({1} ∪ (D1 + 1) ∪ (D2 + 2))-graphs.
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D D-graphs D-trees
{1} P P
{2} P —
{3} P —
{4} P —
{1,2} P P
{1,3} NPC NPC
{1,4} P P
{2,3} NPC —

D D-graphs D-trees
{2,4} NPC —
{3,4} P —
{1,2,3} NPC [8] NPC [8]
{1,2,4} NPC [1] NPC [1]
{1,3,4} NPC NPC
{2,3,4} NPC —
{1,2,3,4} NPC [1] NPC [1]

Table 1: Full complexity dichotomy for PGR (NPC: NP-complete; P: polyno-
mial; —: the corresponding input does not exist). Bold letters indicate the base
cases, wherefrom the other cases derived (by the superset/subset property).

Proof. The proof follows from the prism construction with new vertices of degree
1 appended to the vertices with degree in D2.

Graphs with degree at most 2 are trivial. The following theorem is analogous
to Theorem 10 and shows that the problem is polynomial for graphs where all
vertices have degree 4 and above.

Theorem 15. A 3d partial grid has some vertex of degree at most 3.

Proof. Suppose there is a unit-length embedding Γ for a graph with no vertices of
degree 1, 2 or 3. Let v be the topmost vertex in the leftmost column of the front
most plane of Γ. Vertex v can have at most 3 neighbors, a contradiction.

The three-dimensional version of {1, 6}-graphs can be decided polynomially.

Theorem 16. A {1,6}-graph is a 3d partial grid if and only if its degree-6
vertices induce a 3d grid. Thus, 3d-PGR is polynomial for {1,6}-graphs.
Proof. The proof is analogous to that for {1,4}-graphs in the two-dimensional
case. Here, if we suppose that a {1,6}-graph G is a 3d partial grid but its
degree-6 vertices induce a graph which is certainly a partial 3d grid but not
actually a 3d grid, then the mandatory existence of an incomplete unit-volume
cube on its 3d embedding (one without all 12 edges, but with at least 3 vertices
not on the same face) will lead to a similar contradiction.

5 Conclusion and open problems

Table 1 gives the full dichotomy into polynomial and NP-complete for the recog-
nition of (two-dimensional) partial grids. Previous results are duly referenced.
Note that, for every degree set D ⊇ {1}, the complexity classes for D-graphs
and D-trees match. It is also noteworthy that the results herein obtained are
sufficient to show that the problem remains NP-complete even when a consistent
orientation for the input graph is provided.

A natural question concerns the existence of robust gadgets. A robust gadget
R always preserves the immersibility of the original graph G, when the vertices
of G are replaced by copies of R. The gadgets introduced herein, while sufficient

13
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Figure 10: (a) The {1,3,4} gadget (windmill tree). (b) Windmill substitution.

for the intended proofs, do not guarantee that the immersibility of the original
graph G is preserved when a consistent orientation of G is unknown. The graph
shown in Figure 10(a), called the windmill graph, is one such robust gadget.1

Since each of the windmill “arms”—one of which is highlighted in Figure 10(a)—
are independently tied to the windmill “axis”—its center—by an edge, it is
possible that they interchange their positions so to allow for any desired circular
permutation of the gadget’s interconnectors. Consequently, the windmill tree
does not impose any fixed, predefined positioning of the neighborhood of each
vertex being replaced, and the preservation of the original graph’s immersibility
is guaranteed. The proposed question asks whether or not there exist robust
gadgets for degree sets other than the windmill’s {1,3,4}.

Another question worth considering is how the complexities get affected by
allowing edges with length up to k > 1.

Finally, completing the complexity dichotomy for the three-dimensional case
(given in Table 2) is a challenging problem, due to the rising number of appli-
cations employing three-dimensional layouts and to its intriguing theoretical
appeal. In particular, so far we do not know of a complexity-separating de-
gree set D for which 3d-PGR is polynomial for D-trees but NP-complete for
D-graphs.

Acknowledgements

The authors would like to thank professors Lucia Draque Penso and Dieter
Rautenbach for the insightful discussions.

1Indeed the windmill could perfectly have been used to prove the NP-completeness of PGR
for {1,3,4}-trees, had that result not come as a byproduct of the {1,3}- case (by the superset
property).
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∅ {4} {5} {6} {4, 5} {4, 6} {5, 6} {4, 5, 6}
∅ — P P P P P P P
{1} P ? ? P NPC2 NPC2 ? NPC2

{2} P NPC1 ? ? NPC1 NPC1 ? NPC1

{3} ? NPC1 NPC1 ? NPC1 NPC1 NPC1 NPC1

{1, 2} P NPC1 NPC2 ? NPC1 NPC1 NPC2 NPC1

{1, 3} ? NPC1 NPC1 NPC2 NPC1 NPC1 NPC1 NPC1

{2, 3} ? NPC1 NPC1 ? NPC1 NPC1 NPC1 NPC1

{1, 2, 3} ? NPC1 NPC1 NPC2 NPC1 NPC1 NPC1 NPC1

Table 2: Known complexity dichotomy for the three-dimensional case (NPC1:
NP-complete due to Corollary 13; NPC2: NP-complete due to Corollary 14; P:
polynomial; ?: open case; —: the corresponding input does not exist). Each
cell states the complexity of 3d-PGR restricted to D-graphs, where D is the
union of the sets associated to the column and the row that contain the cell.
Bold letters indicate the base cases, wherefrom the other cases derive (by the
superset/subset property).
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