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Results

1 Approximate polytope intersection in O(polylog 1
ε ) time

Given two preprocessed polytopes
Storage: O(1/ε(d−1)/2)

2 Approximation to Minkowski sum in O(n log 1
ε + 1/ε(d−1)/2+α) time

Any α > 0
Previously O(n+ 1/εd−1)

3 Width approximation in O(n log 1
ε + 1/ε(d−1)/2+α) time

Any α > 0
Previously O(n+ 1/εd−1)
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Directional Width

Exact directional width

Given:

S: set of n points in Rd

v: unit vector

Define widthv(S):

Smallest distance between two
hypeplanes orthogonal to v enclosing S

Approximate directional width:

Given ε > 0

Find points p, q ∈ S with
widthv({p, q}) ≥ (1− ε) widthv(S)

v

widthv(S)
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p

q



Intersection,
Minkowski
Sum, and
Width

Results

Dir. Width

Black Box

Diam vs Width

Minkowski

Properties

Origin

Duality

Minimization

d-Dimensional

Intersection

Dudley

Fatness

Fattening

Closest

Minkowski Apx

Width

Conclusion

Bibliography

Thanks

Data Structure used as a Black Box

v

widthv(S)
≥ (1− ε)·

p

q

Preprocess into a data structure: [AFM17a,AFM17b]

S: set of n points in Rd

ε: small positive parameter

Given query vector v:

Answer approximate directional width

Complexity of directional width

Query time: O(log 2(1/ε))

Storage: O
(

1/ε
d−1
2

)
Preprocessing time: O

(
n log 1

ε + 1/ε
d−1
2

+α
)

for any α > 0
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Diameter vs Width

Diameter: maxv widthv(S)

Width: minv widthv(S)

Diameter: Approximated using

O(1/ε
d−1
2 ) directional width queries [Cha02]

Time: O
(
n log 1

ε + 1/ε
d−1
2

+α
)

[AFM17b,Cha17]

Width: Known algorithms take
O(n+ 1/εd−1) time [Cha02,Cha06]

Can we approximate the width faster?

∆

w

v

v
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v′
√
ε

∆

≥ (1− ε)∆

w

v
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Minkowski Sum

⊕

=

A B

A⊕B

Minkowski sum

A,B: Sets of points

A⊕B = {p+ q : p ∈ A, q ∈ B}

Applications: motion planning, CAD,
biology, engineering...

Slow to compute: O(n2)

What if we approximate?
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Important Properties

1 widthv(A⊕B) = widthv(A) + widthv(B)

We can query A⊕B using
data structures for A and B

2 Width of A: Min ‖v‖ for v ∈ ∂(A⊕ (−A))

Easy if A⊕ (−A) is represented by
hyperplanes

3 A ∩B 6= ∅ ⇔ O ∈ A⊕−B
We’ll use in the next slide

Strategy to approximate width

Build hyperplane representation of A⊕−A
using only directional width queries

v
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Polytope Intersection

O

Property 3

A ∩B 6= ∅ ⇔ O ∈ A⊕−B

S: set of points

Question: Is O ∈ conv(S)?

Classic linear programming problem

Faster approximate solution after
preprocessing?

Look at the dual
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Point-Hyperplane Duality

Duality

Point (p1, . . . , pd) maps to hyperplane
xd = p1x1 + · · ·+ pd−1xd−1 − pd

We want to solve:

Primal: O ∈ conv(S)

Dual: hyperplane O∗ : xd = 0
between upper and lower envelopes

We have access to:

Primal: directional width

Dual: vertical ray shooting
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One-Dimensional Convex Minimization

O∗

Upper envelope is convex

Minimize convex function using evaluations

Slope at most c

Binary search:

Sample 4 points
Recurse 2/3 (or 1/3) interval
containing smallest sample
Stop with interval size ε/c

O(log 1
ε ) time for f : [0, 1]→ R
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d-Dimensional Convex Minimization

1 2
3

4
5

5

4

3

2

1

0

g(x1) = min
x2,...,xd∈[0,1]d−1

f(x1, . . . , xd)

g : [0, 1]→ R is convex

Minimize g(·)
Solve (d− 1)-dimensional minimization
to evaluate g(·)

t(1) = O(log 1
ε )

t(d) = t(d− 1) · t(1)

t(d) = O(logd 1
ε ) time for f : [0, 1]d → R
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Approximate Polytope Intersection

If A intersects B: answer yes

If the distance between A and B is more
than ε · (diam(A) + diam(B)): answer no

Otherwise either answer is ok

(1) Approximate polytope intersection

Query time: O(polylog 1
ε )

Storage: O(1/ε(d−1)/2)

Preprocessing time:
O(n log 1

ε + 1/ε(d−1)/2+α),
for any α > 0

yes

no

?
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Dudley Approximation

K

Dudley’s result: [Dud74]

A convex body K of diameter 1 can be
ε-approximated by a polytope P with

O(1/ε
d−1
2 ) facets.

Fatten K into K ′

Ball B of radius 2 · diam(K ′)
√
ε-net N on B

Closest point on K ′ for each point in N

P ′ bounded by tangent hyperplanes

Unfatten P ′ into P
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Fatness and John Ellipsoid

r

c · r Fatness

A convex body K is fat if it is sandwiched
between balls of radii r and c · r for some
constant c that does not depend on K

Fatten by scaling John Ellipsoid to a ball:

John Ellipsoid [Joh48]

For every convex body K in Rd, there exist
ellipsoids E1, E2 such that E1 ⊆ K ⊆ E2 and E2

is a d-scaling of E1
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Fattening Minkowski Sums

Minkowski sum of ellipsoids is not an ellipsoid

It follows from John that:

For every convex body K in Rd, there exist rectangles
R1, R2 such that R1 ⊆ K ⊆ R2 and R2 is a
(3d/2)-scaling of R1

Store R1(A) with A

For A⊕B use R1(A)⊕R1(B)

R1(A)⊕R1(B) has O(1) vertices

Fatten A⊕B scaling R1(A)⊕R1(B) into a fat
polytope
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Closest Point

Approximate closest point

Given:

K: preprocessed polytope

q: query point with dist(q,K) = Θ(1)

Find:

p ∈ K with ‖pq‖ ≤ dist(q,K) + ε

Binary search

O(log 1
ε ) intersection queries

→ approximate closest point

K

q

p

ε
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Find:
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Minkowski Sum Approximation

Build directional width data structures
for A and B

Let K = A⊕B
Run Dudley’s algorithm

Fatten using rectangles
Answer closest point queries using
polytope intersection

(2) Minkowski sum approximation

Time: O(n log 1
ε + 1/ε(d−1)/2+α),

for any α > 0
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Minkowski Sum Approximation

√
ε

B

P ′
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(2) Minkowski sum approximation
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ε + 1/ε(d−1)/2+α),

for any α > 0
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Run Dudley’s algorithm

Fatten using rectangles
Answer closest point queries using
polytope intersection

(2) Minkowski sum approximation
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Width Approximation

Compute Dudley of A⊕−A
Dudley has O(1/ε(d−1)/2) bounding
hyperplanes

Find closest boundary point to the origin
naively

(3) Approximate width

Time: O(n log 1
ε + 1/ε(d−1)/2+α), for any α > 0

√
ε

B

P ′
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Width Approximation

Compute Dudley of A⊕−A
Dudley has O(1/ε(d−1)/2) bounding
hyperplanes

Find closest boundary point to the origin
naively

(3) Approximate width

Time: O(n log 1
ε + 1/ε(d−1)/2+α), for any α > 0

⊕

=

A −A

A⊕−A

w
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Conclusion

Using appproximate directional width we solved:

1 Approximate polytope intersection queries in O(polylog 1
ε ) time with

O(1/ε(d−1)/2) storage

2 Approximation to Minkowski sum in O(n log 1
ε + 1/ε(d−1)/2+α) time

3 Width approximation in O(n log 1
ε + 1/ε(d−1)/2+α) time

Open problems:

Remove the 1/εα factor

Lower bounds (or improved upper bounds): Is 1/ε(d−1)/2 necessary?

Diameter for non-Euclidean metrics

Approximate the separation depth
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