Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums

Sunil Arya
Hong Kong University of Science and Technology
Guilherme D. da Fonseca
INRIA Sophia-Antipolis, Université Clermont Auvergne, and LIMOS
David M. Mount
University of Maryland, College Park

Results

Intersection,
 Minkowski
 Sum, and

 Width1 Approximate polytope intersection in O (polylog$\frac{1}{\varepsilon}$) time

- Given two preprocessed polytopes
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$

2 Approximation to Minkowski sum in $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$ time

- Any $\alpha>0$
- Previously $O\left(n+1 / \varepsilon^{d-1}\right)$

3 Width approximation in $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$ time

- Any $\alpha>0$
- Previously $O\left(n+1 / \varepsilon^{d-1}\right)$

Results

Intersection,

Minkowski
Sum, and Width

1 Approximate polytope intersection in O (poly $\left.\log \frac{1}{\varepsilon}\right)$ time

- Given two preprocessed polytopes
- Storage: O (1

2 Approximation to Minkowski sum in $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$ time

- Any $\alpha>0$
- Previously $O\left(n+1 / \varepsilon^{d-1}\right)$

3 Width approximation in $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$ time

- Any $\alpha>0$
- Previously $O\left(n+1 / \varepsilon^{d-1}\right)$

Results

Intersection

1 Approximate polytope intersection in O (polylog$\left.\frac{1}{\varepsilon}\right)$ time

- Given two preprocessed polytopes
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$

2 Approximation to Minkowski sum in $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$ time

- Any $\alpha>0$
- Previously $O\left(n+1 / \varepsilon^{d-1}\right)$

3 Width approximation in $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$ time

- Any $\alpha>0$
- Previously $O\left(n+1 / \varepsilon^{d-1}\right)$

Directional Width

```
Intersection,

\section*{Exact directional width}
```

Given:

- S : set of n points in \mathbb{R}^{d}
- v : unit vector
Define width ${ }_{v}(S)$:
- Smallest distance between two
hypeplanes orthogonal to v enclosing S

```
```

- Find points $p, q \in S$ with

Directional Width

Exact directional width

Given:

- S : set of n points in \mathbb{R}^{d}
- v : unit vector

Define width $_{v}(S)$:

- Smallest distance between two
hypeplanes orthogonal to v enclosing S

Approximate directional width:
■ Given $\varepsilon>0$

- Find points $p, q \in S$ with
$\operatorname{width}_{v}(\{p, q\}) \geq(1-\varepsilon) \operatorname{width}_{v}(S)$

Data Structure used as a Black Box

Intersection,

Minkowski
Sum, and
Width

Preprocess into a data structure: [AFM17a,AFM17b]

- S : set of n points in \mathbb{R}^{d}
- ε : small positive parameter

Given query vector v :
■ Answer approximate directional width

Complexity of directional width

- Query time: $O\left(\log ^{2}(1 / \varepsilon)\right)$
- Storage: $O\left(1 / \varepsilon^{\frac{d-1}{2}}\right)$
- Preprocessing time: $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{\frac{d-1}{2}+\alpha}\right)$
for any $\alpha>0$

Data Structure used as a Black Box

Intersection,
Minkowski
Sum, and
Width

Preprocess into a data structure: [AFM17a,AFM17b]

- S : set of n points in \mathbb{R}^{d}
- ε : small positive parameter

Given query vector v :

- Answer approximate directional width

Complexity of directional width

- Query time: $O\left(\log ^{2}(1 / \varepsilon)\right)$
- Storage: $O\left(1 / \varepsilon^{\frac{d-1}{2}}\right)$
- Preprocessing time: $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{\frac{d-1}{2}+\alpha}\right)$ for any $\alpha>0$

Diameter vs Width

Intersection,
Minkowski
Sum, and

- Diameter: $\max _{v}$ width $_{v}(S)$
- Width: $\min _{v} \operatorname{width}_{v}(S)$
- Diameter: Approximated using $O\left(1 / \varepsilon^{\frac{d-1}{2}}\right)$ directional width queries Time: $O(n \log$
- Width: Known algorithms take $O\left(n+1 / \varepsilon^{d-1}\right)$ time

■ Can we approximate the width faster?

Diameter vs Width

Intersection,

Minkowski
Sum, and
Width

- Diameter: $\max _{v}$ width $_{v}(S)$
- Width: $\min _{v} \operatorname{width}_{v}(S)$

■ Diameter: Approximated using $O\left(1 / \varepsilon^{\frac{d-1}{2}}\right)$ directional width queries [Cha02] Time: $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{\frac{d-1}{2}+\alpha}\right)$ [AFM17b, Cha17] - Width: Known algorithms take $O\left(n+1 / \varepsilon^{d-1}\right)$ time - Can we approximate the width faster?

Diameter vs Width

- Diameter: $\max _{v} \operatorname{width}_{v}(S)$

■ Width: $\min _{v} \operatorname{width}_{v}(S)$

- Diameter: Approximated using $O\left(1 / \varepsilon^{\frac{d-1}{2}}\right)$ directional width queries [Cha02]
Time: $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{\frac{d-1}{2}+\alpha}\right)$ [AFM17b, Cha17]
- Width: Known algorithms take $O\left(n+1 / \varepsilon^{d-1}\right)$ time [Cha02, Cha06]
- Can we approximate the width faster?

Minkowski Sum

Intersection,

Minkowski
Sum, and
Width

Minkowski sum

- A, B : Sets of points
- $A \oplus B=\{p+q: p \in A, q \in B\}$
- Applications: motion planning, CAD, biology, engineering...
- Slow to compute: $O\left(n^{2}\right)$

Minkowski Sum

Intersection,

Minkowski
Sum, and
Width

Minkowski sum

- A, B : Sets of points
- $A \oplus B=\{p+q: p \in A, q \in B\}$
- Applications: motion planning, CAD, biology, engineering...
- Slow to compute: $O\left(n^{2}\right)$

■ What if we approximate?

Important Properties

Intersection,

Minkowski
Sum, and
Width
$1 \operatorname{width}_{v}(A \oplus B)=\operatorname{width}_{v}(A)+\operatorname{width}_{v}(B)$

- We can query $A \oplus B$ using data structures for A and B
2 Width of A : Min $\|v\|$ for $v \in \partial(A \oplus(-A))$
- Easy if $A \oplus(-A)$ is represented by hyperplanes

- We'll use in the next slide

Strategy to approximate width

Build hyperplane representation of $A \oplus-A$ using only directional width queries

Important Properties

Intersection,
Minkowski
Sum, and
Width

1 width $_{v}(A \oplus B)=$ width $_{v}(A)+$ width $_{v}(B)$

- We can query $A \oplus B$ using
data structures for A and B
2 Width of A : Min $\|v\|$ for $v \in \partial(A \oplus(-A))$
- Easy if $A \oplus(-A)$ is represented by hyperplanes

- We'll use in the next slide

Strategy to approximate width

Build hyperplane representation of $A \oplus-A$ using only directional width queries

Important Properties

Intersection,

Minkowski
Sum, and
Width
\llbracket width $_{v}(A \oplus B)=$ width $_{v}(A)+$ width $_{v}(B)$

- We can query $A \oplus B$ using data structures for A and B
2 Width of A : Min $\|v\|$ for $v \in \partial(A \oplus(-A))$
- Easy if $A \oplus(-A)$ is represented by hyperplanes
$3 A \cap B \neq \emptyset \Leftrightarrow O \in A \oplus-B$
■ We'll use in the next slide

Strategy to approximate width

Build hyperplane representation of $A \oplus-A$ using only directional width queries

Important Properties

$1 \operatorname{width}_{v}(A \oplus B)=\operatorname{width}_{v}(A)+\operatorname{width}_{v}(B)$

- We can query $A \oplus B$ using data structures for A and B
2 Width of A : Min $\|v\|$ for $v \in \partial(A \oplus(-A))$
- Easy if $A \oplus(-A)$ is represented by hyperplanes
$3 A \cap B \neq \emptyset \Leftrightarrow O \in A \oplus-B$
■ We'll use in the next slide

Strategy to approximate width

Build hyperplane representation of $A \oplus-A$ using only directional width queries

Polytope Intersection

Intersection,
Minkowski
Sum, and
Width
Results
Dir. Width
Black Box
Diam vs Width
Minkowski
Properties
Origin
Duality
Minimization
d-Dimensional
Intersection
Dudley
Fatness
Fattening
Closest
Minkowski Apx
Width
Conclusion
Bibliography
Thanks

Property 3

$A \cap B \neq \emptyset \Leftrightarrow O \in A \oplus-B$

- S : set of points
- Question: Is $O \in \operatorname{conv}(S)$?
- Classic linear programming problem
- Faster approximate solution after preprocessing?
- Look at the dual

Polytope Intersection

Intersection,
Minkowski
Sum, and
Width
Results
Dir. Width
Black Box
Diam vs Width
Minkowski
Properties
Origin
Duality
Minimization
d-Dimensional
Intersection
Dudley
Fatness
Fattening
Closest
Minkowski Apx
Width
Conclusion
Bibliography
Thanks

Property 3

$A \cap B \neq \emptyset \Leftrightarrow O \in A \oplus-B$

- S : set of points
- Question: Is $O \in \operatorname{conv}(S)$?
- Classic linear programming problem
- Faster approximate solution after preprocessing?
■ Look at the dual

Point-Hyperplane Duality

Intersection,
Minkowski
Sum, and
Width

Results

Dir. Width
Black Box Diam vs Width

Duality

Point $\left(p_{1}, \ldots, p_{d}\right)$ maps to hyperplane $x_{d}=p_{1} x_{1}+\cdots+p_{d-1} x_{d-1}-p_{d}$

We want to solve:

- Primal: $O \in \operatorname{conv}(S)$

■ Dual: hyperplane $O^{*}: x_{d}=0$ between upper and lower envelopes

We have access to:

- Primal: directional width
- Dual: vertical rav shooting

Point-Hyperplane Duality

Intersection,
Minkowski
Sum, and
Width

Duality
Point $\left(p_{1}, \ldots, p_{d}\right)$ maps to hyperplane
$x_{d}=p_{1} x_{1}+\cdots+p_{d-1} x_{d-1}-p_{d}$

We want to solve:

- Primal: $O \in \operatorname{conv}(S)$
- Dual: hyperplane $O^{*}: x_{d}=0$ between upper and lower envelopes

Point-Hyperplane Duality

Intersection,

Minkowski
Sum, and
Width

Duality

Point $\left(p_{1}, \ldots, p_{d}\right)$ maps to hyperplane
$x_{d}=p_{1} x_{1}+\cdots+p_{d-1} x_{d-1}-p_{d}$

We want to solve:

- Primal: $O \in \operatorname{conv}(S)$
- Dual: hyperplane $O^{*}: x_{d}=0$ between upper and lower envelopes

We have access to:

- Primal: directional width
- Dual: vertical ray shooting

One-Dimensional Convex Minimization

One-Dimensional Convex Minimization

One-Dimensional Convex Minimization

Intersection,
 Minkowski
 Sum, and
 Width

One-Dimensional Convex Minimization

```
Intersection,
Minkowski
Sum, and
    Width
```

- Upper envelope is convex

■ Minimize convex function using evaluations

- Slope at most c
- Binary search:
- Sample 4 points
- Recurse $2 / 3$ (or $1 / 3$) interval containing smallest sample

One-Dimensional Convex Minimization

```
- Upper envelope is convex
■ Minimize convex function using evaluations
- Slope at most \(c\)
- Binary search:
- Sample 4 points
- Recurse \(2 / 3\) (or \(1 / 3\) ) interval containing smallest sample
- Stop with interval size \(\varepsilon / c\)
- \(O\left(\log \frac{1}{\varepsilon}\right)\) time for \(f:[0,1] \rightarrow \mathbb{R}\)
```


One-Dimensional Convex Minimization

Intersection,
Minkowski
Sum, and
Width

Results
Dir. Width
Black Box
Diam vs Width
Minkowski
Properties
Origin
Duality
Minimization
d-Dimensional
Intersection
Dusley
Fatness
Fattening
Closest
Minkowski Apx
Width
Conclusion
Bibliography
Thanks

- Upper envelope is convex

■ Minimize convex function using evaluations

- Slope at most c
- Binary search:
- Sample 4 points
- Recurse $2 / 3$ (or $1 / 3$) interval containing smallest sample
- Stop with interval size ε / c

■ $O\left(\log \frac{1}{\varepsilon}\right)$ time for $f:[0,1] \rightarrow \mathbb{R}$

d-Dimensional Convex Minimization

d-Dimensional Convex Minimization

Approximate Polytope Intersection

- If A intersects B : answer yes

■ If the distance between A and B is more than $\varepsilon \cdot(\operatorname{diam}(A)+\operatorname{diam}(B))$: answer no
■ Otherwise either answer is ok

(1) Approximate polytope intersection

- Query time: $O\left(\right.$ polylog $\left.\frac{1}{\varepsilon}\right)$
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$
- Preprocessing time:
$O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$, for any $\alpha>0$

Dudley Approximation

Dudley's result: [Dud74]

A convex body K of diameter 1 can be ε-approximated by a polytope P with $O\left(1 / \varepsilon^{\frac{d-1}{2}}\right)$ facets.

- Fatten K into K^{\prime}
= Ball B of radius $2 \cdot \operatorname{diam}\left(K^{\prime}\right)$
- $\sqrt{\varepsilon}$-net N on B
- Closest point on K^{\prime} for each point in N
- P^{\prime} bounded by tangent hypernlanes
- Unfatten P^{\prime} into P

Dudley Approximation

Dudley's result: [Dud74]

A convex body K of diameter 1 can be ε-approximated by a polytope P with $O\left(1 / \varepsilon^{\frac{d-1}{2}}\right)$ facets.

■ Fatten K into K^{\prime}

- Ball B of radius $2 \cdot \operatorname{diam}\left(K^{\prime}\right)$
- $\sqrt{\varepsilon}$-net N on B
- Closest point on K^{\prime} for each point in N
- P^{\prime} bounded by tangent hyperplanes
- Unfatten P^{\prime} into P

Dudley Approximation

Intersection,
Minkowski
Sum, and
Width
Results
Dir. Width
Black Box
Diam vs Width
Minkowski
Properties
Origin
Duality
Minimization
d-Dimensional
Intersection
Dudley
Fatness
Fattening
Closest
Minkowski Apx
Width
Conclusion
Bibliography
Thanks

Dudley's result: [Dud74]

A convex body K of diameter 1 can be ε-approximated by a polytope P with $O\left(1 / \varepsilon^{\frac{d-1}{2}}\right)$ facets.

■ Fatten K into K^{\prime}

- Ball B of radius $2 \cdot \operatorname{diam}\left(K^{\prime}\right)$
- $\sqrt{\varepsilon}$-net N on B
- Closest point on K^{\prime} for each point in N
- P^{\prime} bounded by tangent hynernlanes
- Unfatten P^{\prime} into P

Dudley Approximation

Intersection,
Minkowski
Sum, and
Width
Results
Dir. Width
Black Box
Diam vs Width
Minkowski
Properties
Origin
Duality
Minimization
d-Dimensional
Intersection
Dudley
Fatness
Fattening
Closest
Minkowski Apx
Width
Conclusion
Bibliography
Thanks

Dudley's result: [Dud74]

A convex body K of diameter 1 can be ε-approximated by a polytope P with $O\left(1 / \varepsilon^{\frac{d-1}{2}}\right)$ facets.

■ Fatten K into K^{\prime}

- Ball B of radius $2 \cdot \operatorname{diam}\left(K^{\prime}\right)$
- $\sqrt{\varepsilon}$-net N on B
- Closest point on K^{\prime} for each point in N
- P^{\prime} bounded by tangent hyperplanes
- Unfatten P^{\prime} into P

Dudley Approximation

Intersection,

Minkowski
Sum, and
Width

Dudley's result: [Dud74]

A convex body K of diameter 1 can be ε-approximated by a polytope P with $O\left(1 / \varepsilon^{\frac{d-1}{2}}\right)$ facets.

■ Fatten K into K^{\prime}

- Ball B of radius $2 \cdot \operatorname{diam}\left(K^{\prime}\right)$
- $\sqrt{\varepsilon}$-net N on B
- Closest point on K^{\prime} for each point in N
- P^{\prime} bounded by tangent hyperplanes

■ Unfatten P^{\prime} into P

Dudley Approximation

Intersection,

Minkowski
Sum, and
Width

Dudley's result: [Dud74]

A convex body K of diameter 1 can be ε-approximated by a polytope P with $O\left(1 / \varepsilon^{\frac{d-1}{2}}\right)$ facets.

■ Fatten K into K^{\prime}

- Ball B of radius $2 \cdot \operatorname{diam}\left(K^{\prime}\right)$
- $\sqrt{\varepsilon}$-net N on B
- Closest point on K^{\prime} for each point in N

■ P^{\prime} bounded by tangent hyperplanes

Dudley Approximation

Fatness and John Ellipsoid

Intersection,

Minkowski
Sum, and
Width

Fatness

A convex body K is fat if it is sandwiched between balls of radii r and $c \cdot r$ for some constant c that does not depend on K

Fatten by scaling John Ellipsoid to a ball:
John Ellipsoid [bathol
For every convex body K in \mathbb{R}^{d}, there exist ellipsoids E_{1}, E_{2} such that $E_{1} \subseteq K \subseteq E_{2}$ and E_{2} is a d-scaling of E_{1}

Fatness and John Ellipsoid

Intersection,

Minkowski
Sum, and
Width

Fatness

A convex body K is fat if it is sandwiched between balls of radii r and $c \cdot r$ for some constant c that does not depend on K

Fatten by scaling John Ellipsoid to a ball:

John Ellipsoid [Joh48]

For every convex body K in \mathbb{R}^{d}, there exist ellipsoids E_{1}, E_{2} such that $E_{1} \subseteq K \subseteq E_{2}$ and E_{2} is a d-scaling of E_{1}

Fattening Minkowski Sums

Fattening Minkowski Sums

Intersection,

Minkowski
Sum, and
Width

■ Minkowski sum of ellipsoids is not an ellipsoid - It follows from John that:

For every convex body K in \mathbb{R}^{d}, there exist rectangles
R_{1}, R_{2} such that $R_{1} \subseteq K \subseteq R_{2}$ and R_{2} is a (3d/2)-scaling of R_{1}

- Store $R_{1}(A)$ with A
- For $A \oplus B$ use $R_{1}(A) \oplus R_{1}(B)$
- $R_{1}(A) \oplus R_{1}(B)$ has $O(1)$ vertices
- Fatten $A \oplus B$ scaling $R_{1}(A) \oplus R_{1}(B)$ into a fat polytope

Fattening Minkowski Sums

Intersection,

Minkowski
Sum, and
Width

■ Minkowski sum of ellipsoids is not an ellipsoid
■ It follows from John that:

For every convex body K in \mathbb{R}^{d}, there exist rectangles
R_{1}, R_{2} such that $R_{1} \subseteq K \subseteq R_{2}$ and R_{2} is a (3d/2)-scaling of R_{1}

- Store $R_{1}(A)$ with A
- For $A \oplus B$ use $R_{1}(A) \oplus R_{1}(B)$
- $R_{1}(A) \oplus R_{1}(B)$ has $O(1)$ vertices
- Fatten $A \oplus B$ scaling $R_{1}(A) \oplus R_{1}(B)$ into a fat polytope

Fattening Minkowski Sums

■ Minkowski sum of ellipsoids is not an ellipsoid

- It follows from John that:

- Store $R_{1}(A)$ with A
- For $A \oplus B$ use $R_{1}(A) \oplus R_{1}(B)$
- $R_{1}(A) \oplus R_{1}(B)$ has $O(1)$ vertices
- Fatten $A \oplus B$ scaling $R_{1}(A) \oplus R_{1}(B)$ into a fat polytope

Closest Point

Intersection,
 Minkowski
 Sum, and

Width

Approximate closest point

Given:

- K : preprocessed polytope
- q : query point with $\operatorname{dist}(q, K)=\Theta(1)$

Find:

- $p \in K$ with $\|p q\| \leq \operatorname{dist}(q, K)+\varepsilon$
- Binary search
- $O\left(\log \frac{1}{-}\right)$ intersection queries

Closest Point

Approximate closest point
Given:

- K : preprocessed polytope
- q: query point with $\operatorname{dist}(q, K)=\Theta(1)$

Find:

- $p \in K$ with $\|p q\| \leq \operatorname{dist}(q, K)+\varepsilon$
- Binary search
- $O\left(\log \frac{1}{\varepsilon}\right)$ intersection queries
\rightarrow approximate closest point

Closest Point

Approximate closest point
Given:

- K : preprocessed polytope
- q: query point with $\operatorname{dist}(q, K)=\Theta(1)$

Find:

- $p \in K$ with $\|p q\| \leq \operatorname{dist}(q, K)+\varepsilon$
- Binary search
- $O\left(\log \frac{1}{\varepsilon}\right)$ intersection queries
\rightarrow approximate closest point

Closest Point

Approximate closest point
Given:

- K : preprocessed polytope
- q: query point with $\operatorname{dist}(q, K)=\Theta(1)$

Find:

- $p \in K$ with $\|p q\| \leq \operatorname{dist}(q, K)+\varepsilon$
- Binary search
- $O\left(\log \frac{1}{\varepsilon}\right)$ intersection queries
\rightarrow approximate closest point

Closest Point

Approximate closest point
Given:

- K : preprocessed polytope
- q: query point with $\operatorname{dist}(q, K)=\Theta(1)$

Find:

- $p \in K$ with $\|p q\| \leq \operatorname{dist}(q, K)+\varepsilon$
- Binary search
- $O\left(\log \frac{1}{\varepsilon}\right)$ intersection queries
\rightarrow approximate closest point

Minkowski Sum Approximation

Intersection,

Minkowski
Sum, and
Width

■ Build directional width data structures for A and B

- Let $K=A \oplus B$

■ Run Dudley's algorithm

(2) Minkowski sum approximation

Time: $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$, for any $\alpha>0$

Minkowski Sum Approximation

Intersection,
 Minkowski
 Sum, and

- Build directional width data structures for A and B
- Let $K=A \oplus B$
- Run Dudley's algorithm
- Fatten using rectangles
- Answer closest point queries using polytope intersection

(2) Minkowski sum approximation

Time: $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$, for any $\alpha>0$

Minkowski Sum Approximation

■ Build directional width data structures for A and B

- Let $K=A \oplus B$

■ Run Dudley's algorithm

- Fatten using rectangles

- Answer closest point queries using

 polytope intersection
(2) Minkowski sum approximation

Time: $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$, for any $\alpha>0$

Minkowski Sum Approximation

Intersection,

Minkowski
Sum, and

Width

■ Build directional width data structures for A and B

- Let $K=A \oplus B$

■ Run Dudley's algorithm

- Fatten using rectangles
- Answer closest point queries using polytope intersection

(2) Minkowski sum approximation

Time: $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$, for any $\alpha>0$

Width Approximation

Intersection,

Minkowski
Sum, and
Width

- Compute Dudley of $A \oplus-A$
- Dudley has $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ bounding hyperplanes
- Find closest boundary point to the origin naively

(3) Approximate width

Time: $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$, for any $\alpha>0$

Width Approximation

Intersection,

Minkowski
Sum, and
Width

- Compute Dudley of $A \oplus-A$
- Dudley has $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ bounding hyperplanes
- Find closest boundary point to the origin naively
(3) Approximate width

Time: $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$, for any $\alpha>0$

Conclusion

Using appproximate directional width we solved:
1 Approximate polytope intersection queries in O (polylog$\frac{1}{\varepsilon}$) time with $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ storage
2 Approximation to Minkowski sum in $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$ time
3 Width approximation in $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{(d-1) / 2+\alpha}\right)$ time
Open problems:

- Remove the $1 / \varepsilon^{\alpha}$ factor
- Lower bounds (or improved upper bounds): Is $1 / \varepsilon^{(d-1) / 2}$ necessary?
- Diameter for non-Euclidean metrics
- Approximate the separation depth

Bibliography

Intersection,
Minkowski
Sum, and
Width
[AFM17a] S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership. In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270-288, 2017.
[AFM17b] S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal ε-kernel construction and related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1-15, 2017.
[Cha02] T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Internat. J. Comput. Geom. Appl., 12:67-85, 2002.
[Cha06] T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput. Geom. Theory Appl., 35(1):20-35, 2006.
[Cha17] T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational geometry In Proc. 33rd Internat. Sympos. Comput. Geom., pages 26:1-15, 2017.
[Dud74] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. Approx. Theory, 10(3):227-236, 1974.
[Joh48] F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, pages 187-204, 1948.

Intersection,

Minkowski
Sum, and
Width

Thank you!

Painting by Tomma Abts

