Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

# Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums

Sunil Arya Hong Kong University of Science and Technology

Guilherme D. da Fonseca INRIA Sophia-Antipolis, Université Clermont Auvergne, and LIMOS

> **David M. Mount** University of Maryland, College Park

> > ESA, August 2018

# Results

Intersection, Minkowski Sum, and Width

#### Results

Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

**1** Approximate polytope intersection in  $O(\text{polylog}\frac{1}{\epsilon})$  time

- Given two preprocessed polytopes
- Storage:  $O(1/\varepsilon^{(d-1)/2})$
- 2 Approximation to Minkowski sum in O(n log <sup>1</sup>/<sub>ε</sub> + 1/ε<sup>(d-1)/2+α</sup>) time
  Any α > 0
  Previously O(n + 1/ε<sup>d-1</sup>)
- **3** Width approximation in  $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{(d-1)/2+\alpha})$  time
  - Any  $\alpha > 0$
  - Previously  $O(n+1/\varepsilon^{d-1})$

# Results

Intersection, Minkowski Sum, and Width

#### Results

Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

**1** Approximate polytope intersection in  $O(\text{polylog}\frac{1}{\epsilon})$  time

- Given two preprocessed polytopes
- Storage:  $O(1/\varepsilon^{(d-1)/2})$
- **2** Approximation to Minkowski sum in  $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{(d-1)/2+\alpha})$  time
  - Any  $\alpha > 0$
  - Previously  $O(n+1/\varepsilon^{d-1})$
- **3** Width approximation in  $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{(d-1)/2+\alpha})$  time
  - Any  $\alpha > 0$
  - Previously  $O(n+1/\varepsilon^{d-1})$

# Results

Intersection, Minkowski Sum, and Width

#### Results

Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

# **1** Approximate polytope intersection in $O(\text{polylog}\frac{1}{\epsilon})$ time

- Given two preprocessed polytopes
- Storage:  $O(1/\varepsilon^{(d-1)/2})$
- **2** Approximation to Minkowski sum in  $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{(d-1)/2+\alpha})$  time
  - Any  $\alpha > 0$
  - Previously  $O(n+1/\varepsilon^{d-1})$
- **3** Width approximation in  $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{(d-1)/2+\alpha})$  time
  - Any  $\alpha > 0$
  - Previously  $O(n+1/\varepsilon^{d-1})$

# **Directional Width**

Intersection, Minkowski Sum, and Width

#### Exact directional width

#### Given:

- S: set of n points in  $\mathbb{R}^d$
- *v*: unit vector

#### Define width $_v(S)$ :

 Smallest distance between two hypeplanes orthogonal to v enclosing S

#### Approximate directional width:

- Given  $\varepsilon > 0$
- Find points  $p, q \in S$  with width<sub>v</sub>({p, q}) ≥ (1 -  $\varepsilon$ ) width<sub>v</sub>(S)



#### Results

# **Directional Width**

Intersection, Minkowski Sum, and Width

#### Exact directional width

#### Given:

- S: set of n points in  $\mathbb{R}^d$
- *v*: unit vector

#### Define width $_v(S)$ :

 Smallest distance between two hypeplanes orthogonal to v enclosing S

#### Approximate directional width:

- Given  $\varepsilon > 0$
- Find points  $p, q \in S$  with width<sub>v</sub>({p, q})  $\geq (1 - \varepsilon)$  width<sub>v</sub>(S)



#### Results

### Data Structure used as a Black Box

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



Preprocess into a data structure: [AFM17a,AFM17b]

- S: set of n points in  $\mathbb{R}^d$
- ε: small positive parameter

Given query vector v:

Answer approximate directional width

#### Complexity of directional width

- Query time:  $O(\log^2(1/\varepsilon))$
- Storage:  $O\left(1/\varepsilon^{\frac{d-1}{2}}\right)$
- Preprocessing time:  $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$  for any  $\alpha > 0$

### Data Structure used as a Black Box

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



Preprocess into a data structure: [AFM17a,AFM17b]

- S: set of n points in  $\mathbb{R}^d$
- ε: small positive parameter

Given query vector v:

Answer approximate directional width

#### Complexity of directional width

- Query time:  $O(\log^2(1/\varepsilon))$
- Storage:  $O\left(1/\varepsilon^{\frac{d-1}{2}}\right)$
- Preprocessing time:  $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$  for any  $\alpha > 0$

# Diameter vs Width

Intersection, Minkowski Sum, and Width

- **Diameter**:  $\max_v \operatorname{width}_v(S)$
- Width:  $\min_v \operatorname{width}_v(S)$
- Diameter: Approximated using  $O(1/\varepsilon^{\frac{d-1}{2}})$  directional width queries [Cha02] Time:  $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$  [AFM17b,Cha17]
- Width: Known algorithms take  $O(n + 1/\varepsilon^{d-1})$  time [Cha02,Cha06]
- Can we approximate the width faster?



# Diameter vs Width

Intersection, Minkowski Sum, and Width

- Diameter:  $\max_v \operatorname{width}_v(S)$
- Width:  $\min_v \operatorname{width}_v(S)$
- **Diameter:** Approximated using  $O(1/\varepsilon^{\frac{d-1}{2}})$  directional width queries [Cha02] Time:  $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$  [AFM17b,Cha17]
- Width: Known algorithms take  $O(n + 1/\varepsilon^{d-1})$  time [Cha02,Cha06]
- Can we approximate the width faster?



# Diameter vs Width

Intersection, Minkowski Sum, and Width

- Diameter:  $\max_v \operatorname{width}_v(S)$
- Width:  $\min_v \operatorname{width}_v(S)$
- **Diameter:** Approximated using  $O(1/\varepsilon^{\frac{d-1}{2}})$  directional width queries [Cha02] Time:  $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$  [AFM17b,Cha17]
- Width: Known algorithms take  $O(n + 1/\varepsilon^{d-1})$  time [Cha02,Cha06]
- Can we approximate the width faster?



# Minkowski Sum

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Minkowski sum

- A, B: Sets of points
- $\blacksquare \ A \oplus B = \{p+q: p \in A, \ q \in B\}$
- Applications: motion planning, CAD, biology, engineering...
- **Slow** to compute:  $O(n^2)$
- What if we approximate?

# Minkowski Sum

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Minkowski sum

- A, B: Sets of points
- $\bullet A \oplus B = \{p+q : p \in A, q \in B\}$
- Applications: motion planning, CAD, biology, engineering...
- Slow to compute:  $O(n^2)$
- What if we approximate?

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties

Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

#### 1 width<sub>v</sub>( $A \oplus B$ ) = width<sub>v</sub>(A) + width<sub>v</sub>(B)

- We can query  $A \oplus B$  using data structures for A and B
- Width of A: Min ||v|| for  $v \in \partial(A \oplus (-A))$ 
  - Easy if  $A \oplus (-A)$  is represented by hyperplanes

 $A \cap B \neq \emptyset \ \Leftrightarrow \ O \in A \oplus -B$ 

• We'll use in the next slide

#### Strategy to approximate width

Build hyperplane representation of  $A\oplus -A$  using only directional width queries



Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski

Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

#### $width_v(A \oplus B) = width_v(A) + width_v(B)$

- We can query  $A \oplus B$  using data structures for A and B
- 2 Width of A: Min ||v|| for  $v \in \partial(A \oplus (-A))$ 
  - Easy if  $A \oplus (-A)$  is represented by hyperplanes

 $A \cap B \neq \emptyset \iff O \in A \oplus -B$   $\blacksquare We'll use in the next slide$ 

#### Strategy to approximate width

Build hyperplane representation of  $A\oplus -A$  using only directional width queries



Intersection Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski

Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

• Easy if  $A \oplus (-A)$  is represented by

• We can query  $A \oplus B$  using

Properties

 $\exists A \cap B \neq \emptyset \Leftrightarrow O \in A \oplus -B$ 

We'll use in the next slide

#### Strategy to approximate width

Build hyperplane representation of  $A \oplus -A$ using only directional width queries



Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski

Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

#### 1 width<sub>v</sub>( $A \oplus B$ ) = width<sub>v</sub>(A) + width<sub>v</sub>(B)

- We can query  $A \oplus B$  using data structures for A and B
- **2** Width of A: Min ||v|| for  $v \in \partial(A \oplus (-A))$ 
  - Easy if  $A \oplus (-A)$  is represented by hyperplanes

 $\textbf{3} \ A \cap B \neq \emptyset \ \Leftrightarrow \ O \in A \oplus -B$ 

• We'll use in the next slide

#### Strategy to approximate width

Build hyperplane representation of  $A \oplus -A$  using only directional width queries



### Polytope Intersection

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Property 3

#### $A\cap B\neq \emptyset \ \Leftrightarrow \ O\in A\oplus -B$

- S: set of points
- Question: Is  $O \in \operatorname{conv}(S)$ ?
- Classic linear programming problem
- Faster approximate solution after preprocessing?
- Look at the dual

### Polytope Intersection

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Property 3

```
A\cap B\neq \emptyset \ \Leftrightarrow \ O\in A\oplus -B
```

- S: set of points
- Question: Is  $O \in \operatorname{conv}(S)$ ?
- Classic linear programming problem
- Faster approximate solution after preprocessing?
- Look at the dual

# Point-Hyperplane Duality

Intersection, Minkowski Sum, and Width

#### Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

#### Duality

Point  $(p_1, \ldots, p_d)$  maps to hyperplane  $x_d = p_1 x_1 + \cdots + p_{d-1} x_{d-1} - p_d$ 

#### We want to solve:

- Primal:  $O \in \operatorname{conv}(S)$
- Dual: hyperplane O\* : x<sub>d</sub> = 0 between upper and lower envelopes

Ne have access to:

- Primal: directional width
- Dual: vertical ray shooting





#### Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

# Point-Hyperplane Duality

Point  $(p_1, \ldots, p_d)$  maps to hyperplane  $x_d = p_1 x_1 + \cdots + p_{d-1} x_{d-1} - p_d$ 

#### We want to solve:

Duality

- Primal:  $O \in \operatorname{conv}(S)$
- Dual: hyperplane O\* : x<sub>d</sub> = 0 between upper and lower envelopes

#### Ne have access to:

- Primal: directional width
- Dual: vertical ray shooting



# Point-Hyperplane Duality

Intersection, Minkowski Sum, and Width

#### Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

# Duality

Point  $(p_1, \ldots, p_d)$  maps to hyperplane  $x_d = p_1 x_1 + \cdots + p_{d-1} x_{d-1} - p_d$ 

#### We want to solve:

- Primal:  $O \in \operatorname{conv}(S)$
- Dual: hyperplane O\* : x<sub>d</sub> = 0 between upper and lower envelopes

#### We have access to:

- Primal: directional width
- Dual: vertical ray shooting



Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Upper envelope is convex

- Minimize convex function using evaluations
- $\blacksquare \ {\sf Slope \ at \ most} \ c$
- Binary search:
  - Sample 4 points
  - Recurse 2/3 (or 1/3) interval containing smallest sample
  - Stop with interval size  $\varepsilon/c$
- $O(\log \frac{1}{\varepsilon})$  time for  $f:[0,1] \to \mathbb{R}$

Intersection, Minkowski Sum, and Width



- Upper envelope is convex
- Minimize convex function using evaluations
- Slope at most c
- Binary search:
  - Sample 4 points
  - Recurse 2/3 (or 1/3) interval containing smallest sample
  - $\blacksquare$  Stop with interval size  $\varepsilon/c$
- $\blacksquare \ O(\log \frac{1}{\varepsilon})$  time for  $f:[0,1] \to \mathbb{R}$

Intersection, Minkowski Sum, and Width



- Upper envelope is convex
- Minimize convex function using evaluations
- $\blacksquare \ {\sf Slope} \ {\sf at} \ {\sf most} \ c$
- Binary search:
  - Sample 4 points
  - Recurse 2/3 (or 1/3) interval containing smallest sample
  - Stop with interval size  $\varepsilon/c$
- $O(\log \frac{1}{\varepsilon})$  time for  $f:[0,1] \to \mathbb{R}$

Intersection, Minkowski Sum, and Width



- Upper envelope is convex
- Minimize convex function using evaluations
- Slope at most c
- Binary search:
  - Sample 4 points
  - Recurse 2/3 (or 1/3) interval containing smallest sample
  - Stop with interval size  $\varepsilon/c$
- $O(\log \frac{1}{\varepsilon})$  time for  $f: [0,1] \to \mathbb{R}$

Intersection, Minkowski Sum, and Width



- Upper envelope is convex
- Minimize convex function using evaluations
- $\blacksquare \ {\sf Slope} \ {\sf at} \ {\sf most} \ c$
- Binary search:
  - Sample 4 points
  - Recurse 2/3 (or 1/3) interval containing smallest sample
  - $\blacksquare$  Stop with interval size  $\varepsilon/c$
- $O(\log \frac{1}{\varepsilon})$  time for  $f: [0,1] \to \mathbb{R}$

Intersection, Minkowski Sum, and Width



- Upper envelope is convex
- Minimize convex function using evaluations
- $\blacksquare \ {\sf Slope} \ {\sf at} \ {\sf most} \ c$
- Binary search:
  - Sample 4 points
  - Recurse 2/3 (or 1/3) interval containing smallest sample
  - Stop with interval size  $\varepsilon/c$
- $O(\log \frac{1}{\varepsilon})$  time for  $f: [0,1] \to \mathbb{R}$

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



$$g(x_1) = \min_{x_2, \dots, x_d \in [0,1]^{d-1}} f(x_1, \dots, x_d)$$

- $g:[0,1] \to \mathbb{R}$  is convex
- Minimize  $g(\cdot)$
- Solve (d-1)-dimensional minimization to evaluate  $g(\cdot)$

$$t(1) = O(\log \frac{1}{\varepsilon})$$
$$t(d) = t(d-1) \cdot t(1)$$

 $\blacksquare \ t(d) = O(\log^d \frac{1}{\varepsilon})$  time for  $f:[0,1]^d \to \mathbb{R}$ 

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



$$g(x_1) = \min_{x_2, \dots, x_d \in [0,1]^{d-1}} f(x_1, \dots, x_d)$$

- $g:[0,1] \to \mathbb{R}$  is convex
- Minimize  $g(\cdot)$
- Solve (d-1)-dimensional minimization to evaluate  $g(\cdot)$

• 
$$t(1) = O(\log \frac{1}{\varepsilon})$$
  
•  $t(d) = t(d-1) \cdot t(1)$ 

•  $t(d) = O(\log^d \frac{1}{\varepsilon})$  time for  $f: [0,1]^d \to \mathbb{R}$ 

# Approximate Polytope Intersection

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width

Conclusion Bibliography

Thanks

- If A intersects B: answer **yes**
- If the distance between A and B is more than  $\varepsilon \cdot (\operatorname{diam}(A) + \operatorname{diam}(B))$ : answer **no**
- Otherwise either answer is ok

#### (1) Approximate polytope intersection

- Query time:  $O(\text{polylog}\frac{1}{\varepsilon})$
- Storage:  $O(1/\varepsilon^{(d-1)/2})$
- Preprocessing time:  $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{(d-1)/2+\alpha}),$ for any  $\alpha > 0$



Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Dudley's result: [Dud74]

A convex body K of diameter 1 can be  $\varepsilon$ -approximated by a polytope P with  $O(1/\varepsilon^{\frac{d-1}{2}})$  facets.

- **Fatten** K into K'
- Ball B of radius  $2 \cdot \operatorname{diam}(K')$
- $\blacksquare \sqrt{\varepsilon}\text{-net }N$  on B
- Closest point on K' for each point in N
- P' bounded by tangent hyperplanes
- Unfatten P' into P

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Dudley's result: [Dud74]

A convex body K of diameter 1 can be  $\varepsilon\text{-approximated}$  by a polytope P with  $O(1/\varepsilon^{\frac{d-1}{2}})$  facets.

- Fatten K into K'
- Ball B of radius  $2 \cdot \operatorname{diam}(K')$
- $\blacksquare \sqrt{\varepsilon}\text{-net }N$  on B
- Closest point on K' for each point in N
- P' bounded by tangent hyperplanes
- Unfatten P' into P

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Dudley's result: [Dud74]

A convex body K of diameter 1 can be  $\varepsilon$ -approximated by a polytope P with  $O(1/\varepsilon^{\frac{d-1}{2}})$  facets.

- Fatten K into K'
- Ball B of radius  $2 \cdot \operatorname{diam}(K')$
- $\blacksquare \sqrt{\varepsilon}\text{-net }N$  on B
- Closest point on K' for each point in N
- $\blacksquare$   $P^\prime$  bounded by tangent hyperplanes
- Unfatten P' into P

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Dudley's result: [Dud74]

A convex body K of diameter 1 can be  $\varepsilon$ -approximated by a polytope P with  $O(1/\varepsilon^{\frac{d-1}{2}})$  facets.

- Fatten K into K'
- Ball B of radius  $2 \cdot \operatorname{diam}(K')$
- $\sqrt{\varepsilon}$ -net N on B
- Closest point on K' for each point in N
- P' bounded by tangent hyperplanes
- $\blacksquare$  Unfatten P' into P

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Dudley's result: [Dud74]

A convex body K of diameter 1 can be  $\varepsilon\text{-approximated}$  by a polytope P with  $O(1/\varepsilon^{\frac{d-1}{2}})$  facets.

- Fatten K into K'
- Ball B of radius  $2 \cdot \operatorname{diam}(K')$
- $\sqrt{\varepsilon}$ -net N on B
- Closest point on K' for each point in N
- P' bounded by tangent hyperplanes
- $\blacksquare$  Unfatten P' into P

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Dudley's result: [Dud74]

A convex body K of diameter 1 can be  $\varepsilon$ -approximated by a polytope P with  $O(1/\varepsilon^{\frac{d-1}{2}})$  facets.

- Fatten K into K'
- Ball B of radius  $2 \cdot \operatorname{diam}(K')$
- $\sqrt{\varepsilon}$ -net N on B
- Closest point on K' for each point in N
- P' bounded by tangent hyperplanes

Unfatten P' into P

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Dudley's result: [Dud74]

A convex body K of diameter 1 can be  $\varepsilon$ -approximated by a polytope P with  $O(1/\varepsilon^{\frac{d-1}{2}})$  facets.

- Fatten K into K'
- Ball B of radius  $2 \cdot \operatorname{diam}(K')$
- $\sqrt{\varepsilon}$ -net N on B
- Closest point on K' for each point in N
- P' bounded by tangent hyperplanes
- Unfatten P' into P

# Fatness and John Ellipsoid

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Fatness

A convex body K is fat if it is sandwiched between balls of radii r and  $c \cdot r$  for some constant c that does not depend on K

Fatten by scaling John Ellipsoid to a ball:

#### ohn Ellipsoid [Joh48]

For every convex body K in  $\mathbb{R}^d$ , there exist ellipsoids  $E_1, E_2$  such that  $E_1 \subseteq K \subseteq E_2$  and  $E_2$ is a *d*-scaling of  $E_1$ 

# Fatness and John Ellipsoid

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Eatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



#### Fatness

A convex body K is fat if it is sandwiched between balls of radii r and  $c \cdot r$  for some constant c that does not depend on K

Fatten by scaling John Ellipsoid to a ball:

#### John Ellipsoid [Joh48]

For every convex body K in  $\mathbb{R}^d$ , there exist ellipsoids  $E_1, E_2$  such that  $E_1 \subseteq K \subseteq E_2$  and  $E_2$ is a *d*-scaling of  $E_1$ 

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



×

Minkowski sum of ellipsoids is not an ellipsoid
 It follows from John that:

- Store  $R_1(A)$  with A
- For  $A \oplus B$  use  $R_1(A) \oplus R_1(B)$
- $R_1(A) \oplus R_1(B)$  has O(1) vertices
- Fatten  $A \oplus B$  scaling  $R_1(A) \oplus R_1(B)$  into a fat polytope

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



×

- Minkowski sum of ellipsoids is not an ellipsoid
- It follows from John that:

- Store  $R_1(A)$  with A
- For  $A \oplus B$  use  $R_1(A) \oplus R_1(B)$
- $R_1(A) \oplus R_1(B)$  has O(1) vertices
- Fatten  $A \oplus B$  scaling  $R_1(A) \oplus R_1(B)$  into a fat polytope

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



×

- Minkowski sum of ellipsoids is not an ellipsoid
- It follows from John that:

- Store  $R_1(A)$  with A
- For  $A \oplus B$  use  $R_1(A) \oplus R_1(B)$
- $R_1(A) \oplus R_1(B)$  has O(1) vertices
- Fatten  $A \oplus B$  scaling  $R_1(A) \oplus R_1(B)$  into a fat polytope

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks





- Minkowski sum of ellipsoids is not an ellipsoid
- It follows from John that:

- Store  $R_1(A)$  with A
- For  $A \oplus B$  use  $R_1(A) \oplus R_1(B)$
- $R_1(A) \oplus R_1(B)$  has O(1) vertices
- Fatten  $A \oplus B$  scaling  $R_1(A) \oplus R_1(B)$  into a fat polytope

#### Approximate closest point

Given:

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest

Minkowski Apx Width Conclusion Bibliography Thanks

- *K*: preprocessed polytope
- q: query point with dist $(q, K) = \Theta(1)$

- $p \in K$  with  $||pq|| \leq \operatorname{dist}(q, K) + \varepsilon$
- Binary search
- $O(\log \frac{1}{2})$  intersection queries



Results

Origin

Duality Minimization

Fatness Fattening

Closest Minkowski Apx

Width Conclusion

Bibliography Thanks

d-Dimensional Intersection Dudley

#### Approximate closest point

Given:

Dir. Width Black Box Diam vs Width Minkowski Properties  $K: \text{ preprocessed polytope} \\ q: \text{ query point with } \operatorname{dist}(q,K) = \Theta(1)$ 

- $p \in K$  with  $\|pq\| \leq \operatorname{dist}(q, K) + \varepsilon$
- Binary search
- $O(\log \frac{1}{\varepsilon})$  intersection queries  $\rightarrow$  approximate closest point



Results Dir. Width

Black Box Diam vs Width

Minkowski Properties Origin

Duality Minimization

Fatness Fattening

Closest Minkowski Apx

Width Conclusion

Bibliography Thanks

d-Dimensional Intersection Dudley

#### Approximate closest point

Given:

- K: preprocessed polytope
  - q: query point with  $dist(q, K) = \Theta(1)$

- $p \in K$  with  $\|pq\| \leq \operatorname{dist}(q, K) + \varepsilon$
- Binary search
- $O(\log \frac{1}{\varepsilon})$  intersection queries  $\rightarrow$  approximate closest point



Results Dir. Width

Black Box Diam vs Width

Minkowski Properties Origin

Duality Minimization

Fatness Fattening

Closest Minkowski Apx

Width Conclusion

Bibliography Thanks

d-Dimensional Intersection Dudley

#### Approximate closest point

Given:

- K: preprocessed polytope
  - q: query point with  $dist(q, K) = \Theta(1)$ Find:
    - $p \in K$  with  $||pq|| \leq \operatorname{dist}(q, K) + \varepsilon$
    - Binary search
    - $O(\log \frac{1}{\varepsilon})$  intersection queries  $\rightarrow$  approximate closest point



Results Dir. Width

Black Box Diam vs Width

Minkowski Properties Origin

Duality Minimization

Fatness Fattening

Closest Minkowski Apx

Width Conclusion

Bibliography Thanks

d-Dimensional Intersection Dudley

#### Approximate closest point

Given:

- *K*: preprocessed polytope
  - q: query point with  $dist(q, K) = \Theta(1)$

- $p \in K$  with  $\|pq\| \leq \operatorname{dist}(q, K) + \varepsilon$
- Binary search
- $O(\log \frac{1}{\varepsilon})$  intersection queries  $\rightarrow$  approximate closest point



Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



- Build directional width data structures for A and B
- $\blacksquare \ {\rm Let} \ K = A \oplus B$
- Run Dudley's algorithm
  - Fatten using rectangles
  - Answer closest point queries using polytope intersection

#### (2) Minkowski sum approximation

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



- Build directional width data structures for A and B
- Let  $K = A \oplus B$
- Run Dudley's algorithm
  - Fatten using rectangles
  - Answer closest point queries using polytope intersection

#### (2) Minkowski sum approximation

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



- Build directional width data structures for A and B
- Let  $K = A \oplus B$
- Run Dudley's algorithm
  - Fatten using rectangles
  - Answer closest point queries using polytope intersection

#### (2) Minkowski sum approximation

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



- Build directional width data structures for A and B
- Let  $K = A \oplus B$
- Run Dudley's algorithm
  - Fatten using rectangles
  - Answer closest point queries using polytope intersection

#### (2) Minkowski sum approximation

# Width Approximation

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

- Compute Dudley of  $A \oplus -A$
- Dudley has  $O(1/\varepsilon^{(d-1)/2})$  bounding hyperplanes
- Find closest boundary point to the origin naively

#### (3) Approximate width



# Width Approximation

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudlev Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

- Compute Dudley of  $A \oplus -A$
- Dudley has  $O(1/\varepsilon^{(d-1)/2})$  bounding hyperplanes
- Find closest boundary point to the origin naively

#### (3) Approximate width

Time: 
$$O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{(d-1)/2+\alpha})$$
, for any  $\alpha > 0$ 



# Conclusion

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks

Using appproximate directional width we solved:

- Approximate polytope intersection queries in  $O(\text{polylog}\frac{1}{\varepsilon})$  time with  $O(1/\varepsilon^{(d-1)/2})$  storage
- **2** Approximation to Minkowski sum in  $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{(d-1)/2+\alpha})$  time
- **3** Width approximation in  $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{(d-1)/2+\alpha})$  time

Open problems:

- $\blacksquare$  Remove the  $1/\varepsilon^{\alpha}$  factor
- Lower bounds (or improved upper bounds): Is  $1/\varepsilon^{(d-1)/2}$  necessary?
- Diameter for non-Euclidean metrics
- Approximate the separation depth

# Bibliography

Intersection, Minkowski Sum, and Width

- [AFM17a] S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership. In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270–288, 2017.
- [AFM17b] S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal ε-kernel construction and related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1–15, 2017.
  - [Cha02] T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. *Internat. J. Comput. Geom. Appl.*, 12:67–85, 2002.
  - [Cha06] T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput. Geom. Theory Appl., 35(1):20–35, 2006.
  - [Cha17] T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational geometry In Proc. 33rd Internat. Sympos. Comput. Geom., pages 26:1–15, 2017.
  - [Dud74] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. *Approx. Theory*, 10(3):227–236, 1974.
  - [Joh48] F. John. Extremum problems with inequalities as subsidiary conditions. In *Studies* and *Essays Presented to R. Courant on his 60th Birthday*, pages 187–204, 1948.

Intersection, Minkowski Sum, and Width

Results Dir. Width Black Box Diam vs Width Minkowski Properties Origin Duality Minimization d-Dimensional Intersection Dudley Fatness Fattening Closest Minkowski Apx Width Conclusion Bibliography Thanks



# Thank you!

Painting by Tomma Abts