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Near-Optimal ¢-Kernel Construction and Related Problems

Sunil Arya*

Abstract

The computation of (i) e-kernels, (ii) approximate di-
ameter, and (iii) approximate bichromatic closest pair
are fundamental problems in geometric approxima-
tion. In each case the input is a set of points in R?
for a constant dimension d and an approximation pa-
rameter € > 0. In this paper, we describe new al-
gorithms for these problems, achieving significant im-
provements to the exponent of the e-dependency in
their running times, from roughly d to d/2 for the
first two problems and from roughly d/3 to d/4 for
problem (iii).

These results are all based on an efficient decompo-
sition of a convex body using a hierarchy of Macbeath
regions, and contrast to previous solutions that de-
compose space using quadtrees and grids. By further
application of these techniques, we also show that it
is possible to obtain near-optimal preprocessing time
for the most efficient data structures to approximately
answer queries for (iv) nearest-neighbor searching, (v)
directional width, and (vi) polytope membership.

1 Introduction

In this paper we present new faster algorithms to sev-
eral fundamental geometric approximation problems
involving point sets in d-dimensional space. In par-
ticular, we present approximation algorithms for e-
kernels, diameter, and bichromatic closest pair. Our
results arise from a recently developed shape-sensitive
approach to approximating convex bodies, which is
based on the classical concept of Macbeath regions.
This approach has been applied to computing area-
sensitive bounds for polytope approximation [6], poly-
tope approximations with low combinatorial complex-
ity [7], answering approximate polytope-membership
queries [8], and approximate nearest-neighbor search-
ing [8]. The results of [8] demonstrated the existence
of data structures for these query problems but did
not discuss preprocessing in detail. We complete the
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story by presenting efficient algorithms for building
data structures for three related queries: approximate
polytope membership, approximate directional width,
and approximate nearest-neighbors.

Throughout, we assume that the dimension d is a
constant. Our running times will often involve ex-
pressions of the form 1/e*. In such cases, a > 0 is
constant that can be made arbitrarily small. The ap-
proximation parameter € is treated as an asymptotic
variable that approaches 0.

We have learned recently of independent results
by Timothy Chan for many of the above problems
in which the complexity bounds are very similar to
ours [17]. Remarkably, the computational techniques
seem to be very different, based on Chebyshev poly-
nomials.

The results presented here are based on the up-
coming paper on the 33rd International Symposium
on Computational Geometry (SoCG 2017).

2 Static Results

Kernel. Given a set S of n points in R? and an ap-
proximation parameter € > 0, an e-coreset is an (ide-
ally small) subset of S that approximates some mea-
sure over S (see [2] for a survey). Given a nonzero
vector v € R?, the directional width of S in direc-
tion v, width,(S) is the minimum distance between
two hyperplanes that enclose S and are orthogonal
to v. A coreset for the directional width (also known
as an e-kernel and as a coreset for the extent mea-
sure) is a subset @ C S such that width,(Q) >
(1 — &) width,(S), for all v € R Kernels are among
the most fundamental constructions in geometric ap-
proximation, playing a role similar to that of con-
vex hulls in exact computations. Kernels have been
used to obtain approximation algorithms to several
problems such as diameter, minimum width, con-
vex hull volume, minimum enclosing cylinder, min-
imum enclosing annulus, and minimum-width cylin-
drical shell [1, 2].

The concept of e-kernels was introduced by Agar-
wal et al. [1]. The existence of e-kernels with
O(1/¢@=1/2) points is implied in the works of Dud-
ley [18] and Bronshteyn and Ivanov [15], and this is
known to be optimal in the worst case. Agarwal et
al. [1] demonstrated how to compute such a kernel in
O(n +1/3(4=1/2) time, which reduces to O(n) when
n = Q(1/34=1/2) While less succinct e-kernels with
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O(1/£%=1) points can be constructed in time O(n)
time for all n [1, 13], no linear-time algorithm is known
to build an e-kernel of optimal size. Hereafter, we use
the term e-kernel to refer exclusively to an e-kernel of
size O(1/(@=1/2),

Chan [16] showed that an e-kernel can be con-
structed in O((n+1/£77?)log 1) time, which is nearly
linear when n = Q(1/¢%2). He posed the open prob-
lem of obtaining a faster algorithm. A decade later,
Arya and Chan [4] showed how to build an e-kernel in
roughly O(n + y/n/e%/?) time using discrete Voronoi
diagrams. In this paper, we attain the following near-
optimal construction time.

Theorem 1 Give n points in R? and an approx-
imation parameter ¢ > 0, it is possible to con-
struct an e-kernel of S with O(1/(@=1/2) points in
O(nlog L + 1/eld=1/2+e) time.

We note that when n = o(1/e(¢=1/2)  the input
S is already an e-kernel and therefore an O(n) time
algorithm is trivial. Because the worst-case output
size is O(1/e(4=1)/2), we may assume that n is at least
this large, for otherwise we can simply take .S itself to
be the kernel. Since 1/e* dominates log %, the above
running time can be expressed as O(n/e®), which is
nearly linear given that « is arbitrarily small.

Diameter. An important application of e-kernels is
to approximate the diameter of a point set. Given n
data points, the diameter is defined to be the max-
imum distance between any two data points. An
e-approzimation of the diameter is a pair of points
whose distance is at least (1 — €) times the exact di-
ameter. There are multiple algorithms to approxi-
mate the diameter [1, 3, 4, 12, 16]. The fastest run-
ning times are O((n+1/£%7?)log 1) [16] and roughly
O(n + /n/e¥?) [4]. The algorithm from [16] essen-
tially computes an e-kernel ¢ and then determines
the maximum value of width,(Q)) among a set of
k = O(1/e(4=1/2) directions v by brute force [1]. Dis-
crete Voronoi diagrams [4] permit this computation in
roughly O(n + y/n/e%?) time. Therefore, combining
the kernel construction of Theorem 1 with discrete
Voronoi diagrams [4], we reduce n to O(1/e(4=1)/2)
and obtain an algorithm to e-approximate the diame-
ter in roughly O(n+1/3%/4) time. However, we show
that it is possible to obtain a much faster algorithm,
as presented in the following theorem.

Theorem 2 Given n points in R% and an approx-
imation parameter € > 0, it is possible to com-
pute an e-approximation to the diameter of S in
O(nlog 2 + 1/eld=D/2+e) time.

Bichromatic Closest Pair. In the bichromatic clos-
est pair (BCP) problem, we are given n points from

two sets, designated red and blue, and we want to
find the closest red-blue pair. In the e-approximate
version, the goal is to find a red-blue pair of points
whose distance is at most (1+¢) times the exact BCP
distance. Approximations to the BCP problem were
introduced in [19], and the most efficient randomized
approximation algorithm runs in roughly O(n/e%/?3)
expected time [4]. We present the following result.

Theorem 3 Given n red and blue points in R and
an approximation parameter € > 0, there is a random-
ized algorithm that computes an e-approximation to
the BCP in O(n/c¥**®) expected time.

3 Data Structure Results

Polytope membership. Let P denote a convex poly-
tope in R, represented as the bounded intersection of
n halfspaces. The polytope membership problem con-
sists of preprocessing P so that it is possible to deter-
mine efficiently whether a given query point ¢ € R
lies within P. In the e-approximate version, we con-
sider an expanded convex body K O P. A natural
way to define this expansion would be to consider the
set of points that lie within distance ¢ - diam(P) of P,
thus defining a body whose Hausdorff distance from
P is e - diam(P). However, this definition has the
shortcoming that it is not sensitive to the directional
width of P. Instead, we define K as follows. For any
nonzero vector v € R?, consider the two supporting
hyperplanes for P that are normal to v. Translate
each of these hyperplanes outward by a distance of
¢ - width, (P), and consider the closed slab-like region
lying between them. Define K to be the intersec-
tion of this (infinite) set of slabs. This is clearly a
stronger approximation than the Hausdorff-based def-
inition. An e-approximate polytope membership query
(e-APM query) returns a positive result if the query
point ¢ is inside P, a negative result if ¢ is outside K,
and may return either result otherwise.

We recently proposed an optimal data structure
to answer approximate polytope membership queries,
but efficient preprocessing remained an open prob-
lem [8]. In this paper, we present a similar data struc-
ture that not only attains optimal storage and query
time, but can also be preprocessed in near-optimal
time.

Theorem 4 Given a convex polytope P in R? rep-
resented as the intersection of n halfspaces and an
approximation parameter € > 0, there is a data struc-
ture that can answer e-APM queries with query time
O(log %), space O(1/(@=1)/2) " and preprocessing time
1 (d-1)/24«

O(nlog < +1/e ).

LOur earlier works on e-APM queries [5, 8] use the weaker
Hausdorff form to define the problem, but the solutions pre-

sented there actually achieve the stronger direction-sensitive
form.
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Directional width. Applying the previous data
structure in the dual space, we obtain a data struc-
ture for the following e-approzimate directional width
problem, which is closely related to e-kernels. Given a
set S of n points in R? and an approximation param-
eter ¢ > 0, the goal is to preprocess S to efficiently
g-approximate Widthv(S), for a nonzero query vector
v. We present the following result.

Theorem 5 Given n points in R% and an approxima-
tion parameter € > 0, there is a data structure that
can answer e-approximate directional width queries
with query time O(log? 1), space O(1/\@=1/2) " and
preprocessing time O(nlog L + 1/g(d=1D/2+a),

Nearest Neighbor. Let S be a set of n points in R%.
Given any ¢ € R?, an e-approzimate nearest neighbor
(ANN) of ¢ is any point of S whose distance from ¢ is
at most (1 +¢) times the distance to ¢’s closest point
in S. The objective is to preprocess S in order to an-
swer such queries efficiently. Data structures for ap-
proximate nearest neighbor searching (in fixed dimen-
sions) have been proposed by several authors, offer-
ing space-time tradeoffs (see [8] for an overview of the
tradeoffs). Applying the reduction from approximate
nearest neighbor to approximate polytope member-
ship established in [5] together with Theorem 4, we
obtain the following result, which matches the best
bound [8] up to an O(log é) factor in the query time,
but offers faster preprocessing time.

Theorem 6 Given n points in R?, an approxima-
tion parameter ¢ > 0, and m such that 1ogé <
m < 1/(e¥?log 1), there is a data structure that
can answer e-ANN queries with query time O(logn +
(log L)/(m - €¥/2)) space O(nm), and preprocessing
time O(nlognlog L + nm/e®).

4 Techniques

In contrast to previous kernel constructions, which are
based on grids and the execution of Bronshteyn and
Ivanov’s algorithm, our construction employs a clas-
sical structure from the theory of convexity, called
Macbeath regions [20]. Macbeath regions have found
numerous uses in the theory of convex sets and the
geometry of numbers (see Bérdny [11] for an excellent
survey). They have also been applied to several prob-
lems in the field of computational geometry. How-
ever, most previous results were either in the form
of lower bounds [9, 10, 14] or focused on existential
results [6, 7, 21].

In [8] the authors introduced a data structure based
on a hierarchy of ellipsoids based on Macbeath regions
to answer approximate polytope membership queries,
but the efficient computation of the hierarchy was not
considered. In this paper, we show how to efficiently

Figure 1: Two levels of the hierarchy of ellipsoids
based on Macbeath regions.

construct the Macbeath regions that form the basis
of this hierarchy.

Let P denote a convex polytope in R%. Each level
7 in the hierarchy corresponds to a d;-approximation
of the boundary of P by a set of O(l/&gdil)ﬂ) el-
lipsoids, where 6; = ©(1/2%). Each ellipsoid has
O(1) children, which correspond to the ellipsoids of
the following level that approximate the same por-
tion of the boundary (see Figure 1). The hierarchy
starts with o = ©(1) and stops after O(log §) lev-
els when §; = §, for a desired approximation . We
present a simple algorithm to construct the hierarchy
in O(n + 1/6%(4=1/2) time. The polytope P can be
presented as either the intersection of n halfspaces or
the convex hull of n points.

Our algorithm to compute an e-kernel in time
O(nlog 1 + 1/e(@=1/2+e) (Theorem 1) is conceptu-
ally quite simple. Since the time to build the e-
approximation hierarchy for the convex hull is pro-
hibitively high, we use an approximation parame-
ter 6 = £'/3 to build a d-approximation hierarchy
in O(n + 1/e(@=1/2) time. By navigating through
this hierarchy, we partition the n points among the
leaf Macbeath ellipsoids in O(nlog 1) time, discard-
ing points that are too far from the boundary. We
then compute an (g/0)-kernel for the set of points in
each leaf ellipsoid and return the union of the kernels
computed.

Given an algorithm to compute an e-kernel in
O(n logé + 1/e44=1) time, the previous procedure
produces an e-kernel in O(nlog 1 + 1/ (@) time
where t' = (4t + 1)/6. Bootstrapping the construc-
tion a constant number of times, the value of ¢ goes
down from 1 to a value that is arbitrarily close to 1/2.
This discrepancy accounts for the O(1/e%) factors in
our running times.

To prove Theorem 4, we use our kernel construc-
tion in the dual space to efficiently build a polytope
membership data structure. The key idea is to com-
pute multiple kernels in order to avoid examining the
whole polytope. We build a §-approximate hierarchy
(for a proper value of §) in O(n + 1/63(4=1/2) time.
Each leaf node of the data structure is associated with
a certain portion of the polytope, called a shadow.
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We then build an (¢/§)-kernel (in the dual space) for
the shadow of each leaf node, followed by an (g/6)-
approximate polytope membership data structure for
each kernel. Given a query point ¢, the §-approximate
hierarchy is able to either correctly answer the query
(to the desired approximation ¢ < §) or to locate a
leaf shadow that contains the query point. In the
latter case, we transfer the query to the data struc-
ture associated with that leaf node. The aforemen-
tioned construction reduces the preprocessing time for
an approximate polytope membership data structure.
Again, we use bootstrapping to obtain a near-optimal
preprocessing time.

The remaining theorems follow from Theorems 1
and 4, together with several known reductions.
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