Linear-Time Approximation Algorithms for Geometric Intersection Graphs

Guilherme D. da Fonseca
Celina M. H. de Figueiredo
Vinícius G. Pereira de Sá

2015

Geometric Intersection Graphs

- Geometric intersection graph: Intersection graph of geometric objects
- Objects may be disks, unit disks, squares, unit squares, rectangles, etc
- Different graph classes depending on the object type
- Recognition is NP-hard for all objects listed above (and may not be in NP)
- Generalize interval graphs to higher dimensions

Unit Disk Graphs

- Unit disk graph (UDG): Intersection graph of unit-disks in the plane
- Applications in wireless networks
- Neither planar nor perfect: K_{i} and C_{i} are UDGs for all i
- Vertex coordinates (disk centers) are real numbers

Unit Disk Graph Algorithms

- Two types of algorithms:
- Geometric: vertex coordinates
- Graph-based: adjacency information only
- PTASs for several problems:
- Minimum Dominating Set
- Maximum (Weight) Independent Set
- Minimum (Weight) Vertex Cover
- Minimum Connected Dominating Set
- ...

Our assumptions

- Vertex coordinates as input (geometric algorithm)
- Floor function and $O(1)$-time hashing

PTAS vs Constant Approximations

- PTASs for UDGs have high complexity:
$O\left(n^{10}\right)$ to 4-approximate the minimum dominating set
- Faster constant-factor approximations exist:
- 5-approximation in $O(n)$ time
- 4.89-approximation in $O(n \log n)$ time
- 4.78-approximation in $O\left(n^{4}\right)$ time
- 4-approximation in $O\left(n^{6} \log n\right)$ time
- 3-approximation in $O\left(n^{11} \log n\right)$ time

Our Results for UDGs

New method to obtain $O(n)$-time approximations:

- Min Dominating Set for UDGs: $(4+\varepsilon)$-approximation
- Works for several geometric intersection graphs
- Works for several graph problems

Overview of Our Method

(1) Break the original problem into subproblems of $O(1)$ diameter (shifting strategy)
(2) Build a coreset with $O(1)$ objects for each subproblem, which gives an α-approximation to the subproblem
(3) Solve the coreset optimally
(4) Combine the solutions into an $(\alpha+\varepsilon)$-approximation

Maximum-Weight Independent Set for UDGs

- Independent Set: Subset of points with minimum distance >2
- Maximum-Weight Independent Set:
- Points have real weights

Previous results:

- $(1+\varepsilon)$-approx in $O\left(n^{4\lceil 2 / \varepsilon \sqrt{3}\rceil}\right)$ time: 4-approximation in $O\left(n^{4}\right)$ time
- 5-approximation in $O(n \log n)$ time Our result:
- $(4+\varepsilon)$-approximation in $O(n)$ time

Breaking the Problem into Subproblems

Break problem into $O(1)$-diameter subproblems (shifting strategy):

- Set k to smallest integer with $\left(\frac{k-2}{k}\right)^{2} \geq \frac{4}{4+\varepsilon}$
- Use grids of size $2 k$
- Create k^{2} shifted grids with even origins
- Contract grid cells by 1 in all directions
- Each contracted cell is a subproblem

Analysis of Shifting Strategy

- Contracted cells are distance 2 apart: union preserves independence
- 4-approximation in yellow area
- Yellow area gets much bigger than white area as $k \rightarrow \infty$
- Expected number of OPT points in white area is small
- Maximum is larger than expectation

Constant-Diameter Coreset

- Coreset: Subset with $O(1)$ points that approximates the original solution
- Algorithm:
- Create grid with cells of diameter $0.29<(2-\sqrt{2}) / 2$
- Select a point of maximum weight inside each cell (coreset)
- Find the optimal independent set among the selected points
- We need to prove it gives a 4-approximation!

Proof of 4-Approximation

- Consider the optimal independent set
- Moving points by at most 0.29 , we obtain a planar graph
- Planar graphs are 4-colorable
- The color of maximum weight is a 4-approximation

Lower Bound of 3.25

- P_{1} : Set of points from the figure
- P_{2} : Multiply coordinates from P_{1} by $(1+\varepsilon)$ and weights by $(1-\varepsilon)$
- $P_{1} \cup P_{2}$ gives a lowerbound of 3.25
- P_{2} is independent
- MWIS: P_{2}, with $w\left(P_{2}\right) \approx 3.25$
- Coreset: P_{1}
- P_{1} has MWIS with weight 1

Minimum Dominating Set for UDGs

Dominating Set: Subset of points D such that all input points are within distance at most 2 from a point in D

- 5-approximation in $O(n)$ time
- 4.89-approximation in $O(n \log n)$ time
- 4.78-approximation in $O\left(n^{4}\right)$ time
- 4-approximation in $O\left(n^{6} \log n\right)$ time
- 3-approximation in $O\left(n^{11} \log n\right)$ time

Minimum Dominating Set for UDGs

Dominating Set: Subset of points D such that all input points are within distance at most 2 from a point in D

- 5-approximation in $O(n)$ time
- 4.89-approximation in $O(n \log n)$ time
- 4.78-approximation in $O\left(n^{4}\right)$ time new $(4+\varepsilon)$-approximation in $O(n)$ time
- 4-approximation in $O\left(n^{6} \log n\right)$ time
- 3-approximation in $O\left(n^{11} \log n\right)$ time

Minimum Dominating Set Algorithm

- Break the problem into subproblems of $O(1)$ diameter using the shifting strategy
- Cells need to be expanded rather than contracted
- We'll present only the coreset

Constant-Diameter Coreset

- Algorithm:
- Create grid with cells of diameter $\gamma=0.24$ (any positive γ satisfying

$$
\sqrt{8-8 \cos \left(\frac{\frac{\pi}{2}+2 \arcsin \left(\frac{\gamma}{2}\right)}{2}\right)}+\gamma<2
$$

suffices)

- Select the points of min and max x and y coordinates
- Find the optimal dominating set among the coreset points, but dominating all points
- We need to prove it's a 4-approximation!

Proof of 4-Approximation

- For each point p in OPT,
- either p is in the coreset (great!)
- or there are points q_{1}, q_{2} near p with angle $\geq 90^{\circ}$
- We dominate all points dominated by p using at most 4 points $q_{1}, q_{2}, q_{3}, q_{4}$

Lower Bound of 4

- 4-approximation

Optimal solution
\times Remaining disks

Minimum Vertex Cover for UDGs

- Vertex Cover: Complement of independent set
- Linear-time PTAS already known
- Minimum vertex cover corresponds to maximum independent set
- C: Vertex cover, I: Independent set, $|C|=n-|I|$
- Approximation ratio is not preserved

Minimum Vertex Cover for UDGs

- Vertex Cover: Complement of independent set
- Linear-time PTAS already known
- Minimum vertex cover corresponds to maximum independent set
- C: Vertex cover, I: Independent set, $|C|=n-|I|$
- Approximation ratio is not preserved
- Bad when $|C| \ll n$
- Great when $|I| \ll n$

Linear-Time Approximation Scheme

- Break the problem into subproblems of $O(1)$ diameter using the shifting strategy
- A set of diameter d has at most $(d+2)^{2} / 4$ independent vertices
- If n is sufficiently small (constant), solve the problem optimally $\left(n<\left(1+\frac{3}{4 \varepsilon}\right) \frac{(d+2)^{2}}{4}\right)$
- Otherwise, compute the 4-approximate maximum independent set and use its complement

A Subclass of Rectangle Graphs

- Rectangle graph: Intersection graph of axis-aligned rectangles in the plane
- Independent set: No constant factor approximation known
- Our subclass: Width and height between 1 and λ for constant λ
- PTASs exist for this subclass (very high complexity)
- Our result: Linear-time $(6+\varepsilon)$-approximation to the maximum-weight independent set

Constant-Diameter Coreset

- A rectangle q centered at $\left(x_{q}, y_{q}\right)$ with width w_{q} and height h_{q} is a point $\left(x_{q}, y_{q}, w_{q}, h_{q}\right) \in \mathbb{R}^{4}$
- Coreset: Subset with $O(1)$ points that approximates the original solution
- Algorithm:
- Create 4-dimensional grid with cells of diameter $0.16<1 / 6$
- Select a point (rectangle) of maximum weight inside each cell (coreset)
- Find the optimal independent set among the selected points
- We need to prove it gives a 6-approximation!

Proof of 6-Approximation

- Consider the optimal independent set
- Moving and resizing rectangles by less than $1 / 6$, we obtain a 1-planar graph (each edge crosses at most one other edge)
- 1-planar graphs are 6-colorable
- The color of maximum weight is a 6 -approximation

Lower Bound of $13 / 3=4.333 \ldots$

- Contact graph of rectangles
- Vertices: 13
- Maximum independent set: 3
- Lower bound: $13 / 3$
- Are all graphs in the class 5-colorable?

Conclusion

New method to obtain $O(n)$-time algorithms for problems on geometric intersection graphs, yielding:

- (4 $+\varepsilon$)-approx to max-weight independent set for UDGs
- (4+ $)$-approx to minimum dominating set for UDGs
- $(1+\varepsilon)$-approx to minimum vertex cover for UDGs
- $(6+\varepsilon)$-approx to max-weight independent set for certain rectangle graphs

Open Problems

- Tight analysis for both max-weight independent set algorithms?
- Improvement for the unweighted version (by considering extreme points in several directions)?
- Similar method without geometric information?
- Solve other problems:
- Minimum-weight dominating set?
- Minimum connected dominating set?
- Minimum independent dominating set?
- Other geometric intersection graphs?

Bibliography

(1) G. Fonseca, C. Figueiredo, V. Pereira de Sá, R. Machado. Efficient sub-5 approximations for minimum dominating sets in unit disk graphs. Theoretical Computer Science, 540: 70-81, 2014.
(2) T. M. Chan. Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms, 46(2):178-189, 2003.
(3) H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. Ravi, D. J. Rosenkrantz, and R. E. Stearns. NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. Journal of Algorithms, 26:238-274, 1998.
(4) R. K. Jallu, P. R. Prasad, and G. K. Das. Minimum dominating set for a point set in R^{2}. preprint, arXiv:1111.2931, 2014.
(5) M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25(2):59-68, 1995.
(6) T. Matsui. Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs. In JCDCG, volume 1763 of Lecture Notes in Computer Science, pages 194-200, 1998.
(7) T. Nieberg, J. Hurink, and W. Kern. Approximation schemes for wireless networks. ACM Transactions on Algorithms, 4(4):49:1-49:17, 2008.

Thank you!

Photo by Gilbert Garcin

