Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff

Macbeath

Hierarchy Queries

Analysis

Applications ANN

Reduction Tradeoff

History Construction

Conclusions

Results
Open Problems
References

Approximate Polytope Membership Queries and Applications

Guilherme D. da Fonseca

Université Clermont Auvergne LIMOS INRIA, Sophia-Antipolis Université de Nice Sophia Antipolis

HDR Defense - June 8, 2018

Introduction

Motivation

Definition Previous

Data Struct

Split-Reduce Upper Bound Lower Bound

Tradeoff Macbeath

Macbeath Hierarchy Queries

Analysis

Applications ANN

Reduction

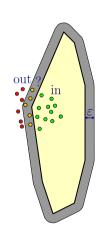
Tradeoff Kernel

History Construction

Conclusions

Results
Open Problems

- Exact solutions are inefficient
- Gives the best known bounds for:
 - Approximate nearest neighbor searching
 - ϵ -kernel construction
 - Diameter approximation
 - Approximate bichromatic closest pair
 - Minimum Euclidean bottleneck tree approximation
 - ...



Introduction

Motivation

Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound

Tradeoff Macbeath

Macbeath Hierarchy Queries

Analysis

Applications ANN

Reduction

Tradeoff

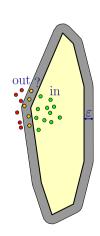
History

Construction Diameter

Conclusions

Results
Open Problems

- Exact solutions are inefficient
- Gives the best known bounds for:
 - Approximate nearest neighbor searching
 - ϵ -kernel construction
 - Diameter approximation
 - Approximate bichromatic closest pair
 - Minimum Euclidean bottleneck tree approximation
 - ...



Introduction

Motivation

Definition Previous

Data Struct

Split-Reduce Upper Bound Lower Bound

Tradeoff Macbeath

Hierarchy Queries

Analysis Applications

ANN

Reduction Tradeoff

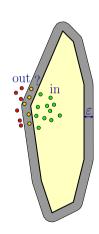
Kernel History

Construction

Conclusions

Results
Open Problems

- Exact solutions are inefficient
- Gives the best known bounds for:
 - Approximate nearest neighbor searching
 - \bullet ε -kernel construction
 - Diameter approximation
 - Approximate bichromatic closest pair
 - Minimum Euclidean bottleneck tree approximation
 -



Introduction

Motivation

Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound

Tradeoff Macbeath

Hierarchy Queries

Analysis

Applications

ANN Reduction

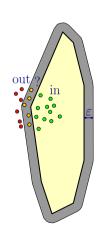
Tradeoff Kernel

History Construction

Conclusions

Results
Open Problems

- Exact solutions are inefficient
- Gives the best known bounds for:
 - Approximate nearest neighbor searching
 - \bullet ε -kernel construction
 - Diameter approximation
 - Approximate bichromatic closest pair
 - Minimum Euclidean bottleneck tree approximation
 -



Introduction

Motivation Definition

Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macheath

Hierarchy Queries

Analysis **Applications**

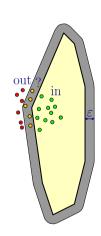
ANN Reduction Tradeoff Kernel

History Construction Diameter

Conclusions

Results Open Problems References

- Exact solutions are inefficient.
- Gives the best known bounds for:
 - Approximate nearest neighbor searching
 - ε-kernel construction
 - Diameter approximation
 - Approximate bichromatic closest pair
 - Minimum Euclidean bottleneck tree approximation



Exact Polytope Membership Queries

Introduction

Motivation

Definition

Previous

Data Struct.

Split-Reduce

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions
Results
Open Problems
References

Exact Polytope Membership Queries

Given a polytope P in d-dimensional space, preprocess P to answer membership queries:

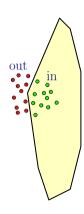
Given a point q, is $q \in P$?

- Assume that dimension d is a constant and P is given as intersection of n halfspaces
- Dual of halfspace emptiness searching
- For $d \leq 3$

Query time: $O(\log n)$ Storage: O(n)

■ For $d \ge 4$

Query time: $O(\log n)$ Storage: $O(n^{\lfloor d/2 \rfloor})$



Approximate Polytope Membership Queries

Introduction Motivation

Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff

Macbeath Hierarchy Queries Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

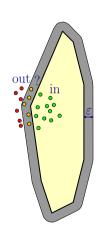
Conclusions

Results
Open Problems
References

Approximate Version

- An approximation parameter $\varepsilon > 0$ is given
- Assume the polytope has diameter 1
- If the query point's distance from P:
 - 0: answer must be inside
 - $\ge \varepsilon$: answer must be outside
 - ullet > 0 and < arepsilon: either answer is acceptable
- Time-efficient
 - Optimal query time: $O(\log \frac{1}{\varepsilon})$
- Space-efficient

Optimal storage: $O(1/\varepsilon^{(d-1)/2})$



Time Efficient Solution [BFP82]

Introduction
Motivation
Definition
Previous

Data Struct

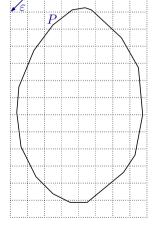
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications ANN

Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems



- **11** Create a grid with cells of size ε
- 2 For each column, store the topmost and bottommost cells intersecting P
- Query processing
 - Locate the column that contains q
 - $lue{}$ Compare q with the two extreme values

Time Efficient Solution [BFP82]

- $O(1/\varepsilon^{d-1})$ columns
- Query time: $O(\log \frac{1}{\varepsilon})$ ← optimal
- Storage: $O(1/\varepsilon^{d-1})$ ← not optimal

Time Efficient Solution [BFP82]

Introduction Motivation Definition

Previous

Data Struct.

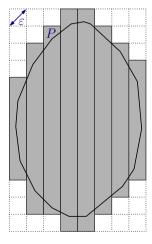
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

Reduction Tradeoff Kernel History Construction

Conclusions

Results
Open Problems



- 1 Create a grid with cells of size ε
- 2 For each column, store the topmost and bottommost cells intersecting P
- Query processing:
 - Locate the column that contains q
 - \blacksquare Compare q with the two extreme values

Time Efficient Solution [BFP82]

- $O(1/\varepsilon^{d-1})$ columns
- Query time: $O(\log \frac{1}{\varepsilon})$ ← optimal
- Storage: $O(1/\varepsilon^{d-1})$ ← not optimal

Time Efficient Solution [BFP82]

Introduction Motivation Definition

Previous

Data Struct. Split-Reduce Upper Bound

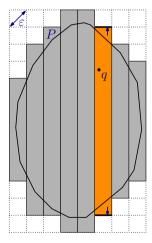
Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems



- **1** Create a grid with cells of size ε
- 2 For each column, store the topmost and bottommost cells intersecting P
- 3 Query processing:
 - Locate the column that contains q
 - Compare q with the two extreme values

Time Efficient Solution [BFP82]

- $O(1/\varepsilon^{d-1})$ columns
- Query time: $O(\log \frac{1}{\varepsilon})$ ← optimal
- Storage: $O(1/\varepsilon^{d-1})$ ← not optimal

Introduction Motivation Definition

Previous

Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries

Analysis Applications ANN

Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results Open Problems References lacksquare Ball B of radius 2

2 $\sqrt{\varepsilon}$ -net N on B

lacksquare Closest point on K for each point in Λ

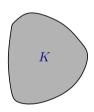
 \blacksquare P bounded by tangent hyperplanes

Query processing:

• Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

■ Query time: $O(1/\varepsilon^{\frac{d-1}{2}})$ ← not optimal



Introduction Motivation Definition

Previous

Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems
References

 \blacksquare Ball B of radius 2

2 $\sqrt{\varepsilon}$ -net N on E

lacksquare Closest point on K for each point in N

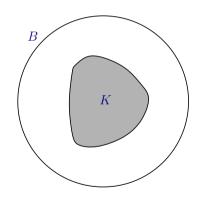
 \blacksquare P bounded by tangent hyperplanes

5 Query processing:

• Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

■ Query time: $O(1/\varepsilon^{\frac{d-1}{2}})$ ← not optimal



Introduction Motivation Definition

Previous

Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems
References

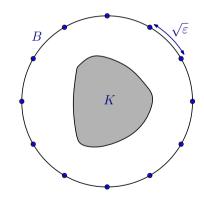
 $lue{1}$ Ball B of radius 2

2 $\sqrt{\varepsilon}$ -net N on B

- lacksquare Closest point on K for each point in N
- \blacksquare P bounded by tangent hyperplanes
- **5** Query processing:
 - Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

■ Query time: $O(1/\varepsilon^{\frac{d-1}{2}})$ ← not optimal



Introduction Motivation Definition

Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems
References

 $lue{1}$ Ball B of radius 2

 $2 \sqrt{\varepsilon}$ -net N on B

lacksquare Closest point on K for each point in N

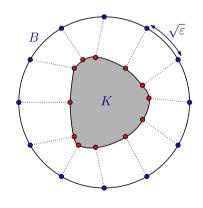
 \blacksquare P bounded by tangent hyperplanes

Query processing:

• Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

■ Query time: $O(1/\varepsilon^{\frac{d-1}{2}})$ ← not optimal



Introduction Motivation Definition

Previous

Data Struct

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems
References

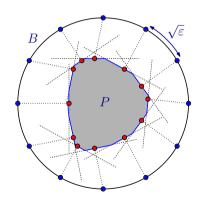
 \blacksquare Ball B of radius 2

 $2 \sqrt{\varepsilon}$ -net N on B

- lacksquare Closest point on K for each point in N
- \blacksquare P bounded by tangent hyperplanes
- Query processing:
 - Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

■ Query time: $O(1/\varepsilon^{\frac{d-1}{2}})$ ← not optimal



Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macheath Hierarchy Queries

Analysis **Applications**

ANN Reduction Tradeoff Kernel History Construction Diameter

Conclusions

Results Open Problems References

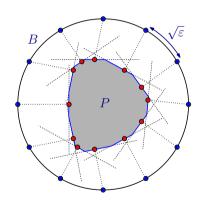
 \blacksquare Ball B of radius 2

2 $\sqrt{\varepsilon}$ -net N on B

- 3 Closest point on K for each point in N
- 4 P bounded by tangent hyperplanes
- 5 Query processing:
 - Inspect all $O(1/\varepsilon^{\frac{d-1}{2}})$ hyperplanes

Space Efficient Solution [Dud74]

■ Query time: $O(1/\varepsilon^{\frac{d-1}{2}})$ \leftarrow not optimal



A Simple Tradeoff

Introduction Motivation Definition

Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries

Analysis Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results Open Problems References **I** Generate a grid of size $r \in [\varepsilon, 1]$

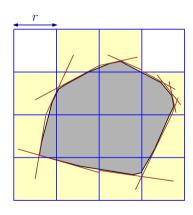
Preprocessing: For each cell Q intersecting P's boundary:

- lacksquare Apply Dudley to $P\cap Q$
- ullet $O((r/arepsilon)^{(d-1)/2})$ halfspaces per cell
- Query Processing
 - \blacksquare Find the cell containing q
 - Check whether q lies within every halfspace for this cell

Simple Tradeoff

• Query time: $O((r/\varepsilon)^{(d-1)/2})$

■ Storage: $O(1/(r\varepsilon)^{(d-1)/2})$



A Simple Tradeoff

Introduction Motivation Definition

Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries

Analysis Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

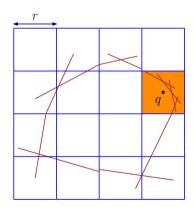
Conclusions

Results Open Problems References

- **1** Generate a grid of size $r \in [\varepsilon, 1]$
- Preprocessing: For each cell Q intersecting P's boundary:
 - lacksquare Apply Dudley to $P\cap Q$
 - ullet $O((r/arepsilon)^{(d-1)/2})$ halfspaces per cell
- 3 Query Processing:
 - \blacksquare Find the cell containing q
 - Check whether q lies within every halfspace for this cell

Simple Tradeoff

- Query time: $O((r/\varepsilon)^{(d-1)/2})$
- Storage: $O(1/(r\varepsilon)^{(d-1)/2})$



Introduction

Motivation Definition Previous

Data Struct.

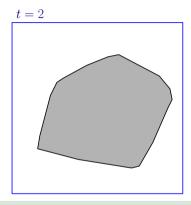
Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction

Diameter Conclusions

Results Open Problems References



Tradeof

- lacksquare Query time: O(t)
- Storage: ???

- Input: P, ε , t
- $lacksquare Q \leftarrow \mathsf{unit} \ \mathsf{hypercube}$
- Split-Reduce(*Q*)

- Find an ε -approximation of $Q \cap P$
- If at most t facets, then
 Q stores them
- Otherwise, subdivide Q and recurse

Introduction

Motivation

Definition

Previous Data Struct

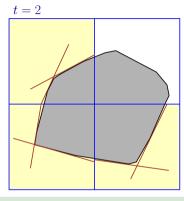
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems
References



Tradeof

- lacksquare Query time: O(t)
- Storage: ???

- Input: P, ε , t
- $lacksquare Q \leftarrow \text{unit hypercube}$
- Split-Reduce(*Q*)

- lacksquare Find an arepsilon-approximation of $Q\cap P$
- If at most t facets, then
 Q stores them
- Otherwise, subdivide Q and recurse

Introduction

Motivation

Definition

Previous

Data Struct

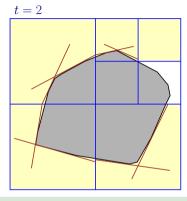
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results Open Problems References



Tradeot

- lacksquare Query time: O(t)
- Storage: ???

- Input: P, ε , t
- $lacksquare Q \leftarrow \text{unit hypercube}$
- \blacksquare Split-Reduce(Q)

- lacksquare Find an arepsilon-approximation of $Q\cap P$
- If at most t facets, then
 Q stores them
- Otherwise, subdivide Q and recurse

Introduction Motivation Definition Previous

Data Struct.

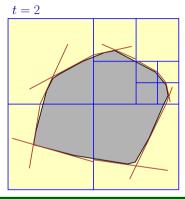
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems
References



Tradeoff

- Query time: O(t)
- Storage: ???

- Input: P, ε , t
- $Q \leftarrow \text{unit hypercube}$
- Split-Reduce(*Q*)

- Find an ε -approximation of $Q \cap P$
- If at most t facets, then
 Q stores them
- Otherwise, subdivide Q and recurse

Analysis of Split-Reduce (easy case)

Introduction

Motivation Definition Previous

Data Struct Split-Reduce

Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Oueries

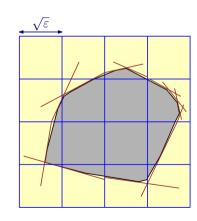
Analysis Applications

ANN Reduction Tradeoff Kernel

Kernel History Construction Diameter

Conclusions

- Easy analysis: $t = 1/\varepsilon^{(d-1)/4}$
- By Dudley in the cell, if diameter $\leq \sqrt{\varepsilon}$, then $O(1/\varepsilon^{(d-1)/4})$ halfspaces suffice
- lacksquare Cells of size $\sqrt{\varepsilon}$ are not subdivided
- \blacksquare Each Dudley halfspace is only useful within a radius of $\sqrt{\varepsilon}$
- It hits O(1) cells of size $\sqrt{\varepsilon}$
- Total number of halfspaces: $O(1/\varepsilon^{(d-1)/2})$



Analysis of Split-Reduce (easy case)

Introduction

Motivation Definition Previous

Data Struct Split-Reduce

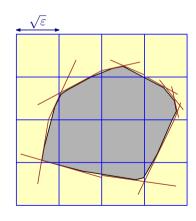
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction

Conclusions

- Easy analysis: $t = 1/\varepsilon^{(d-1)/4}$
- By Dudley in the cell, if diameter $\leq \sqrt{\varepsilon}$, then $O(1/\varepsilon^{(d-1)/4})$ halfspaces suffice
- Cells of size $\sqrt{\varepsilon}$ are not subdivided
- Each Dudley halfspace is only useful within a radius of $\sqrt{\varepsilon}$
- It hits O(1) cells of size $\sqrt{\varepsilon}$
- Total number of halfspaces: $O(1/\varepsilon^{(d-1)/2})$



Analysis of Split-Reduce (easy case)

Introduction

Motivation Definition Previous

Data Struct Split-Reduce

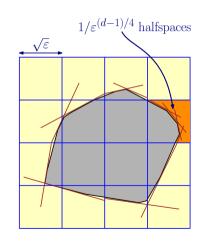
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction

Conclusions

- Easy analysis: $t = 1/\varepsilon^{(d-1)/4}$
- By Dudley in the cell, if diameter $\leq \sqrt{\varepsilon}$, then $O(1/\varepsilon^{(d-1)/4})$ halfspaces suffice
- Cells of size $\sqrt{\varepsilon}$ are not subdivided
- Each Dudley halfspace is only useful within a radius of $\sqrt{\varepsilon}$
- It hits O(1) cells of size $\sqrt{\varepsilon}$
- Total number of halfspaces: $O(1/\varepsilon^{(d-1)/2})$



Introduction

Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound

Upper Bound Lower Bound Tradeoff

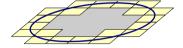
Macbeath Hierarchy Queries Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

- Place a small enough ball in \mathbb{R}^k
- High curvature forces small cells
- No problem: small diameter
- **Extrude** the ball in d-k dimensions
- Quadtree cells are hypercubes
- Too many cells!
- What if cells are not hypercubes?



Introduction

Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound

Lower Bound Tradeoff Macbeath

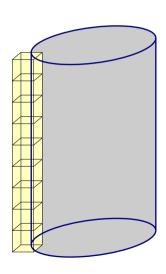
Macbeath Hierarchy Queries Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

- Place a small enough ball in \mathbb{R}^k
- High curvature forces small cells
- No problem: small diameter
- **Extrude** the ball in d-k dimensions
- Quadtree cells are hypercubes
- Too many cells!
- What if cells are not hypercubes?



Introduction

Motivation Definition Previous

Data Struct.
Split-Reduce
Upper Bound

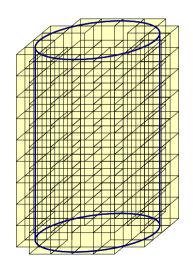
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

- Place a small enough ball in \mathbb{R}^k
- High curvature forces small cells
- No problem: small diameter
- **Extrude** the ball in d k dimensions
- Quadtree cells are hypercubes
- Too many cells!
- What if cells are not hypercubes?



Introduction

Motivation Definition Previous

Data Struct.
Split-Reduce
Upper Bound
Lower Bound

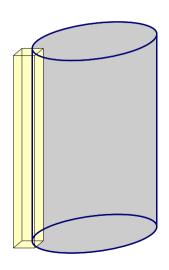
Tradeoff Macbeath Hierarchy Queries Analysis

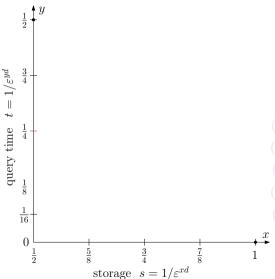
Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

- Place a small enough ball in \mathbb{R}^k
- High curvature forces small cells
- No problem: small diameter
- **Extrude** the ball in d-k dimensions
- Quadtree cells are hypercubes
- Too many cells!
- What if cells are not hypercubes?





- Tight analysis is an open problem
- Best analysis is very complex
- (a) Simple tradeofl
- (b) Easy $t = 1/\varepsilon^{(d-1)/4}$ case
- (c) Best upper bound
- (d) Lower bound to Split-Reduce
- e) Next data structure: uses Macbeath regions!

Introduction Motivation Definition Previous

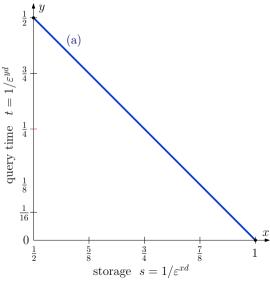
Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff

Macbeath Hierarchy Queries Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions



- Tight analysis is an open problem
- Best analysis is very complex
- (a) Simple tradeoff
- (b) Easy $t = 1/\varepsilon^{(d-1)/4}$ case
- (c) Best upper bound
- (d) Lower bound to Split-Reduce
- (e) Next data structure: uses Macbeath regions

Introduction Motivation Definition Previous

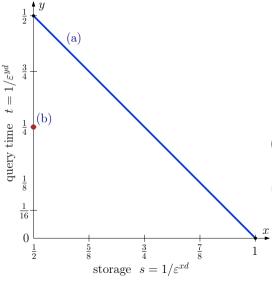
Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff

Macbeath Hierarchy Queries Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions



- Tight analysis is an open problem
- Best analysis is very complex
- (a) Simple tradeoff
- (b) Easy $t = 1/\varepsilon^{(d-1)/4}$ case
- (c) Best upper bound
- (d) Lower bound to Split-Reduce
- (e) Next data structure: uses Macbeath region

Introduction Motivation Definition Previous

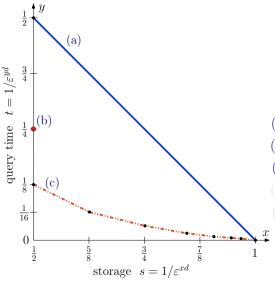
Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff

Macbeath Hierarchy Queries Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction

Diameter Conclusions



- Tight analysis is an open problem
- Best analysis is very complex
- (a) Simple tradeoff
- (b) Easy $t = 1/\varepsilon^{(d-1)/4}$ case
- (c) Best upper bound
- (d) Lower bound to Split-Reduce
- (e) Next data structure:uses Macbeath region

Introduction Motivation Definition Previous

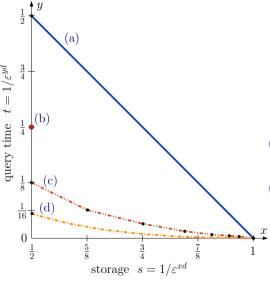
Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff

Macbeath Hierarchy Queries Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions



- Tight analysis is an open problem
- Best analysis is very complex
- (a) Simple tradeoff
- (b) Easy $t = 1/\varepsilon^{(d-1)/4}$ case
- (c) Best upper bound
- (d) Lower bound to Split-Reduce
- (e) Next data structure: uses Macbeath region

Introduction Motivation Definition Previous

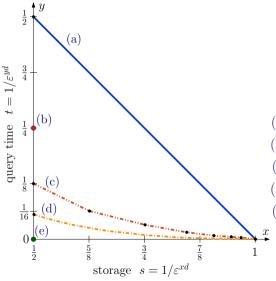
Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff

Macbeath Hierarchy Queries Analysis

Applications

ANN Reduction Tradeoff Kernel History Construction

Diameter Conclusions



- Tight analysis is an open problem
- Best analysis is very complex
- (a) Simple tradeoff
- (b) Easy $t = 1/\varepsilon^{(d-1)/4}$ case
- (c) Best upper bound
- (d) Lower bound to Split-Reduce
- (e) Next data structure: uses Macbeath regions!

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

ANN Reduction

Tradeoff

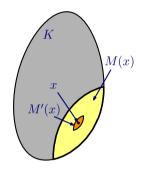
Kernel

History Construction

Diameter

Conclusions

Results
Open Problems
References



Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$
- $\quad \blacksquare \ y \in M'(x) \ \Rightarrow \ \delta(y) = \Theta(\delta(x))$
- \bullet $\delta(x)$: distance from x to ∂K

Introduction

Motivation Definition Previous

Data Struct. Split-Reduce

Upper Bound Lower Bound Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

ANN

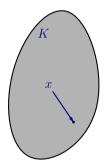
Reduction

Tradeoff

Kernel

History Construction

Diameter



Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$
- $u \in M'(x) \Rightarrow \delta(y) = \Theta(\delta(x))$
- \bullet $\delta(x)$: distance from x to ∂K

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

ANN Reduction

Tradeoff

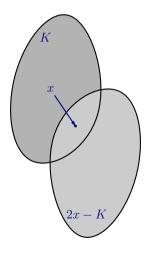
Kernel

History Construction

Diameter

Conclusions

Results
Open Problems
References



Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$
- \bullet $\delta(x)$: distance from x to ∂K

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

ANN Reduction

Tradeoff

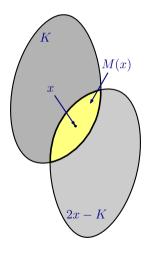
Kernel

History Construction

Diameter

Conclusions

Results
Open Problems
References



Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$
- \bullet $\delta(x)$: distance from x to ∂K

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff

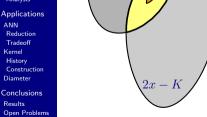
Macbeath

Hierarchy Queries Analysis

Tradeoff

Kernel

Results References



Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$
- $u \in M'(x) \Rightarrow \delta(u) = \Theta(\delta(x))$
- \bullet $\delta(x)$: distance from x to ∂K

Introduction

Motivation Definition Previous

Data Struct. Split-Reduce

Upper Bound Lower Bound Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

ANN

Reduction Tradeoff

Kernel

History

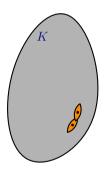
Construction

Diameter

Conclusions

Results

Open Problems References



Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$
- $u \in M'(x) \Rightarrow \delta(y) = \Theta(\delta(x))$
- \bullet $\delta(x)$: distance from x to ∂K

Introduction

Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound

Upper Bound Lower Bound Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

ANN Reduction

Tradeoff

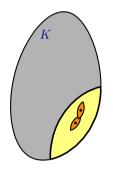
Kernel

History Construction

Diameter

Conclusions

Results
Open Problems
References



Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$
- $y \in M'(x) \Rightarrow \delta(y) = \Theta(\delta(x))$
- \bullet $\delta(x)$: distance from x to ∂K

Introduction

Motivation Definition Previous

Data Struct.

Upper Bound
Lower Bound
Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

ANN

Reduction

Kernel

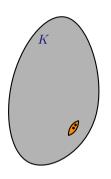
History

Construction

Diameter

Conclusions

Results
Open Problems
References



Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$
- \bullet $\delta(x)$: distance from x to ∂K

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

Reduction

Tradeoff

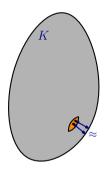
Kernel History

Construction

Diameter

Conclusions

Results
Open Problems
References



Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$
- $y \in M'(x) \Rightarrow \delta(y) = \Theta(\delta(x))$
- \bullet $\delta(x)$: distance from x to ∂K

Macbeath Ellipsoids

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

ANN Reduction

Tradeoff

Kernel

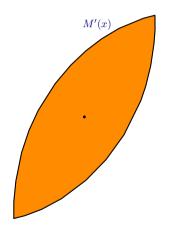
History Construction

Diameter

Conclusions

Results

Open Problems References



John Ellipsoid [Joh48]

For every centrally symmetric convex body K in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq K \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

- $\blacksquare E(x)$: enclosed John ellipsoid of M'(x)
- $M^{\lambda}(x) \subseteq E(x) \subseteq M'(x)$ for $\lambda = 1/(5\sqrt{d})$

Macbeath Ellipsoids

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

ANN Reduction

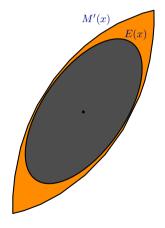
Tradeoff

History

Diameter

Conclusions

Results
Open Problems
References



John Ellipsoid [Joh48]

For every centrally symmetric convex body K in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq K \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath Ellipsoid

- E(x): enclosed John ellipsoid of M'(x)
- $M^{\lambda}(x) \subseteq E(x) \subseteq M'(x) \text{ for } \lambda = 1/(5\sqrt{d})$

Macbeath Ellipsoids

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

ANN Reduction

Tradeoff Kernel

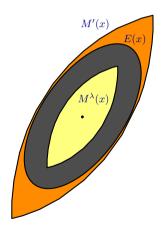
History

Construction Diameter

Conclusions

Results Open Problems

References



John Ellipsoid [Joh48]

For every centrally symmetric convex body K in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq K \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath Ellipsoid

- E(x): enclosed John ellipsoid of M'(x)
- $M^{\lambda}(x) \subseteq E(x) \subseteq M'(x)$ for $\lambda = 1/(5\sqrt{d})$

Shadow of Macbeath Ellipsoids

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff

Macbeath

Hierarchy Queries Analysis

Applications

ANN

Reduction

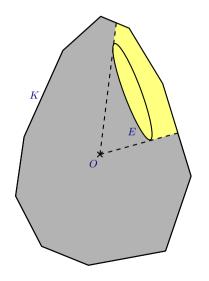
Tradeoff Kernel

History Construction

Diameter

Conclusions

Results
Open Problems
References



Shadow of ellipsoid E

Points $p \in K$ such that ray Op intersects E

- Reaches the boundary
- $lue{}$ Directional width: similar to E

Covering with Macbeath Ellipsoids

Introduction

Motivation Definition Previous

Data Struct.

Upper Bound Lower Bound Tradeoff Macbeath

Hierarchy Queries

Analysis

Applications ANN

Reduction

Kernel History

Construction Diameter

Conclusions

Results
Open Problems
References

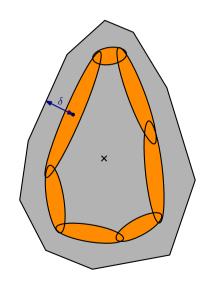
Covering (see [Bar07])

Given:

- *K*: convex body
- lacksquare δ : small positive parameter

There exist ellipsoids $E(x_1), \ldots, E(x_k)$

- $\delta(x_1) = \dots = \delta(x_k) = \delta$
- Cover: Shadows cover the boundary
- $k = O(1/\delta^{(d-1)/2})$ [AFM17c]



Covering with Macbeath Ellipsoids

Introduction

Motivation Definition Previous

Data Struct. Split-Reduce

Upper Bound Lower Bound Tradeoff Macbeath

Hierarchy Queries Analysis

Applications

ANN

Reduction Tradeoff Kernel

History
Construction

Diameter Conclusions

Results
Open Problems
References

Covering (see [Bar07])

Given:

■ *K*: convex body

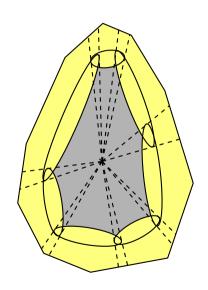
lacksquare δ : small positive parameter

There exist ellipsoids $E(x_1), \ldots, E(x_k)$

$$\delta(x_1) = \dots = \delta(x_k) = \delta$$

■ Cover: Shadows cover the boundary

$$k = O(1/\delta^{(d-1)/2})$$
 [AFM17c]



Covering with Macbeath Ellipsoids

Introduction

Motivation Definition Previous

Data Struct. Split-Reduce

Upper Bound Lower Bound Tradeoff Macbeath

Hierarchy Queries Analysis

Applications

ANN Reduction

Tradeoff Kernel

History Construction

Conclusions

Results
Open Problems
References

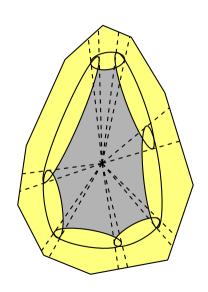
Covering (see [Bar07])

Given:

- *K*: convex body
- lacksquare δ : small positive parameter

There exist ellipsoids $E(x_1), \ldots, E(x_k)$

- $\delta(x_1) = \dots = \delta(x_k) = \delta$
- Cover: Shadows cover the boundary
- $k = O(1/\delta^{(d-1)/2})$ [AFM17c]



Hierarchy of Macbeath Ellipsoids [AFM17a]

Introduction

Motivation Definition

Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath

Hierarchy

Queries Analysis

Applications

ANN

Reduction Tradeoff

Kernel

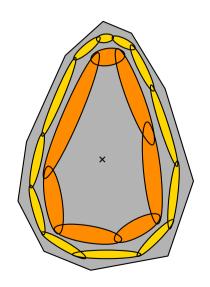
History

Construction Diameter

Conclusions

Results

Open Problems References



Hierarchy

- Each level i a δ_i -covering
- $\ell = \Theta(\log \frac{1}{\epsilon})$ levels
- \bullet $\delta_0 = \Theta(1), \ \delta_\ell = \Theta(\varepsilon)$
- $\bullet \delta_{i+1} = \delta_i/2$
- \blacksquare E is parent of E' if
 - Levels are consecutive
 - \blacksquare Shadow of E intersects E'
- **Each** node has O(1) children

Hierarchy of Macbeath Ellipsoids [AFM17a]

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath

Hierarchy

Queries Analysis

Applications

ANN Reduction

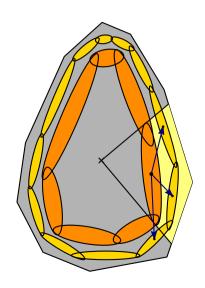
Tradeoff

Kernel

History Construction

Diameter

Conclusions



Hierarchy

- Each level i a δ_i -covering
- $\ell = \Theta(\log \frac{1}{\epsilon})$ levels
- \bullet $\delta_0 = \Theta(1), \ \delta_\ell = \Theta(\varepsilon)$
- $\bullet \delta_{i+1} = \delta_i/2$
- \blacksquare E is parent of E' if
 - Levels are consecutive
 - \blacksquare Shadow of E intersects E'
- **Each** node has O(1) children

Hierarchy of Macbeath Ellipsoids [AFM17a]

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath

Hierarchy Queries

Analysis

Applications

ANN

Reduction

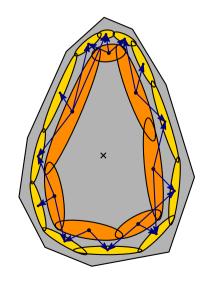
Kernel

History

Diameter

Conclusions

Results
Open Problems
References



Hierarchy

- Each level i a δ_i -covering
- $lack \ell = \Theta(\log \frac{1}{arepsilon})$ levels
- \bullet $\delta_0 = \Theta(1), \ \delta_\ell = \Theta(\varepsilon)$
- $\bullet \delta_{i+1} = \delta_i/2$
- \blacksquare E is parent of E' if
 - Levels are consecutive
 - lacksquare Shadow of E intersects E'
- **Each** node has O(1) children

Ray Shooting from the Origin

Introduction Motivation

Motivation
Definition
Previous
Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy

Queries Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction

Conclusions

Results Open Problems References Ray Shooting from the Origin (generalizes polytope membership)

Preprocess:

■ *K*: convex body

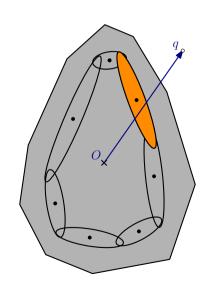
lacksquare arepsilon: small positive parameter

Query:

lacksquare Oq: ray from the origin towards q

Query algorithm:

- Find an ellipsoid intersecting *Oq* at level 0
- Repeat among children at next level
- Stop at leaf node
- Leaf ellipsoid ε -approximates boundary



Ray Shooting from the Origin

Introduction

Motivation

Definition

Previous

Data Struct.

Split-Reduce

Upper Bound

Lower Bound

Tradeoff

Macbeath Hierarchy Queries Analysis

Applications

ANN

Reduction
Tradeoff
Kernel
History
Construction

Conclusions

Results
Open Problems

Ray Shooting from the Origin (generalizes polytope membership)

Preprocess:

■ *K*: convex body

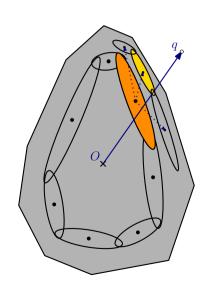
lacksquare arepsilon: small positive parameter

Query:

lacksquare Oq: ray from the origin towards q

Query algorithm:

- Find an ellipsoid intersecting *Oq* at level 0
- Repeat among children at next level
- Stop at leaf node
- Leaf ellipsoid ε -approximates boundary



Ray Shooting from the Origin

Introduction Motivation

Motivation
Definition
Previous
Data Struct.

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy

Queries Analysis

Applications

ANN

Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results Open Problems References Ray Shooting from the Origin (generalizes polytope membership)

Preprocess:

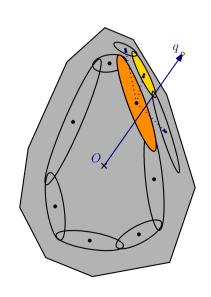
- *K*: convex body
- lacksquare arepsilon: small positive parameter

Query:

 $lue{q}$: ray from the origin towards q

Query algorithm:

- Find an ellipsoid intersecting *Oq* at level 0
- Repeat among children at next level
- Stop at leaf node
- Leaf ellipsoid ε -approximates boundary



Analysis

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Oueries

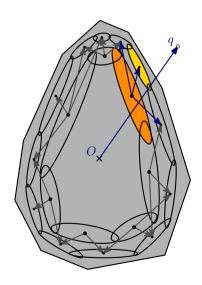
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results Open Problems References



• Out-degree: O(1)

• Query time per level: O(1)

■ Number of levels: $O(\log \frac{1}{\varepsilon})$

Query time

 $O(\log \frac{1}{\varepsilon})$

 \leftarrow optimal

- Storage for bottom level: $O(1/\varepsilon^{(d-1)/2})$
- Geometric progression of storage per level

Storage

$$O(1/\varepsilon^{(d-1)/2}) \leftarrow \text{optimal}$$

Analysis

Introduction

Motivation Definition Previous

Data Struct.

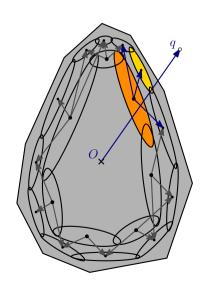
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Oueries

Analysis

Applications
ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems
References



• Out-degree: O(1)

• Query time per level: O(1)

■ Number of levels: $O(\log \frac{1}{\varepsilon})$

Query time

$$O(\log \frac{1}{\varepsilon})$$

$$\leftarrow$$
 optimal

- Storage for bottom level: $O(1/\varepsilon^{(d-1)/2})$
- Geometric progression of storage per level

Storage

$$lacksquare O(1/\varepsilon^{(d-1)/2}) \leftarrow \text{optimal}$$

Approximate Nearest (ANN) Neighbor Searching

Introduction
Motivation
Definition
Previous
Data Struct.
Split-Reduce

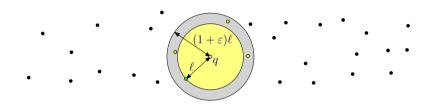
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN Reduction Tradeoff Kernel History Construction

Conclusions

Results Open Problems References



Approximate Nearest Neighbor

Preprocess n points such that, given a query point q, we can find a point within at most $1+\varepsilon$ times the distance to q's nearest neighbor

- Applications to pattern recognition, machine learning, computer vision...
- Huge literature (theory, applications, heuristics...)

Introduction

Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound

Lower Bound Tradeoff Macbeath Hierarchy Queries

Analysis
Applications

ANN

Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems
References

- Exact nearest neighbor reduces to ray shooting
- Dimension increases by 1
- Each data point is lifted into a paraboloid
- Polyhedron defined by tangent hyperplanes
- Query: vertical ray shooting

Introduction

Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

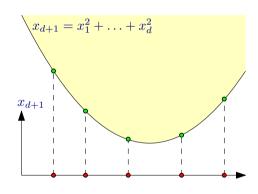
Applications ANN

Reduction Tradeoff Kernel History Construction Diameter

Conclusions Results

Open Problems References

- Exact nearest neighbor reduces to ray shooting
- Dimension increases by 1
- Each data point is lifted into a paraboloid
- Polyhedron defined by tangent
- Query: vertical ray shooting



Introduction

Motivation Definition Previous

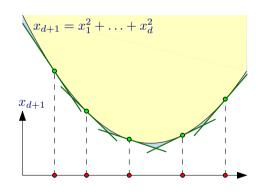
Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications ANN

Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions
Results
Open Problems
References

- Exact nearest neighbor reduces to ray shooting
- Dimension increases by 1
- Each data point is lifted into a paraboloid
- Polyhedron defined by tangent hyperplanes
- Query: vertical ray shooting



Introduction

Motivation Definition Previous

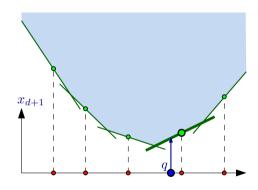
Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications ANN

Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions
Results
Open Problems
References

- Exact nearest neighbor reduces to ray shooting
- Dimension increases by 1
- Each data point is lifted into a paraboloid
- Polyhedron defined by tangent hyperplanes
- Query: vertical ray shooting



Reduction to Approximate Polytope Membership [AFM18]

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff

Macbeath Hierarchy Queries

Analysis
Applications

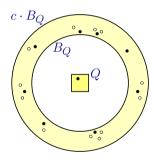
ANN Reduction

Tradeoff Kernel History Construction Diameter

Conclusions

Results
Open Problems

- Polyhedron is unbounded
- Unbounded approximation error
- Solution: separation
- Partition space into cells such that: [AMM09]
 - Each cell Q is associated with candidates to be the ANN for query points in Q
 - Total number of candidates is $\widetilde{O}(n)$
 - All but 1 candidate are inside a constant-radius annulus



Reduction to Approximate Polytope Membership [AFM18]

Introduction

Motivation Definition Previous

Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy

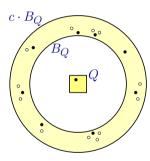
Queries Analysis Applications ANN

Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems

- Polyhedron is unbounded
- Unbounded approximation error
- Solution: separation
- Partition space into cells such that: [AMM09]
 - Each cell Q is associated with candidates to be the ANN for query points in Q
 - Total number of candidates is $\widetilde{O}(n)$
 - All but 1 candidate are inside a constant-radius annulus



Reduction

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

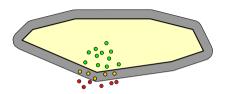
Applications
ANN

Reduction
Tradeoff

Fradeoff
Kernel
History
Construction
Diameter

Conclusions

Results Open Problems References



q

Given APM

- $\blacksquare d + 1$ dimensions
- Query time: at most t
- Storage: *s*
- Preprocessing: $O(n \log \frac{1}{\varepsilon} + b)$
- t, s, b: functions of ε

Resulting ANN

- \blacksquare d dimensions
- Query time: $O(\log n + t \cdot \log \frac{1}{\varepsilon})$
- Storage: $O(n \log \frac{1}{\varepsilon} + n \cdot s/t)$
- Preprocessing: $O(n \log n \log \frac{1}{\varepsilon} + n \cdot b/t)$

Reduction

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

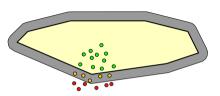
Applications ANN Reduction

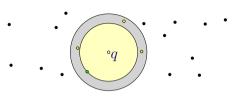
Tradeoff Kernel History

Construction Diameter

Conclusions

Results Open Problems References





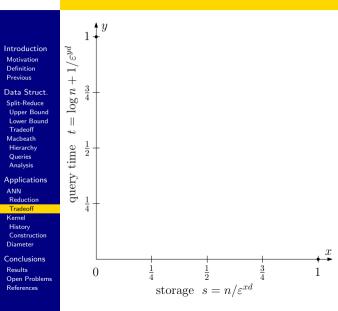
Given APM

- $\blacksquare d + 1$ dimensions
- Query time: at most t
- Storage: *s*
- Preprocessing: $O(n \log \frac{1}{\varepsilon} + b)$
- t, s, b: functions of ε

Resulting ANN

- d dimensions
- Query time: $O(\log n + t \cdot \log \frac{1}{\epsilon})$
- Storage: $O(n \log \frac{1}{\varepsilon} + n \cdot \frac{s}{t})$
- Preprocessing: $O(n \log n \log \frac{1}{\varepsilon} + n \cdot b/t)$

Space-Time Tradeoffs for ANN



- (a) First generation (before 2002)
- (b) AVDs [AMM09]
- (c) Reduction to Split-Reduce
- (d) Reduction to Macbeath regions

Best Upper Bound

- For $\log \frac{1}{\varepsilon} \le m \le 1/\varepsilon^{d/2}$ Query time: $O(\log n + 1/(m \varepsilon^d))$
- $\blacksquare \ \, {\rm Setting} \,\, m=1/\varepsilon^{d/2}$

Query time: $O(\log n)$

Space-Time Tradeoffs for ANN



- (a) First generation (before 2002)
- (b) AVDs [AMM09]
- (c) Reduction to Split-Reduce
- (d) Reduction to Macbeath regions

Best Upper Bound

- For $\log \frac{1}{\varepsilon} \le m \le 1/\varepsilon^{d/2}$ Query time: $O(\log n + 1/(m \varepsilon^{d/2}))$ Storage: O(n m)
- Setting $m = 1/\varepsilon^{d/2}$ Query time: $O(\log n)$ Storage: $O(n/\varepsilon^{d/2})$

Space-Time Tradeoffs for ANN

 $1/arepsilon^{yd}$ Introduction (a) Motivation Definition Previous $= \log n +$ Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macheath time Hierarchy $\frac{1}{2}$ in the last with (b) Queries Analysis query **Applications** ANN Reduction Tradeoff Kernel History Construction Diameter Conclusions Results 0 Open Problems storage $s = n/\varepsilon^{xd}$ References

- (a) First generation (before 2002)
- (b) AVDs [AMM09]
- (c) Reduction to Split-Reduce
- (d) Reduction to Macbeath regions

Best Upper Bound

- For $\log \frac{1}{\varepsilon} \le m \le 1/\varepsilon^{d/2}$ Query time: $O(\log n + 1/(m \varepsilon^{d/2}))$ Storage: O(n m)
- Setting $m = 1/\varepsilon^{d/2}$ Query time: $O(\log n)$ Storage: $O(n/\varepsilon^{d/2})$

Space-Time Tradeoffs for ANN

Introduction
Motivation
Definition
Previous
Data Struct.
Split-Reduce
Upper Bound
Lower Bound

Analysis
Applications
ANN

Tradeoff

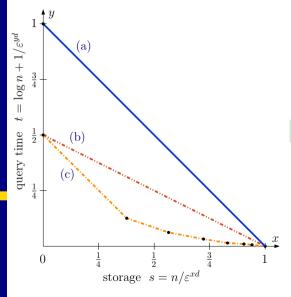
Hierarchy

Queries

Reduction Tradeoff Kernel

History Construction Diameter

Conclusions
Results
Open Problems
References



- (a) First generation (before 2002)
- (b) AVDs [AMM09]
- (c) Reduction to Split-Reduce
- (d) Reduction to Macbeath regions

Best Upper Bound

- For $\log \frac{1}{\varepsilon} \leq m \leq 1/\varepsilon^{d/2}$ Query time: $O(\log n + 1/(m \varepsilon^{d/2}))$ Storage: O(n m)
- Setting $m = 1/\varepsilon^{d/2}$ Query time: $O(\log n)$ Storage: $O(n/\varepsilon^{d/2})$

Space-Time Tradeoffs for ANN

Introduction
Motivation
Definition
Previous
Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macheath

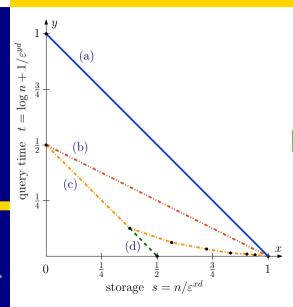
Analysis Applications ANN

Hierarchy Queries

Reduction
Tradeoff
Kernel
History

Construction Diameter

Conclusions
Results
Open Problems
References



- (a) First generation (before 2002)
- (b) AVDs [AMM09]
- (c) Reduction to Split-Reduce
- (d) Reduction to Macbeath regions

Best Upper Bound

■ For $\log \frac{1}{\varepsilon} \le m \le 1/\varepsilon^{d/2}$ Query time: $O(\log n + 1/(m \varepsilon^{d/2}))$ Storage: O(n m)

Setting $m = 1/\varepsilon^{d/2}$ Query time: $O(\log n)$ Storage: $O(n/\varepsilon^{d/2})$

Directional Width

Introduction

Motivation Definition Previous

Data Struct

Split-Reduce Upper Bound Lower Bound Tradeoff

Macbeath Hierarchy Queries

Analysis
Applications

Applications

Reduction Tradeoff

Kernel

History Construction Diameter

Conclusions

Results
Open Problems
References

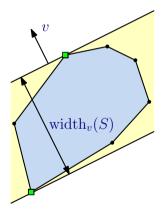
Directional width

Given:

- $lue{S}$: set of n points in \mathbb{R}^d
- v: unit vector

Define width $_v(S)$:

lacktriangle Minimum distance between two hypeplanes orthogonal to v enclosing S



Results
Open Problems
References

Input

S: Set of n points in \mathbb{R}^d

 $\varepsilon > 0$: Approximation parameter

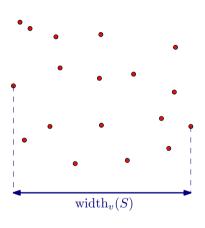
Output

 $Q \subseteq S$ such that for all vector v,

 $\operatorname{width}_v(Q) \ge (1 - \varepsilon) \operatorname{width}_v(S)$

and
$$|Q| = O(1/\varepsilon^{(d-1)/2})$$

- Approximation of the convex hull
- Minimum size: $\Theta(1/\varepsilon^{(d-1)/2})$



Introduction

Motivation Definition Previous

Data Struct. Split-Reduce

Upper Bound Lower Bound Tradeoff Macheath

Hierarchy Queries

Analysis **Applications**

ANN Reduction Tradeoff

Kernel

History Construction Diameter

Conclusions

Results Open Problems References

Input

S: Set of n points in \mathbb{R}^d $\varepsilon > 0$: Approximation parameter

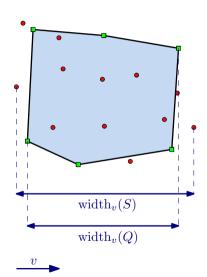
Output

 $Q \subseteq S$ such that for all vector v.

$$\operatorname{width}_{v}(Q) \geq (1 - \varepsilon) \operatorname{width}_{v}(S)$$

and
$$|Q| = O(1/\varepsilon^{(d-1)/2})$$

- Approximation of the convex hull
- Minimum size: $\Theta(1/\varepsilon^{(d-1)/2})$



Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy

Analysis Applications

Queries

ANN Reduction Tradeoff Kernel

History

Construction Diameter

Conclusions
Results
Open Problems
References

 $\blacksquare [\mathsf{AHV04}] \ O\left(n+1/\varepsilon^{\frac{3(d-1)}{2}}\right)$

■ [Cha06] $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{d-2}\right)$

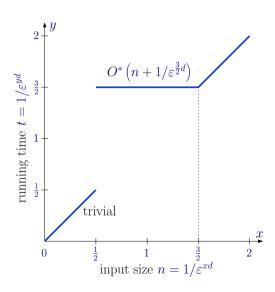
 $\qquad \qquad \left[\mathrm{ArC14} \right] \; O \left(n + \sqrt{n} / \varepsilon^{\frac{d}{2}} \right)$

Our near-optimal construction

$$\bigcirc O\left(n\log\tfrac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha}\right)$$

lacksquare lpha > 0 arbitrarily small

 Independent of [Cha17] and completely different technique



Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy

Queries Analysis

Applications ANN

Reduction Tradeoff Kernel

History

Construction Diameter

Results

Conclusions Open Problems References

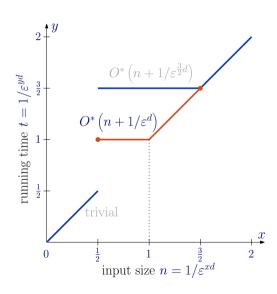
$\blacksquare [\mathsf{AHV04}] \ O\left(n+1/\varepsilon^{\frac{3(d-1)}{2}}\right)$

• [Cha06]
$$O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{d-2}\right)$$

$$\qquad \qquad \left[\mathsf{ArC14} \right] \ O \left(n + \sqrt{n} / \varepsilon^{\frac{d}{2}} \right)$$

$$O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha}\right)$$

- $\alpha > 0$ arbitrarily small
- Independent of [Cha17] and



Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries

Analysis Applications

ANN Reduction Tradeoff Kernel

History

Construction
Diameter
Conclusions

Results
Open Problems
References

■ [AHV04] $O\left(n+1/\varepsilon^{\frac{3(d-1)}{2}}\right)$

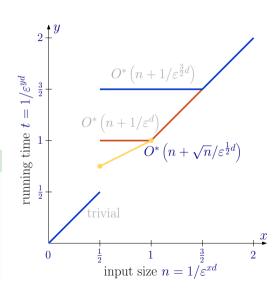
■ [Cha06] $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{d-2}\right)$

 $\blacksquare [ArC14] O\left(n + \sqrt{n}/\varepsilon^{\frac{d}{2}}\right)$

Our near-optimal construction

$$\bigcirc O\left(n\log\tfrac{1}{\varepsilon}+1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$$

- lacksquare lpha > 0 arbitrarily small
- Independent of [Cha17] and completely different technique



Introduction

Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Machesth

Tradeoff Macbeath Hierarchy Queries Analysis

Applications ANN

Reduction Tradeoff Kernel

History

Construction Diameter

Conclusions
Results
Open Problems
References

■ [AHV04] $O\left(n+1/\varepsilon^{\frac{3(d-1)}{2}}\right)$

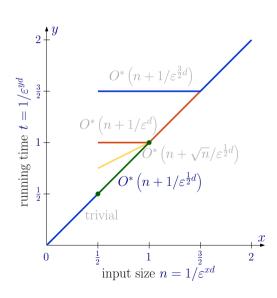
■ [Cha06] $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{d-2}\right)$

 $\blacksquare [ArC14] O\left(n + \sqrt{n}/\varepsilon^{\frac{d}{2}}\right)$

Our near-optimal construction

$$\bullet$$
 $O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha}\right)$

- lacksquare $\alpha>0$ arbitrarily small
- Independent of [Cha17] and completely different technique



Hierarchy of Macbeath Ellipsoids

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

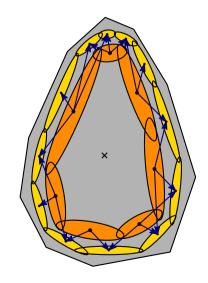
Applications

ANN
Reduction
Tradeoff
Kernel
History

Construction

Diameter

Conclusions
Results
Open Problems
References



Hierarchy construction takes:

$$O\left(n+1/arepsilon^{rac{3(d-1)}{2}}
ight)$$
 time

- Input polytope may be described as:
 - Intersection of n halfspaces
 - Convex hull of n points
- Too slow to efficiently build ε -kernel

Hierarchy Properties

Introduction

Motivation Definition Previous

Data Struct

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries

Analysis Applications

ANN
Reduction
Tradeoff
Kernel
History

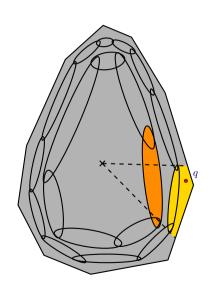
Construction

Diameter

Conclusions
Results
Open Problems
References

Query point $q \in K$:

- Find leaf shadow that contains q
- $lue{}$ Or report q as far from the boundary
- $O(\log \frac{1}{\varepsilon})$ time
- lacksquare Hierarchy \longrightarrow Kernel
 - Split points among leaf shadows
 - Pick one point per leaf shadow (if there's one)
 - $O(n\log\frac{1}{\varepsilon})$ time



Hierarchy Properties

Introduction

Motivation Definition Previous

Data Struct

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Oueries

Analysis Applications

ANN Reduction Tradeoff Kernel History

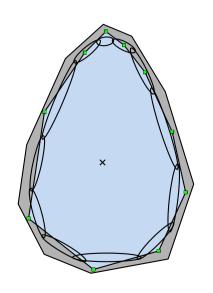
Construction Diameter

Conclusions

Results
Open Problems

Query point $q \in K$:

- Find leaf shadow that contains q
- lacksquare Or report q as far from the boundary
- $O(\log \frac{1}{\varepsilon})$ time
- lacktriangle Hierarchy \longrightarrow Kernel
 - Split points among leaf shadows
 - Pick one point per leaf shadow (if there's one)
 - $O(n\log\frac{1}{\varepsilon})$ time



Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macheath Hierarchy Queries

Analysis **Applications**

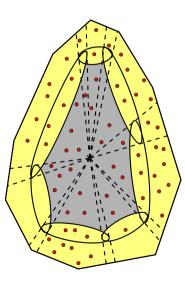
ANN Reduction Tradeoff Kernel History

Construction

Diameter

Conclusions Results

Open Problems References



- **1** Build hierarchy for $\delta = \varepsilon^{1/3}$: $O\left(n+1/\delta^{\frac{3(d-1)}{2}}\right)=O\left(n+1/arepsilon^{\frac{d-1}{2}}\right)$ time

Time:
$$O\left(n\log\frac{1}{\varepsilon}+1/arepsilon^{rac{5(d-1)}{6}}
ight)$$

Kernel size: $O\left(\left(rac{1}{\delta}
ight)^{rac{d-1}{2}}\left(rac{\delta}{arepsilon}
ight)^{rac{d-1}{2}}
ight)=O\left(1/arepsilon^{rac{d-1}{2}}
ight)$

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macheath Hierarchy Queries Analysis

Applications

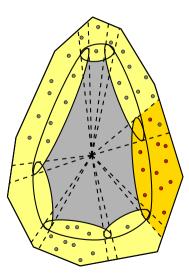
ANN Reduction Tradeoff Kernel History

Construction

Diameter Conclusions

Results

Open Problems References



- **1** Build hierarchy for $\delta = \varepsilon^{1/3}$: $O\left(n+1/\delta^{\frac{3(d-1)}{2}}\right) = O\left(n+1/\varepsilon^{\frac{d-1}{2}}\right)$ time
- 2 Split points among shadows: $O(n \log \frac{1}{\epsilon})$ time

Time:
$$O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{5(d-1)}{6}}\right)$$

Kernel size: $O\left(\left(\frac{1}{\delta}\right)^{\frac{d-1}{2}}\left(\frac{\delta}{\varepsilon}\right)^{\frac{d-1}{2}}\right) = O\left(1/\varepsilon^{\frac{d-1}{2}}\right)$

Introduction

Motivation Definition Previous

Data Struct. Split-Reduce

Upper Bound Lower Bound Tradeoff Macheath Hierarchy Queries Analysis

Applications

ANN Reduction Tradeoff Kernel History

Construction

Diameter

Results

Conclusions Open Problems References

- **1** Build hierarchy for $\delta = \varepsilon^{1/3}$: $O\left(n+1/\delta^{\frac{3(d-1)}{2}}\right) = O\left(n+1/\varepsilon^{\frac{d-1}{2}}\right)$ time
- 2 Split points among shadows: $O(n \log \frac{1}{\epsilon})$ time
- 3 Build $\frac{\varepsilon}{3}$ -kernel for each shadow (using existing $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{d-1})$ algorithm) $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\delta}\right)^{\frac{d-1}{2}}\left(\frac{\delta}{\varepsilon}\right)^{d-1}\right) =$ $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{5(d-1)}{6}}\right)$

Time:
$$O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{5(d-1)}{6}}\right)$$

Kernel size: $O\left(\left(\frac{1}{\delta}\right)^{\frac{d-1}{2}}\left(\frac{\delta}{\varepsilon}\right)^{\frac{d-1}{2}}\right) = O\left(1/\varepsilon^{\frac{d-1}{2}}\right)$

Introduction

Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macheath Hierarchy Queries

Analysis **Applications**

ANN Reduction Tradeoff Kernel History

Construction

Diameter

Results

Conclusions Open Problems References

- **1** Build hierarchy for $\delta = \varepsilon^{1/3}$: $O\left(n+1/\delta^{\frac{3(d-1)}{2}}\right) = O\left(n+1/\varepsilon^{\frac{d-1}{2}}\right)$ time
- 2 Split points among shadows: $O(n \log \frac{1}{\epsilon})$ time
- 3 Build $\frac{\varepsilon}{3}$ -kernel for each shadow (using existing $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{d-1})$ algorithm) $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\delta}\right)^{\frac{d-1}{2}}\left(\frac{\delta}{\varepsilon}\right)^{d-1}\right) =$ $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{5(d-1)}{6}}\right)$
- 4 Return union of kernels

Time:
$$O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{5(d-1)}{6}}\right)$$

Kernel size: $O\left(\left(\frac{1}{\delta}\right)^{\frac{d-1}{2}}\left(\frac{\delta}{\varepsilon}\right)^{\frac{d-1}{2}}\right) = O\left(1/\varepsilon^{\frac{d-1}{2}}\right)$

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macheath Hierarchy Queries Analysis

Applications

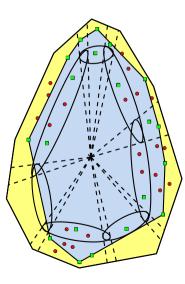
ANN Reduction Tradeoff Kernel History

Construction

Diameter

Conclusions Results

Open Problems References



- **1** Build hierarchy for $\delta = \varepsilon^{1/3}$: $O\left(n+1/\delta^{\frac{3(d-1)}{2}}\right) = O\left(n+1/\varepsilon^{\frac{d-1}{2}}\right)$ time
- 2 Split points among shadows: $O(n \log \frac{1}{\epsilon})$ time
- 3 Build $\frac{\varepsilon}{3}$ -kernel for each shadow (using existing $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{d-1})$ algorithm) $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\delta}\right)^{\frac{d-1}{2}}\left(\frac{\delta}{\varepsilon}\right)^{d-1}\right) =$ $O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{5(d-1)}{6}}\right)$
- Return union of kernels

Time:
$$O\left(n\log\frac{1}{\varepsilon} + 1/\varepsilon^{\frac{5(d-1)}{6}}\right)$$

Kernel size:
$$O\left(\left(\frac{1}{\delta}\right)^{\frac{d-1}{2}}\left(\frac{\delta}{\varepsilon}\right)^{\frac{d-1}{2}}\right) = O\left(1/\varepsilon^{\frac{d-1}{2}}\right)$$

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries

Analysis Applications

ANN
Reduction
Tradeoff
Kernel
History

Construction

Diameter

Conclusions
Results
Open Problems
References

Bootstrap using improved ε -kernel construction:

$$\bullet \ O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{t(d-1)}\right) \ \mathsf{time} \longrightarrow O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{4t+1}{6}(d-1)}\right) \ \mathsf{time}$$

$$\bullet$$
 $t: 1 \longrightarrow \frac{5}{6} \longrightarrow \frac{13}{18} \longrightarrow \frac{35}{54} \longrightarrow \cdots \longrightarrow \frac{1}{2} + \alpha$

Exponent t arbitrarily close to $\frac{1}{2}$

$$O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$$
, for arbitrarily small $\alpha>0$

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries

Analysis Applications

ANN
Reduction
Tradeoff
Kernel
History

Construction

Diameter

Conclusions
Results
Open Problems
References

Bootstrap using improved ε -kernel construction:

$$\bullet O\left(n\log \frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{t(d-1)}\right) \text{ time } \longrightarrow O\left(n\log \frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{4t+1}{6}(d-1)}\right) \text{ time }$$

•
$$t: 1 \longrightarrow \frac{5}{6} \longrightarrow \frac{13}{18} \longrightarrow \frac{35}{54} \longrightarrow \cdots \longrightarrow \frac{1}{2} + \alpha$$

■ Exponent t arbitrarily close to $\frac{1}{2}$

$$O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$$
, for arbitrarily small $\alpha>0$

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History

Construction

Diameter

Conclusions
Results
Open Problems
References

Bootstrap using improved ε -kernel construction:

$$\bullet \ O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{t(d-1)}\right) \ \mathsf{time} \longrightarrow O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{4t+1}{6}(d-1)}\right) \ \mathsf{time}$$

•
$$t: 1 \longrightarrow \frac{5}{6} \longrightarrow \frac{13}{18} \longrightarrow \frac{35}{54} \longrightarrow \cdots \longrightarrow \frac{1}{2} + \alpha$$

Exponent t arbitrarily close to $\frac{1}{2}$

$$O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$$
, for arbitrarily small $\alpha>0$

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History

Construction

Diameter Conclusions

Results
Open Problems
References

Bootstrap using improved ε -kernel construction:

$$O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{t(d-1)}\right) \text{ time } \longrightarrow O\left(n\log\frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon}\right)^{\frac{4t+1}{6}(d-1)}\right) \text{ time }$$

$$\bullet$$
 $t: 1 \longrightarrow \frac{5}{6} \longrightarrow \frac{13}{18} \longrightarrow \frac{35}{54} \longrightarrow \cdots \longrightarrow \frac{1}{2} + \alpha$

Exponent t arbitrarily close to $\frac{1}{2}$

$$O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{rac{d-1}{2}+lpha}
ight)$$
, for arbitrarily small $lpha>0$

Preprocessing Approximate Polytope Membership

Introduction

Motivation Definition Previous

Data Struct

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

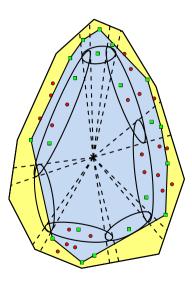
Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction

Diameter

Conclusions

Results Open Problems References



 Same strategy to efficiently preprocess an approximate polytope membership data structure

Approximate Polytope Membership

- Query time: $O(\log \frac{1}{\varepsilon})$ ← optimal
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}})$ ← optimal
- Preprocessing: $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha})$ ↑ almost optimal

Approximate Diameter [AFM17b]

Introduction

Motivation Definition Previous

Data Struct. Split-Reduce

Upper Bound Lower Bound Tradeoff

Macbeath Hierarchy

Queries Analysis

Applications

ANN Reduction Tradeoff Kernel

History Construction

Diameter

Conclusions
Results
Open Problems
References

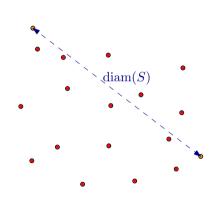
Input

S: Set of n points in \mathbb{R}^d $\varepsilon > 0$: Approximation parameter

Output

 $p,q\in S$ with

$$|pq| \ge (1 - \varepsilon) \operatorname{diam}(S)$$



Approximate Diameter [AFM17b]

Introduction

Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff

Tradeoff Macbeath Hierarchy Queries Analysis

Applications

ANN Reduction Tradeoff Kernel History

Construction Diameter

Diameter
Conclusions

Results Open Problems References

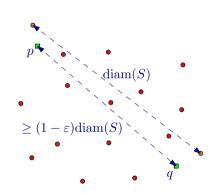
Input

S: Set of n points in \mathbb{R}^d $\varepsilon > 0$: Approximation parameter

Output

 $p, q \in S$ with

$$||pq|| \ge (1 - \varepsilon) \operatorname{diam}(S)$$



Polarity

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy

Analysis **Applications**

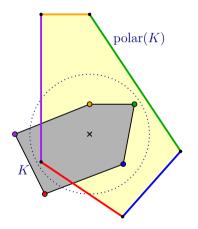
Queries

ANN Reduction Tradeoff Kernel History Construction

Diameter

Conclusions Results

Open Problems References



- *K*: convex body
- \blacksquare Polar of K: points p such that $p \cdot q \leq 1$ for $q \in K$
- \blacksquare In K: extreme point in direction v
- In polar(K): ray shooting in direction v

Polarity

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries

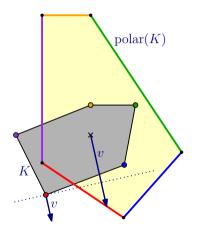
Analysis Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction

Diameter

Conclusions

Results Open Problems References



- *K*: convex body
- Polar of K: points p such that $p \cdot q \leq 1$ for $q \in K$
- In K: extreme point in direction v
- In polar(K): ray shooting in direction v from origin

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries

Analysis Applications

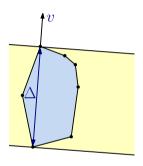
ANN Reduction Tradeoff Kernel History Construction

Diameter

Conclusions
Results
Open Problems
References

- Diameter: $\max_v \operatorname{width}_v(K)$
- Diameter: Approximated using $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries [Cha02]
- \blacksquare Preprocess $\operatorname{polar}(K)$ for ray shooting
- Perform $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries on K
- 3 Return maximum width found

$$O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{\frac{d-1}{2}+lpha}\right)$$
, for arbitrarily small $lpha>0$



Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Oueries

Analysis Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction

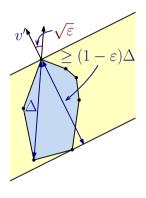
Diameter

Conclusions
Results
Open Problems
References

■ Diameter: $\max_v \operatorname{width}_v(K)$

- Diameter: Approximated using $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries [Cha02]
- \blacksquare Preprocess polar(K) for ray shooting
- Perform $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries on K
- 3 Return maximum width found

$$O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{rac{d-1}{2}+lpha}
ight)$$
, for arbitrarily small $lpha>0$



Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

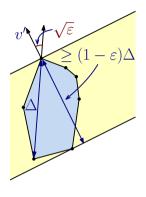
ANN
Reduction
Tradeoff
Kernel
History
Construction

Diameter

Conclusions
Results
Open Problems
References

- Diameter: $\max_v \operatorname{width}_v(K)$
- Diameter: Approximated using $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries [Cha02]
- 1 Preprocess polar(K) for ray shooting
- Perform $O(1/\varepsilon^{\frac{a-1}{2}})$ directional width queries on K
- Return maximum width found

$$O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$$
, for arbitrarily small $\alpha>0$



Introduction

Motivation Definition Previous

Data Struct. Split-Reduce

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

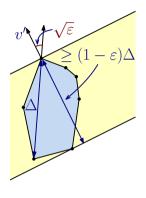
ANN
Reduction
Tradeoff
Kernel
History
Construction

Diameter

Conclusions
Results
Open Problems
References

- Diameter: $\max_v \operatorname{width}_v(K)$
- Diameter: Approximated using $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries [Cha02]
- **1** Preprocess polar(K) for ray shooting
- 2 Perform $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries on K
- Return maximum width found

$$O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$$
, for arbitrarily small $\alpha>0$



Introduction

Motivation Definition Previous

Data Struct. Split-Reduce

Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

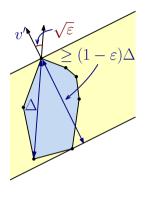
ANN
Reduction
Tradeoff
Kernel
History
Construction

Diameter

Conclusions
Results
Open Problems
References

- Diameter: $\max_v \operatorname{width}_v(K)$
- Diameter: Approximated using $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries [Cha02]
- **1** Preprocess polar(K) for ray shooting
- 2 Perform $O(1/\varepsilon^{\frac{d-1}{2}})$ directional width queries on K
- 3 Return maximum width found

$$O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{rac{d-1}{2}+lpha}
ight)$$
, for arbitrarily small $lpha>0$



Our approximate polytope membership data structure is optimal

- Query time: $O(\log \frac{1}{\varepsilon})$
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}})$
- Preprocessing: $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha})$

We showed how to use it to obtain:

- ANN searching in $O(\log n)$ query time with $O(n/\varepsilon^{d/2})$ storage
- Near-optimal ε -kernel construction in $O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$ time
- Diameter approximation in $O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$ time
- lacksquare Bichromatic closest pair approximation in $O\left(n/arepsilon^{\frac{d}{4}+lpha}
 ight)$ expected time
- Euclidean minimum spanning/bottleneck tree approximation in $O\left((n\log n)/\varepsilon^{\frac{d}{4}+\alpha}\right)$ expected time

Results

Introduction Motivation Definition Previous

Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff Macbeath Hierarchy Queries Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions

Results
Open Problems
References

Our approximate polytope membership data structure is optimal

- Query time: $O(\log \frac{1}{\varepsilon})$
- Storage: $O(1/\varepsilon^{\frac{d-1}{2}})$
- Preprocessing: $O(n \log \frac{1}{\varepsilon} + 1/\varepsilon^{\frac{d-1}{2} + \alpha})$

We showed how to use it to obtain:

- ANN searching in $O(\log n)$ query time with $O(n/\varepsilon^{d/2})$ storage
- Near-optimal ε -kernel construction in $O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$ time
- Diameter approximation in $O\left(n\log\frac{1}{\varepsilon}+1/\varepsilon^{\frac{d-1}{2}+\alpha}\right)$ time
- Bichromatic closest pair approximation in $O\left(n/\varepsilon^{\frac{d}{4}+\alpha}\right)$ expected time
- Euclidean minimum spanning/bottleneck tree approximation in $O\left((n\log n)/\varepsilon^{\frac{d}{4}+\alpha}\right)$ expected time

Open Problems

Introduction Motivation Definition Previous

Data Struct.
Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions Results

Open Problems References Still, several open problems remain

- Faster preprocessing
- Further improvements to approximate nearest neighbor searching
- Generalization to *k*-nearest neighbors
- Lower bound for diameter (or improved upper bound)
- Diameter for non-Euclidean metrics
- Other applications of the hierarchy

Ongoing work:

- Approximate the width
- Approximate polytope intersection
- ANN with non-Euclidean metrics

References

- Introduction Motivation Definition Previous
- Data Struct. Split-Reduce Upper Bound Lower Bound Tradeoff
- Macbeath Hierarchy Queries Analysis

Applications

- ANN Reduction Tradeoff Kernel History Construction Diameter
- Conclusions Results
- Open Problems
- References

- [AHV04] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of points. J. Assoc. Comput. Mach., 51:606-635, 2004.
- [ArC14] S. Arya and T. M. Chan. Better ε-dependencies for offline approximate nearest neighbor search, Euclidean minimum spanning trees, and e-kernels. In Proc. 30th Sympos. Comput. Geom., pages 416-425, 2014.
- [AFM17a] S. Arva, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership. In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270-288, 2017.
- [AFM17b] S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal ε -kernel construction and related problems. In *Proc. 33rd Internat*. Sympos. Comput. Geom., pages 10:1-15, 2017.
- [AFM17c] S. Arva, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approximating polytopes. *Discrete Comput.* Geom., 58(4):849-870, 2017.
- [AFM18] S. Arva, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries. SIAM J. Comput., 47(1):1–51, 2018.
- [AMM09] S. Arva, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate nearest neighbor searching. J. Assoc. Comput. Mach., 57:1-54, 2009.
 - [Bar07] I. Bárány. Random polytopes, convex bodies, and approximation. In W. Weil, editor, Stochastic Geometry, volume 1892 of Lecture Notes in Mathematics, pages 77-118, 2007.
 - [Cha02] T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Internat. J. Comput. Geom. Appl., 12:67-85, 2002.
 - [Cha06] T. M. Chan, Faster core-set constructions and data-stream algorithms in fixed dimensions, Comput. Geom. Theory Appl., 35(1):20-35, 2006.
 - [Cha17] T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational geometry. In Proc. 33rd Internat. Sympos. Comput. Geom., 2017.
 - [Dud74] R. M. Dudley, Metric entropy of some classes of sets with differentiable boundaries, Approx. Theory, 10(3):227-236, 1974.
 - [Joh48] F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, pages 187-204, 1948.
 - A. M. Macbeath. A theorem on non-homogeneous lattices. Annals of Mathematics, 54:431–438, 1952. [Mac52]

Introduction

Motivation Definition Previous

Data Struct.

Split-Reduce
Upper Bound
Lower Bound
Tradeoff
Macbeath
Hierarchy
Queries
Analysis

Applications

ANN
Reduction
Tradeoff
Kernel
History
Construction
Diameter

Conclusions Results

Results Open Problems

References

Painting by Robert Delaunay

Thank you!