
Kinetic hanger

Guilherme D. da Fonseca a Celina M. H. de Figueiredo b

Paulo C. P. Carvalho c

aCOPPE, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, 21945-970
Rio de Janeiro, RJ, Brazil. gfonseca@esc.microlink.com.br

bInstituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro,
Caixa Postal 68530, 21945-970 Rio de Janeiro, RJ, Brazil. celina@cos.ufrj.br

cInstituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110,
22460-320 Rio de Janeiro, RJ, Brazil. pcezar@impa.br

Abstract

A kinetic priority queue is a kinetic data structure which determines the largest
element in a collection of continuously changing numbers subject to insertions and
deletions. Due to its importance, many different constructions have been suggested
in the literature, each with its pros and cons. We propose a simple construction
that takes advantage of randomization to achieve optimal locality and the same
time complexity as most other efficient structures.

Key words: kinetic data structures, heaps, priority queues, computational
geometry, data structures

1 Kinetic Priority Queues

A kinetic priority queue is a kinetic data structure which computes the largest
element in a collection of continuously changing numbers subject to insertions
and deletions. Kinetic priority queues are the most fundamental kinetic data
structures and have been applied not only to solve kinetic problems, but also
to solve the famous k-set problem [6] and the connected red blue segments
intersection problem [2]. Due to its importance, many different constructions
have been suggested: the kinetic heap [4], the kinetic heater [2], the kinetic
tournament [4], and a reduction to dynamic convex hull structures [6]. Each
of these structures has its pros and cons.

The most important theoretical evaluation of kinetic priority queues consists
of comparing their time complexities on a real random access machine (real-

Preprint submitted to Elsevier Science 5 September 2003

RAM). We define the time complexity of a kinetic priority queue in a given
scenario as the total processing time of the structure sweeping the scenario.
This sweep line algorithm, computes the maximum of a set of functions of
time along time, that is, the upper envelope of these functions. When the
functions are only defined within an interval of time, we call these functions
segments. Each time a new segment appears, we perform an insertion and
each time a segment ceases to exist, we perform a deletion. It is important
to notice that this is different from solving the static upper envelope problem
because we do not assume the scenario is completely known to the right of the
sweep line. We assume that our model of computation can calculate the exact
intersection of two real functions in O(1) time. The time complexities of the
structures in the literature are summarized in Table 1. We use lg to denote
the binary logarithm, α(·) to denote the inverse Ackerman function and λδ(n)
to denote the maximum size of the upper envelope of n δ-intersecting curves.
We use n/a to denote not available. For details on λδ(n), see [11].

Scenario Heap Heater, Hanger and
Tournament

Dynamic Hull

1 Lines O(n lg2 n) O(n lg2 n) O(n lg n)

2 Line segments O(m
√

n lg3/2 n) O(mα(n) lg2 n) O(m lg n lg lg n)

3 δ-intersecting
curves

O(n2 lg n) O(λδ(n) lg n) n/a

4 δ-intersecting
curve segments

O(mn lg n) O(m/nλδ+2(n) lg n) n/a

Table 1
Time complexities of the structures. Parameter δ is considered constant. In sce-
narios 2 and 4, parameter n denotes the maximum number of elements stored in
the structure at the same time and m denotes the total number of elements. The
dynamic hull constructions do not support curves.

A heap is a binary tree, where the priority of each node is greater than the
priority of its children. We call this property the heap property. The heap is
balanced in the sense that all nodes with less than two children are in the
last two levels of the tree. It is not hard to perform insertions and deletions
in a heap, and details can be found in [8]. In a kinetic heap the priorities
change continuously with time. We call the moment when the priority of an
internal node becomes equal to the priority of one of its children an event.
At an event, the structure of the heap must be changed, in order to maintain
the heap property. To find events efficiently, we store potential events in a
efficient priority queue (like a heap), which is called the event queue. For all
internal nodes, we store a corresponding potential event, scheduled to the time
when the priority of the node would become equal to the priority of one of
its children if the structure of the heap remained unchanged. To advance in
time, we process the first occurring potential event in the event queue, which

2

is clearly an event. Processing an event consists of swapping the contents of
the two nodes involved in the event, and rescheduling at most three adja-
cent potential events. We say that a kinetic heap has O(1) locality because a
constant number of potential events must be rescheduled when processing an
event. Consequently, processing an event in a kinetic heap with n elements can
be done in O(lg n) time. But determining the maximum number of processed
events is a surprisingly nontrivial problem, which has only been solved tightly
when the priorities are linear functions of time (actually they only need to
be 1-intersecting curves) and no insertion or deletion is performed [9]. When
insertions and deletions are performed, a non-trivial bound is known [3], but
it is not known whether it is tight. The time complexity of the heap with other
curves is completely unknown, except for trivial results.

The kinetic heater [2] is a variation of the kinetic heap that uses randomization
in a way similar to the treap [1], which makes it easier to analyze. A kinetic
heater is also a binary tree with the heap property, but not necessarily full.
In a kinetic heater, each node has not only a priority, but also a random
key, and the tree is a binary search tree on the keys of the nodes. Compared
to the kinetic heap, the kinetic heater is less efficient in some aspects. It
requires storing the random keys and, instead of simply swapping nodes, we
have to perform rotations to insert or delete an element or process an event.
Besides that, variations of the kinetic heap and the kinetic tournament have
been proposed in [9] and [6], respectively, where the tree is a (lg n)-ary tree,
instead of a binary tree. These variations reduce the time complexities of the
structures by a factor of Θ(lg lg n). The binary search tree structure of the
kinetic heater makes it hard to use the same strategy to improve its efficiency.
Nevertheless, the kinetic heater has O(1) locality and the number of events is
tightly bounded [2].

The kinetic tournament [4] is another kinetic priority queue. The kinetic tour-
nament is significantly different from the other structures, because the ele-
ments are stored only in the leaves of the tree. Each internal node is associated
with the maximum element among its descendants. When processing an event,
we possibly have to reschedule many events, in a path toward the root. Thus,
a kinetic tournament has O(lg n) locality, even though its time complexity is
the same as the heater.

Reducing the problem to a dynamic hull structure [6] is not a practical alter-
native, because those structures are very complex. Besides that, this reduc-
tion is restricted to the case where the priorities are linear functions of time.
Nevertheless, this approach leads to the most efficient structures, having an
important theoretical value. The most efficient dynamic hull structure known
is presented in [5].

We would like to have a kinetic priority queue which were as simple and

3

hang(element e, node v)
{

if v.elem = ε
v.elem← e
return

r ← randombit()
hang (e, v.childr)

}

Fig. 1. The hang procedure used to construct an initial hanger.

efficient in practice as the kinetic heap, were at least as efficiente as the kinetic
heater and the kinetic tournament, and had O(1) locality. We propose a new
randomized kinetic priority queue, the kinetic hanger, which is both simpler
and more efficient in practice than the kinetic heater, and has O(1) locality.

2 Kinetic Hanger

A hanger is a randomized priority queue which is very similar to the heap.
Like the heap, a hanger is a binary tree such that the priority of each node
is greater than the priority of its children, but the hanger uses randomization
to balance the tree. To construct a hanger with an initial set of elements we
sort the elements by decreasing priorities and hang them at the root. We now
describe the hang procedure. When hanging an element e at a node v we first
check if there is already an element associated with node v. If there is no
element associated with node v we associate e with v and return. Otherwise,
we use a random bit r to choose a child cr of v and recursively hang e at node
cr. This procedure is described in pseudo-code in Figure 1.

The kinetic hanger with a set of elements S, denoted by hanger(S), is a
random structure. Any binary tree h with the set of vertices S which satisfies
the heap property is a possible hanger(S), that is, Pr(hanger(S) = h) > 0.
According to the values of the random bits, different kinetic hangers may be
constructed, with different probabilities. The following lemma shows how to
calculate the probability of a random hanger being equal to a given tree h,
which is a possible hanger(S). We define Lv as the level of the vertex v in the
tree h, that is, the number of edges in the path from v to the root of h.

Lemma 1 If h is a possible hanger(S), then

Pr(hanger(S) = h) =
(

1

2

)∑
v∈h

Lv

.

4

insert(element e, node v)
{

if v.elem = ε
v.elem← e
return

if v.elem < e
exchange e and v.elem

r ← randombit()
insert (e, v.childr)

}

Fig. 2. The insert procedure.

PROOF. Let R denote the sequence of bits returned by the randombit func-
tion in the hang procedure building h. It is clear that hanger(S) = h if
and only if the sequence of bits returned by the randombit function building
hanger(S) is exactly R, which happens with probability 2−|R|. As |R|, the
number of bits in R, is equal to the sum of the levels of all vertices of h, the
lemma is true. 2

We want to define insert and delete operations that preserve the randomness
of the structure in the sense that the kinetic hanger hanger(S) constructed
from scratch with a set of elements S and the kinetic hanger obtained by any
sequence of insertions and deletions which results in the set S are equally
distributed.

The insert procedure is very similar to the hang procedure. The only difference
is that when we insert an element e at node v which is already associated with
an element e′ we compare the priorities of e and e′. If the priority of e is higher
than the priority of e′, instead of recursively hanging e at a random child of
v we associate e with node v and recursively hang e′ at a random child of v.
This procedure is described in Figure 2.

We denote by insert(h, e) the hanger obtained by inserting an element e on
the hanger h with the insert procedure.

Lemma 2 Insertion preserves randomness, that is Pr(insert(hanger(S), e) =
h) = Pr(hanger(S ∪ e) = h).

PROOF. Notice that, for a given hanger h, there is only one possible hanger
h′ such that insert(h′, e) = h. The only difference between the topology of
h and h′ is the existence of a new leaf l in h, which was not present in h′.

5

Consequently,

Pr(insert(hanger(S), e) = h)

= Pr(insert(hanger(S), e) = h|hanger(S) = h′) Pr(hanger(S) = h′)

+ Pr(insert(hanger(S), e) = h|hanger(S) 6= h′) Pr(hanger(S) 6= h′)

= Pr(insert(hanger(S), e) = h|hanger(S) = h′) Pr(hanger(S) = h′)

The probability that the insertion of e in h′ causes the specific leaf l to appear
is 2−Ll . Using this and lemma 1,

Pr(insert(hanger(S), e) = h|hanger(S) = h′) Pr(hanger(S) = h′)

=
(

1

2

)Ll
(

1

2

)∑
v∈h′ Lv

=
(

1

2

)∑
v∈h

Lv

= Pr(hanger(S ∪ e) = h).

2

Deleting an element in the hanger is also simple. Actually, it is simpler than
deleting an element in the heap itself. We start from the element that we want
to remove and go down replacing the current element by its child with highest
priority. No extra random bits are necessary. We denote by delete(h, e) the
hanger obtained by deleting an element e from the hanger h with the delete
procedure.

Lemma 3 Deletion preserves randomness, that is Pr(hanger(S \ e) = h) =
Pr(delete(hanger(S), e) = h).

PROOF. By Lemma 2, we can replace hanger(S) by insert(hanger(S\e), e).
Consequently,

Pr(delete(hanger(S), e) = h) = Pr(delete(insert(hanger(S \ e), e), e) = h)

Let h′ = hanger(S \ e). By definiton, delete(insert(h′, e), e) = h′. Conse-
quently, we can replace delete(insert(h′, e), e) by h′, to get

Pr(delete(insert(hanger(S \ e), e), e) = h) = Pr(hanger(S \ e) = h).

2

Clearly, in a hanger with n elements, the hang, insert and delete procedures
have expected time complexity of O(E(Ln)).

6

Lemma 4 E(Ln) ≤ lg n. Besides that, Pr(Ln ≥ lg n + c) ≤ 2−c.

PROOF. Instead of bounding E(Ln) directly, we prove E(2Ln) = n. By
Jensen’s inequality, 2E(x) ≤ E(2x) and the lemma follows.

Let r denote the root of a hanger with n elements. Let rl, rr denote the two
subtrees rooted at the left and right children of r, respectively, and |rl| and
|rr| denote the number of vertices in these subtrees. Let rn denote the tree,
either rl or rr, which contains the element n. If |rn| = i, then E(2Ln) is two
times E(2Li+1). Consequently,

E
(
2Ln

)
=

n−2∑
i=0

Pr(|rn| = i)2E
(
2Li+1

)
.

The number of elements on rl is a binomial random variable ranging from 0
to n − 1. The same holds for rr. The number of elements on rn is 1 plus a
binomial random variable ranging from 0 to n−2. Using this, we can construct
the following probabilistic recurrence:

E
(
2Ln

)
=

n−2∑
i=0

(
n− 2

i

)
1

2n−2
2E

(
2Li+1

)
.

To prove that E(2Ln) = n we use induction. By applying the induction hy-
pothesis and the absorption property of binomial coefficients [10], namely

k

(
n

k

)
=

(
n− 1

k − 1

)
n, we obtain:

E(2Ln) =
n−2∑
i=0

(
n− 2

i

)
1

2n−3
(i + 1)

=
1

2n−3

(
n−2∑
i=0

(
n− 2

i

)
+

n−2∑
i=1

(
n− 2

i

)
i

)

=
1

2n−3

(
2n−2 + (n− 2)

n−3∑
i=0

(
n− 3

i

))

=
1

2n−3

(
2n−2 + (n− 2)2n−3

)
= n.

Now, we use Markov’s inequality to bound the probability that Ln is much

7

greater than lg n:

Pr(Ln ≥ lg n + c) = Pr(2L
n ≥ n2c) ≤ 2−c.

2

This finishes the analysis of a static hanger. Now we can define and analyze
the kinetic hanger. We maintain an event queue and process events in the
same way as in the kinetic heap. When the priority of a node becomes equal
to the priority of one of its children, we process an event, exchanging the two
nodes involved in the event and rescheduling at most three adjacent events.

We denote by hangert(S) the kinetic hanger with a set of elements S, con-
structed at time t. We are interested in the case where two elements intersect
at time t and denote by t− the moment of time just before the intersection
and by t+ the moment of time just after the intersection.

It is also not hard to prove that intersection preserves randomness:

Lemma 5 Intersection preserves randomness. More precisely, let h = hangert−(S).
If the two elements which intersect at time t are not parent/child in h then
Pr(hangert−(S) = h) = Pr(hangert+(S) = h). If the two elements which in-
tersect at time t are parent/child in h and h′ is the hanger with these two
elements interchanged, then Pr(hangert−(S) = h) = Pr(hangert+(S) = h′).

PROOF. The probability that hanger(S) = h is calculated in Lemma 1,
and does not depend on the values of the elements. Consequently, the lemma
follows. 2

Up to now, all results we obtained for the kinetic hanger have equivalent results
which are valid for the kinetic heap in a deterministic worst-case fashion. Now,
we are going to address the problem of calculating the expected number of
events in a kinetic hanger, which has no equivalent worst-case result in the
heap. Before that, we prove a simple probabilistic lemma.

Lemma 6 Let a, b, c be independent, identically distributed discrete random
variables. Then Pr(a = b|a 6= c) ≤ Pr(a = b).

PROOF. Observe that Pr(a = b|a 6= c) = Pr(a = b and a 6= c)/ Pr(a 6= c) =
Pr(a = b 6= c)/1− Pr(a = b).

8

Hence, claim is equivalent to Pr(a = b 6= c) ≤ Pr(a = b) − Pr(a = b)2 =
Pr(a = b 6= c)+Pr(a = b = c)−Pr(a = b)2 and therefore also to Pr(a = b)2 ≤
Pr(a = b = c).

Now observe that Pr(a = b)2 = (
∑

i p
2
i)

2 and Pr(a = b = c) =
∑

i p
3
i .

Now recall Cauchy-Schwarz inequality: (
∑

i xiyi)
2 ≤ (

∑
i x

2
i)(
∑

i y
2
i). Setting

xi = p
3/2
i and yi = p

1/2
i , we deduce: (

∑
i p

2
i)

2 ≤ (
∑

i p
3
i)(
∑

i pi) = (
∑

i p
3
i), as

desired. 2

Now we can prove that:

Lemma 7 Let h be a random hanger with m > n elements f1 > f2 > . . . >
fm. The probability pn that fn+1 is a child of fn in h is O(1/n).

PROOF. We denote the event that fn is a child of fn−1 in h by εn. Condi-
tioning yields:

Pr(εn) = Pr(εn|εn−1)Pr(εn−1) + Pr(εn|εn−1)(1− Pr(εn−1)).

We denote by b(fn) the sequence of random bits that defines the position of
fn in h; in other words, the sequence of left/right children which defines the
path from the root to fn. We denote by |b(fn)| the size of b(fn), that is, the
distance from the root to f(n). Clearly, given that |b(fn)| = L, Pr(εn) = 2−L.
As a consequence, we have Pr(εn|εn−1) = Pr(εn−1)/2 because, if n − 1 is a
child of n− 2, then |b(fn−1)| = |b(fn−2)|+ 1.

We also claim that Pr(εn|εn−1) ≤ Pr(εn−1). To justify that we start with a
fixed random hanger h′ containing elements f1 to fn−3 and insert fn−2, fn−1

and fn. We will define three independent equally distributed random variables
x1, x2 and x3, in such a way that the event εn−1 is the event x1 = x2 and the
event εn is contained in the event x2 = x3. First, we define x1 = b(fn−2). To
define x2 and x3, we truncate b(fn−1) and b(fn), possibly removing the last one
or two bits, at the point where the paths leading to fn−1 and fn, respectively,
leave h′. This means that we are using, for those truncated versions, the same
stopping rule used to define x1 = b(fn−2). Thus, if we denote the truncated
values of b(fn−1) and b(fn) by x2 and x3, respectively, we have that x1, x2 and
x3 are independent and equally distributed. Now, εn−1 holds if, and only if,
the truncated version x2 of b(fn−1) is exactly the same as x1 = b(fn−2); on the
other hand, if εn holds, then the truncated versions x2 and x3 of b(fn−1) and
b(fn) must agree.

Therefore, we have:

9

Pr(εn|εn−1) ≤ Pr(x2 = x3|x1 6= x2) ≤ Pr(x1 = x2) = Pr(εn−1).

Using the above inequality, we find the recurrence:

Pr(εn) ≤ Pr(εn−1)
2/2 + Pr(εn−1)(1− Pr(εn−1)) = Pr(εn−1)− Pr(εn−1)

2/2.

Now we can prove by induction that Pr(εn) ≤ 2/n. It is trivially true for the
base case n = 2. Suppose it is true for n− 1, then:

Pr(εn) ≤ Pr(εn−1)− Pr(εn−1)
2/2 ≤ 2/(n− 1)− 2/(n− 1)2 =

(2n− 4)/(n− 1)2 ≤ 2(n− 2)/n(n− 2) = 2/n.

2

Using exactly the same argument used in [2], which is based on a theorem of
Clarkson and Shor [7] we conclude:

Theorem 8 The expected number of events processed by a kinetic hanger
sweeping an arrangement Λ of n δ-intersecting curve segments is O(λδ+2(n) lg n).
An extra O(lg n) time must be spent processing each event.

PROOF. We define the level l in an arrangement of functions of time as the
sequence of curve segments which are the l largest segments in the arrange-
ment. Let us denote by kl the number of vertices at level l in the arrangement
Λ. By Lemma 7, and using linearity of expectation, the expected number of
events is at most

n−1∑
l=1

klLl =
n−1∑
l=1

klO(1/l).

Using summation by parts, we replace kl by its partial sum Kl =
∑

1≤i≤l ki.
In [7], Clarkson and Shor proved that Kl = O(lλδ+2(n)). A standard calcula-
tion gives:

10

n−1∑
l=1

klO(1/l) = KlO(1/l)

∣∣∣∣∣
n

1

+
n−1∑
l=1

Kl+1O(1/l2)

= O(λδ+2(n)) +
n−1∑
l=1

O(λδ+2(n)/l)

= O(λδ+2(n)) + O(λδ+2(n))
n−1∑
l=1

O(1/l)

= O(λδ+2(n) lg n).

2

Some useful corolaries are:

Corollary 9 The expected number of events processed by a kinetic hanger
sweeping an arrangement of m δ-intersecting curve segments such that any
vertical line intersects at most n segments is O(m/nλδ+2(n) lg n). An extra
O(lg n) time must be spent processing each event.

PROOF. Divide the arrangement into Θ(m/n) vertical slabs with Θ(n) seg-
ments in each slab. 2

Corollary 10 The expected number of events processed by a kinetic hanger
sweeping an arrangement of m δ-intersecting curves such that any vertical line
intersects at most n curves is O(m/nλδ(n) lg n). An extra O(logn) time must
be spent processing each event.

3 Conclusion

In this paper, we introduced a new randomized kinetic priority queue, the ki-
netic hanger. The kinetic hanger has the same expected time complexities of
the kinetic tournament (deterministic) and the kinetic heater, while possess-
ing some advantages compared to these structures. The fact that the kinetic
hanger is very simple to implement and has O(1) locality makes it a strong
candidate for practical implementation.

When compared to the kinetic tournament, the kinetic hanger has O(1) local-
ity, instead of the tournament’s O(lg n) locality. When compared to the kinetic
heater, the kinetic hanger is faster in practice and easier to implement because
it does not use rotation. The kinetic hanger is also faster in practice because
Ln, the level of the n-th largest element, satisfies E(Ln) ≤ lg n, while, in the

11

kinetic heater, it satisfies E(Ln) ' 2 ln n ' 1.39 lg n. When compared to the
kinetic heap, the kinetic hanger seems to be a randomized version of it, for
which we could find tight and efficient complexity bounds, while maintaining
the simplicity of the heap.

Tight analysis for the maximum number of events in the kinetic heap remains
an intriguing question. Using arguments similar to the ones we used, one can
show that a “random kinetic heap” is efficient in expectation. By “random
kinetic heap” we mean a kinetic heap initially constructed with a random
permutation of the set of elements. Unfortunately, insertions and deletions
destroy the randomness of this structure. Determining whether a kinetic heap
is efficient in the worst case, or subject to insertions and deletions remains
unsolved.

Variations of the kinetic heap and the kinetic tournament have been proposed
in [9] and [6], respectively, where the tree is a (lg n)-ary tree, instead of a
binary tree. These variations reduce the time complexities of the structures
by a factor of Θ(lg lg n). The binary search tree structure of the kinetic heater
makes it hard to use the same strategy, but a k-ary version of the kinetic
hanger is simple and natural. Instead of using random bits, we use random
numbers with k possible values.

The time complexity of processing an event in a k-ary hanger with n elements
is O(k + lg(n/k)). If k = O(lg n), the time complexity of processing an event
remains O(lg n).

We conjecture that the expected number of events processed by a kinetic k-
ary hanger sweeping an arrangement Λ of n δ-intersecting curve segments is
O(λδ+2(n) lg n/ lg k), and that the product of the number of events and the
time to process each event is minimum for k = O(lg n).

Acknowledgements We are grateful to the referee for his careful reading
and many suggestions which helped to improve the paper. We thank Angelika
Steger for supplying a simple proof of Lemma 6. The first author is supported
by Coordenação de Aperfeiçoamento de Pessoal de ńıvel Superior - CAPES.

References

[1] C. R. Aragon and R. G. Seidel. Randomized search trees. Algorithmica,
16(4/5):464–497, 1996.

[2] J. Basch, L. J. Guibas, and G. D. Ramkumar. Reporting red-blue intersections
between two sets of connected line segments. In Proceedings of the 4th Annual
European Symposyum on Algorithms, volume 1136 of Lecture Notes Comput.
Sci., pages 302–319. Springer-Verlag, 1996.

12

[3] J. Basch, L. J. Guibas, and G. D. Ramkumar. Sweeping lines and line segments
with a heap. In Proceedings of the 13th Annual Symposyum on Computational
Geometry, pages 469–471, 1997.

[4] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for
mobile data. Journal of Algorithms, 31(1):1–28, April 1999.

[5] G. S. Brodal and R. Jacob. Dynamic planar convex hull with optimal query
time. In Proceedings of the 7th Scandinavian Workshop on Algorithm Theory,
SWAT2000, volume 1851 of Lecture Notes Comput. Sci., pages 57–70. Springer-
Verlag, 2000.

[6] T. M. Chan. Remarks on k-level algorithms in the plane.
http://www.math.uwaterloo.ca/˜tmchan/lev2d 7 7 99.ps.gz, 1999.

[7] K. L. Clarkson and P. W. Shor. Applications of random sampling in
computational geometry, II. Discrete and Computational Geometry, 4:387–421,
1989.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
The MIT Press, 1990.

[9] G. D. da Fonseca and C. M. H. de Figueiredo. Kinetic heap-ordered trees: tight
analysis and improved algorithms. Information Processing Letters, 85:165–169,
2003.

[10] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics - A
Foundation for Computer Science. Addison-Wesley Publishing Company, 1994.

[11] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their
Geometric Applications. Cambridge University Press, 1995.

13

