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Abstract

A unit disk graph is the intersection graph of n congruent disks in the
plane. Dominating sets in unit disk graphs are widely studied due to their
applicability in wireless ad-hoc networks. Because the minimum dominating
set problem for unit disk graphs is NP-hard, numerous approximation algo-
rithms have been proposed in the literature, including some PTASs. However,
since the proposal of a linear-time 5-approximation algorithm in 1995, the
lack of efficient algorithms attaining better approximation factors has aroused
attention. We introduce an O(n + m) algorithm that takes the usual adja-
cency representation of the graph as input and outputs a 44/9-approximation.
This approximation factor is also attained by a second algorithm, which takes
the geometric representation of the graph as input and runs in O(n log n)
time regardless of the number of edges. Additionally, we propose a 43/9-
approximation which can be obtained in O(n2m) time given only the graph’s
adjacency representation. It is noteworthy that the dominating sets obtained
by our algorithms are also independent sets.

1 Introduction

A unit disk graph G is a graph whose n vertices can be mapped to points in the
plane and whose m edges are defined by pairs of points within Euclidean distance at
most 1 from one another. Alternatively, one can regard the vertices of G as mapped
to coplanar disks of unit diameter, so that two vertices are adjacent whenever the
corresponding disks intersect.

A dominating set D is a subset of the vertices of a graph such that every vertex
not in D is adjacent to some vertex in D. An independent set is a subset of mutually
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non-adjacent vertices. An independent dominating set is a dominating set which is
also an independent set. Note that any maximal independent set is an independent
dominating set.

Dominating sets in unit disk graphs are widely studied due to their application
in wireless ad-hoc networks [15]. Since it is NP-hard to compute a minimum dom-
inating set of a unit disk graph [4], several approximation algorithms have been
proposed [6, 7, 11, 12, 15, 19, 23]. Such algorithms are of two main types. Graph-
based algorithms receive as input the adjacency representation of the graph and
assume no knowledge of the point coordinates, whereas geometric algorithms work
in the Real RAM model of computation and receive solely the vertex coordinates as
input1.

If the coordinates of the n disk centers are known, the m edges of the corre-
sponding graph G can be figured out easily. It can be done in O(n + m) time
under the Real RAM model with floor function and constant-time hashing, and in
O(n log n+m) time without those operations [1]. Thus, for the price of a conversion
step, graph-based algorithms can be used when the input is a unit disk realization of
G. However, unless P=NP, no efficient algorithm exists to decide whether a given
graph admits a unit disk realization [3], let alone exhibit one. As a consequence,
geometric algorithms cannot be efficiently transformed into graph-based algorithms.
In this paper, we introduce approximation algorithms of both types, benefiting from
the same approximation factor analysis. The proposed graph-based algorithm runs
in O(n + m) time, and the geometric algorithm runs in O(n log n) time regardless
of m.

Previous algorithms A graph-based 5-approximation algorithm that runs in
O(n + m) time was presented in [15]. The algorithm computes a maximal inde-
pendent set, which turns out to be a 5-approximation because unit disk graphs
contain no K1,6 as induced subgraphs, as shown in that same paper.2

Polynomial-time approximation schemes (PTAS) were first presented as geomet-
ric algorithms [12] and later as graph-based algorithms [19]. Also, a graph-based
PTAS for the more general disk graphs was proposed in [11]. Unfortunately, the
complexities of the existing PTASs are high-degree polynomials. For example, the
PTAS presented in [19] takes O(n225) time to obtain a 5-approximation (using the
analysis from [6]). Although its analysis is not tight, the running time is too high
even for moderately large graphs. The reason is that these PTASs invoke a sub-
routine that verifies by brute force whether a graph admits a dominating set with
k vertices. The verification takes nO(k) time, and it is unlikely that this can be
improved (unless FPT=W[1], as proved in [16]). Such a subroutine is applied to
several subgraphs, and the value of k grows as the approximation error decreases.
A similar strategy was used in [13] to obtain a PTAS for the minimum independent
dominating set.

The lack of fast algorithms with approximation factor less than 5 was recently
noticed in [6], where geometric algorithms with approximation factors of 4 and 3

1The Real RAM model is a technical necessity, otherwise storing the coordinates of the vertices
would require an exponential number of bits [17].

2The graph K1,q consists of a vertex with q pendant neighbors.
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and running times respectively O(n9) and O(n18) were presented. While a significant
step towards approximating large instances, those algorithms require the geometric
representation of the graph, and their running times are still polynomials of rather
high degrees. Linear and near-linear-time approximation algorithms constitute an
active topic of research, even for problems that can be solved exactly in polynomial
time, such as maximum flow and maximum matching [5, 22].

It is useful to contrast the minimum dominating set problem with the maximum
independent set problem. While a maximal independent set is a 5-approximation
to both problems, it is easy to obtain a geometric 3-approximation to the maximum
independent set problem in O(n log n) time [18]. In the graph-based version, a
related strategy takes roughly O(n5) time, though. No similar results are known for
the minimum dominating set problem.

The existing PTASs for the minimum dominating set problem in unit disk graphs
are based on some packing constraints that apply to unit disk graphs.3 One of these
constraints is the bounded growth property : the size of an independent set formed
by vertices within distance r of a given vertex, in a unit disk graph, is at most
(1 + 2r)2. Note, however, that the bounded growth property is not tight. For
example, for r = 1, it gives an upper bound of 9 vertices where the actual maximum
size is 5. Since the bounded growth property is strongly connected to the problem
of packing circles in a circle, obtaining exact values for all r seems unlikely [9].

Our contribution Our main result consists of the two approximation algorithms
given in Section 3: a graph-based algorithm, which runs in linear O(n+m) time, and
its geometric counterpart, which runs in O(n log n) time in the Real RAM model,
regardless of the number of edges. The approximation factor of both algorithms is
44/9. The strategy in both cases is to construct a 5-approximate solution using the
algorithm from [15], and then perform local improvements to that initial dominating
set. Our main lemma (Lemma 9) uses forbidden subgraphs to show that a solution
that admits no local improvement is a 44/9-approximation. Since the dominating
sets produced by our algorithms are independent sets, the same approximation factor
holds for the independent dominating set problem.

Proving that a certain graph is not a unit disk graph (and is therefore a forbidden
induced subgraph) is no easy feat4. We make use of an assortment of results from
discrete geometry in order to prove properties of unit disk graphs that are interesting
per se. For example, we use universal covers and disk packings to show that the
neighborhood of a clique in a unit disk graph contains at most 12 independent
vertices. These properties, along with a tighter version of the bounded growth
property, are collected in Section 2, and allow us to show that certain graphs are
not unit disk graphs. Consequently, the analyses of our algorithms employ a broader
set of forbidden subgraphs which include, but are not limited to, the K1,6.

Additionally, in Section 4, we show that a possible, somewhat natural refinement
to our graph-based algorithm leads to a tighter 43/9-approximation, albeit for the

3In packing problems, one usually wants to enclose non-overlapping objects into a recipient
covering the greatest possible fraction of the recipient area.

4The fastest known algorithm to decide whether a given graph is a unit disk graph is doubly
exponential [21].
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price of an extra O(n2) multiplying factor in the time complexity of the algorithm.

2 Forbidden subgraphs

In this section, we introduce some lemmas about the structure of unit disk graphs.
These lemmas will be applied to prove our approximation factors in Sections 3 and
4. We start by stating three previous results from the area of discrete geometry. The
first lemma comes from the study of universal covers (for a recent survey see [10]).

Lemma 1 (Pál [20]). If a set of points P has diameter 1, then P can be enclosed
by a circle of radius 1/

√
3.

Packing congruent disks in a circle is a well-studied problem. Exact bounds on
the radius of the smallest circle packing k unitary disks are known for some small
values of k, namely k ≤ 13 and k = 19 [9]. The bound for k = 13 will be useful to
us.

Lemma 2 (Fodor [9]). The radius of the smallest circle enclosing 13 points with
mutual distances at least 1 is (1 +

√
5)/2.

The density of a packing is the ratio between the covered area and the total area.
The following general upper bound is useful when no exact bound is known.

Lemma 3 (Fejes Tóth [8]). Every packing of two or more congruent disks in a
convex region has density at most π/

√
12.

Given a graph G = (V,E) and a vertex v ∈ V , let N(v) denote the open neigh-
borhood of v and let N [v] = N(v) ∪ {v} denote the closed neighborhood of v. More
generally, the open r-neighborhood of a vertex v is the set of vertices w such that
the distance between v and w in G is exactly r, while the closed r-neighborhood of
a vertex v is the set of vertices w such that the distance between v and w in G is at
most r. For a set S ⊆ V , we let NS(v) = N(v) ∩ S and NS[v] = N [v] ∩ S. Finally,
given a subgraph H of G, the closed neighborhood of H, denoted N [H], is the set of
vertices that belong to the closed neighborhood of some vertex of H. The following
two lemmas concern neighborhoods in unit disk graphs.

Lemma 4. The closed neighborhood of a clique in a unit disk graph contains at most
12 independent vertices.

Proof. By Lemma 1, the points which define a clique in a unit disk graph can be
enclosed by a circle of radius 1/

√
3. Therefore, the points corresponding to the

closed neighborhood of such a clique are enclosed by a circle of radius 1 + (1/
√

3).
By Lemma 2, a circle enclosing 13 points with mutual distances at least 1 has radius
at least (1 +

√
5)/2. Since (1 +

√
5)/2 > 1 + (1/

√
3), the lemma follows.

Lemma 5. Given an integer r ≥ 1, the closed r-neighborhood of a vertex in a unit
disk graph contains at most bπ(2r + 1)2/

√
12c independent vertices.
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Proof. All n disks of diameter 1 corresponding to the closed r-neighborhood of a
vertex v must be enclosed by a circle Z of radius (2r + 1)/2 centered on v. Each
disk of diameter 1 has area π/4 and Z has area (2r + 1)2π/4. Using Lemma 3, we
have (n π/4)/((2r + 1)2π/4) ≤ π/

√
12, and the lemma follows.

We say that a graph G is (k, `)-pendant if there is a vertex v in G with k vertices
of degree 1 in the open neighborhood of v and ` vertices of degree 1 in the open
2-neighborhood of v. We refer to v as a generator of the (k, `)-pendant graph. The
following lemma bounds the value of the parameter ` for (4, `)-pendant unit disk
graphs.

Lemma 6. If G is a (4, `)-pendant unit disk graph, then ` ≤ 8.

Proof. Let v be a generator of G. Since K1,6 is a forbidden induced subgraph [15]
and v has 4 neighbors of degree 1, we have that the remaining neighbors of v together
with v itself form a clique. By Lemma 4, it follows that 4 + ` ≤ 12.

Next, we consider the case of (3, `)-pendant unit disk graphs.

Lemma 7. If G is a (3, `)-pendant unit disk graph, then ` ≤ 16.

Proof. Let v be a generator of G. Since two vertices are adjacent if and only if their
Euclidean distance is at most 1, the closed neighborhood of v lies inside a circle of ra-
dius 1 centered at v. Let u be a neighbor of v with
degree 1. We divide the aforementioned circle into six congruent sectors s1, . . . , s6
in such a way that u sits on the boundary of two adjacent sectors s1, s2. Since the
diameter of each sector is 1 and u has degree 1, we have that s1 ∪ s2 only contains
vertex u. By the same argument, the remaining two neighbors of v that have degree
1 are contained in two of the remaining four sectors, which we call s3, s4 (note that
the sectors do not necessarily appear in the order s1, . . . , s6). Therefore, only sectors
s5, s6 may contain the neighbors of v that have degree greater than 1.

Notice that the neighbors of the vertices in s5 ∪ s6 should be located within
Euclidean distance at most 1 from s5 ∪ s6. Consequently, the disks of unit diameter
corresponding to such vertices should be completely contained in the region defined
as the Minkowski sum of s5 ∪ s6 and a disk of radius 1.5, i.e. the region within
distance at most 1.5 from s5 ∪ s6. We compute upper bounds to the area of such a
region by considering two cases, depending on whether s5 and s6 are opposite sectors
(bounded by the same pair of straight lines).

First, we consider the case when s5 and s6 are not opposite sectors. In this
scenario, s5 ∪ s6 is contained in a semicircle of radius 1 centered at the generator v,
as represented in Figure 1(a). We define a region R as the locus of points within
distance at most 1.5 from the aforementioned semicircle of radius 1. The area a of
R is therefore a = 3 + 17π/4.

By Lemma 3, the number of disks of unit diameter contained in R is at most

a ·
(

π√
12

)
·
(

1
π/4

)
< 18.8814 < 19. Since k = 3 of these disks are the degree-1

neighbors of v, we have ` < 16.
Second, we consider the case when s5 and s6 are opposite sectors. In this scenario,

the region s5 ∪ s6 is not convex. In order to obtain a convex region R′, we define
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Figure 1: Upper bounds to the area of the Minkowski sum of s5 ∪ s6 and a disk of
radius 1.5 in the two different scenarios discussed in the proof of Lemma 7: in (a),
the dark area corresponds to a semicircle containing s5 ∪ s6; in (b), it corresponds
to the convex hull of s5 ∪ s6.

R′ as the locus of points within distance at most 1.5 from the convex hull of s5 ∪ s6
(see Figure 1(b)). The area a′ of R′ is therefore 7

√
3/2 + 43π/12.

By Lemma 3, the number of disks of unit diameter contained in R′ is at most

a′ ·
(

π√
12

)
·
(

1
π/4

)
< 19.9989 < 20. Since k = 3 of these disks are the degree-1

neighbors of v, we have ` < 17.

Finally, the following lemma holds for the general case.

Lemma 8. If G is a (k, `)-pendant unit disk graph, then k + ` ≤ 22.

Proof. Immediately from Lemma 5 with r = 2.

3 Linear-time 44/9-approximation

In this section, we present two 44/9-approximation algorithms. The key property to
analyze the approximation factor is presented in Lemma 9, while the running time
analyses are presented in Sections 3.1 and 3.2.

Hereafter, let G = (V,E) be a unit disk graph, and let D ⊆ V be an independent
dominating set of G. If v ∈ D and uv ∈ E, we say that v dominates u and,
conversely, that u is dominated by v.

As already mentioned, unit disk graphs are free of induced K1,6. Therefore, at
most 5 vertices of D may belong to the closed neighborhood of any given vertex
v ∈ V . A corona is a set C ⊆ D consisting of exactly 5 neighbors of some vertex
c ∈ V \D. Such a vertex c, which is not necessarily unique, is called a core of the
corona C, whereas the 5 vertices of the corona are referred to as the corona’s petals.
Notice that the subgraph induced by a corona C and a corresponding core c is a
K1,5.

Given a dominating set D, a corona C ⊆ D is said to be reducible if there is a
core c of C such that D ∪ {c} \ C is a dominating set. We refer to the operation
that converts D into the smaller dominating set D ∪ {c} \ C as a reduction of C
with respect to c. If there is no core allowing for a reduction of C, than C is dubbed
irreducible. If C is an irreducible corona, then, for every core c of C, there must
exist a vertex w ∈ V \ (C ∪ {c}), such that:
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(i) w is not adjacent to c;

(ii) w is only dominated, in D, by vertices that belong to C.

We call w a witness of c, conveying the idea that the corona having c as a core
cannot be reduced with respect to c due to the existence of w.

Lemma 9. Let G = (V,E) be a unit disk graph, D an independent dominating set
in G, and D∗ a minimum dominating set of G. If all coronas in D are irreducible,
then ρ := |D|/|D∗| ≤ 44/9.

Proof. We use a charging argument to bound the ratio between the cardinalities of
D and D∗. Consider that each vertex u ∈ D splits a unit charge evenly among
the vertices in the closed neighborhood ND∗ [u]. The function f : D∗ → (0, 5] below
corresponds to the total charge assigned to each vertex v∗ ∈ D∗, accumulating the
(fractional) charges that v∗ receives from the vertices in ND[v∗]:

f(v∗) =
∑

u∈ND[v∗]

1

|ND∗ [u]| . (1)

Note that, since D and D∗ are dominating sets, neither ND∗ [u] nor ND[v∗] are ever
empty, and f(v∗) ≤ |ND[v∗]|. Such function f allows us to write the cardinality of
D as

|D| =
∑
v∗∈D∗

f(v∗).

Since

ρ =
|D|
|D∗| =

∑
v∗∈D∗ f(v∗)

|D∗|
is precisely the average value of f(·) over the elements of D∗, we obtain the desired
bound ρ ≤ 44/9 by showing that the existence of vertices c∗

in D∗ with f(c∗) > 44/9 is counterbalanced by a sufficiently large number of vertices
r∗ in D∗ with f(r∗) ≤ 4.

Before we continue, note that f(c∗) > 44/9 means that f(c∗) = 5, because the
summation in (1) has at most 5 terms, all of which are of the form 1/i for some
integer i ≥ 1. Thus, let c∗ be a vertex in D∗ with f(c∗) = 5. Clearly, c∗ /∈ D,
otherwise f(c∗) ≤ |ND[c∗]| = 1, because D is an independent set. Moreover, c∗ must
have exactly 5 neighbors in D, since a larger number of neighbors in D would imply
the existence of an induced K1,6 in G, which is not possible, and a smaller number
would imply f(c∗) ≤ |ND[c∗]| ≤ 4, a contradiction. Therefore, vertex c∗ is a core.

Now let C ⊆ D be the corona of which c∗ is a core. Because there are no reducible
coronas in D, the core c∗ must have a witness w. Note that, for all petals u ∈ C,
the only vertex in ND∗ [u] is the core c∗. Otherwise, the contribution of some u ∈ C
in the summation yielding f(c∗) — given by (1) — would be at most 1/2, and f(c∗)
would be at most 9/2 < 5, a contradiction. In particular, the above implies that
the witness w, which is adjacent to at least one vertex in C, cannot belong to D∗.
But D∗ is a dominating set, so there must exist a vertex r∗ ∈ D∗ that is adjacent
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c∗ w r∗

C

Figure 2: Figure for the proof of Lemma 9. A square indicates a vertex of D∗, a
solid circle a vertex of the corona C ⊆ D, and a hollow circle a vertex not in D∪D∗.
Vertices w and r∗ are respectively witness and reliever of core c∗.

to w, and r∗ 6= c∗ because a witness w is not adjacent to the corresponding core by
definition. We call r∗ a reliever of c∗. Figure 2 illustrates this situation.

We now show that |ND[r∗]| ≤ 4. For sake of contradiction, assume
|ND[r∗]| > 4. Because G is free of induced K1,6, such number must be
exactly 5, so that r∗ is the core of a corona C ′ ⊂ D. Such a corona must be
disjoint from corona C, otherwise there would be a vertex in C ∩ C ′ adjacent to
more than one vertex in D∗, namely c∗ and r∗, contradicting the fact that the only
neighbor in D∗ of any petal of C is the core c∗. Since, by definition, the witness w
is only dominated in D by vertices of C, we have NC′(w) = ∅. Hence, C ′ ∪ {w} is
an independent set of G, constituting, along with the core r∗, an induced K1,6 in G.
This is a contradiction, because G is a unit disk graph. Thus, |ND[r∗]| ≤ 4. Since
f(r∗) ≤ |ND[r∗]|, we have f(r∗) ≤ 4.

We have just shown that the existence of a vertex c∗ in D∗ with f(c∗) = 5 implies
the existence of a vertex r∗ ∈ D∗ such that f(r∗) ≤ 4. Were this correspondence one-
to-one, we would be able to state that the average
of f(·) over the elements of D∗ was no greater than 4.5. Unfortunately, this corre-
spondence is not necessarily one-to-one, as exemplified by the graph in Figure 3, for
which a disk model is given in Figure 4 with coordinates presented in Table 1.

Still, the lemmas in Section 2 allow us to bound the ratio between the number
of vertices c∗ with f(c∗) = 5 and the number of vertices r∗ for which the values of
f are significantly lower. Let r∗ ∈ D∗\D be a reliever. In order to obtain the claimed
bound, we consider two cases depending on the size
of ND[r∗]:

(i) |ND[r∗]| ≤ 3. By Lemma 5, the closed 4-neighborhood of r∗ contains at
most 73 independent vertices. Since each corona contains 5 independent vertices,
at most b(73 − |ND[r∗]|)/5c = 14 cores may share a common reliever5. To derive
an upper bound, let c∗1, . . . , c

∗
14 ∈ D∗ denote such cores. If |ND[r∗]| ≤ 3, then the

average value of f(·) among r∗, c∗1, . . . , c
∗
14 is at most

1 · 3 + 14 · 5
15

< 4.867.

(ii) |ND[r∗]| = 4. By Lemma 6, if |ND[r∗]| = 4, then at most 8 cores c∗1, . . . , c
∗
8

may have r∗ as their common reliever, for otherwise we obtain
a (4, 9)-pendant graph, which cannot be a unit disk graph. Thus, the average value

5We would like to thank an anonymous referee for this simplified argument.
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r∗

c∗1

c∗2 c∗3

c∗4w1

w2 w3

w4

Figure 3: Unit disk graph where 4 distinct cores c∗1, . . . , c
∗
4 share the same reliever

r∗.

Figure 4: Geometric model for the graph in Figure 3. Due to scale/precision issues,
some disks appear to touch one another when in fact they do not. For clarity, disks
that actually touch one another have their centers connected by a straight line.
Moreover, there are no concentric disks among those for the witnesses w1, . . . , w4.
The coordinates of the centers are given in Table 1.

of f(·) among r∗, c∗1, . . . , c
∗
8 is at most

1 · 4 + 8 · 5
9

= 44/9 = 4.888 . . .

The worst case is |ND[r∗]| = 4, and therefore ρ ≤ 44/9, concluding the proof.

3.1 Graph-based algorithm

By Lemma 9, an independent dominating set with no reducible coronas is a 44/9-
approximation to the minimum dominating set. We now describe how to obtain
such a set in linear time given the adjacency list representation of the graph.

We can easily compute a maximal independent set D, which is a 5-approximation
to the minimum dominating set [15], in O(n + m) time. An independent dominat-
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r∗ : (0, 0);
c∗1 : (−2492384, 879081), w1 : (−492423, 870355),
c∗2 : (−1310377, 2686162), w2 : (−484809, 874619),
c∗3 : (1310377, 2686162), w3 : (484809, 874619),
c∗4 : (2492384, 879081), w4 : (492423, 870355);
remaining vertices:
(±776025, 3531423), (±1492384, 879081), (±999986, 5235),
(±2309705, 2722805), (±3491646, 917468), (±3023782, 31960),
(±1776763, 3570742), (±1840296, 1838114), (±2022913,−3866),
(±503019,−864274), (±2957226, 1764474), (±810377, 1820137).

Table 1: Coordinates of the centers of the disks in Figure 4. All diameters are
equal to 1000001.

ing set with no reducible coronas can then be obtained by iteratively performing
reductions. However, naively performing such reductions leads to a running time of
O(n2m), since (i) there are O(n) candidate cores for a reducible corona, (ii) detect-
ing whether a vertex v is in fact the core of a reducible corona by inspecting the
3-neighborhood of v takes O(m) time, and (iii) we may need to reduce a total of
O(n) coronas. Fortunately, the following algorithm modifies the set D and returns
an independent dominating set with no reducible coronas in O(n+m) time.

(1) For each vertex v ∈ V \D, compute ND(v).

(2) For each vertex v ∈ V \ D, if |ND(v)| = 5, add ND(v) to the list of coronas C
(unless it is already there).

(3) Let B ← ∅. For each corona C ∈ C, if there is a vertex c such that D ∪ {c} \ C
is a dominating set, then add c to the set B.

(4) Choose a maximal subset B′ of B such that the pairwise distance of the vertices
in B′ is at least 5.

(5) For each vertex c ∈ B′, perform a reduction D ← D ∪ {c} \ND(c).

(6) Repeat all the steps above until B′ = ∅.

The algorithm is correct since all changes made to D along its execution preserve
the property that D is an independent dominating set. Notice that, in step (4), we
only reduce coronas that are sufficiently far from each other, in order to guarantee
that we do not reduce a corona that may have ceased to be reducible due to a
previous reduction. Moreover, the algorithm always terminates because the size of
D decreases at every iteration, except for the last one.

Next, we show that the running time is O(n + m). Step (1) can be easily
implemented to run in O(n + m) time. To execute step (2) in O(n + m) time, we
must determine in constant time whether a corona is already in the list C. This can
be achieved by indexing each corona C by an arbitrary vertex v ∈ C (say, the one
with the lowest index), and by storing with v a list of coronas that are in C and
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whose index is v. Note that, because of the packing constraints inherent to unit disk
graphs, the number of coronas that contain a given vertex is constant.

Step (3) can be implemented as follows (for each corona C ∈ C):

(3a) Let S1 be the union of the open neighborhoods of the 5 petals of C.

(3b) Let S2 be the set of vertices dominated only be vertices of C, i.e., S contains
every vertex w ∈ S1 such that ND(w) ⊆ C.

(3c) Let S3 be the intersection of the closed neighborhoods N [v] of all v ∈ S2 ∪ C.

(3d) If S3 6= ∅, then add an arbitrary vertex of S3 to the set B.

The steps above take O(n+m) total time when executed for all coronas C ∈ C,
because the number of coronas that contain or are adjacent to a given vertex is also
constant by packing constraints.

It is easy to perform steps (4) and (5) in linear time. It remains to show that the
whole process is only repeated for a constant number of iterations. Let B1, . . . , Bk

denote the set of reducible coronas at each iteration of the algorithm with Bk = ∅.
Note that the reductions performed in step (5) never create a new reducible corona.
Therefore B1 ) · · · ) Bk. Let C denote a corona that was reduced in the last
iteration k. If C was not reduced during a previous iteration i < k, then another
corona within distance 5 from C was reduced at that very iteration i. Since, again
by packing constraints, the maximum number of coronas within constant distance
from C is itself a constant, we have k = O(1).

The following theorem summarizes the result from Section 3.1.

Theorem 10. Given the adjacency list representation of a unit disk graph with n
vertices and m edges, it is possible to find a 44/9-approximation to the minimum
dominating set problem in O(n+m) time.

3.2 Geometric algorithm

In this section, we describe how to obtain an independent dominating set with no
reducible corona in O(n log n) time given the geometric representation of the graph.
The input is therefore a set P of n points. Without loss of generality, we assume
that the corresponding unit disk graph is connected (otherwise, we can compute
the connected components in O(n log n) time using a Delaunay triangulation [2]).
We use terms related to vertices of the graph and to the corresponding points in-
terchangeably. For example, we say a set of points is independent if all pairwise
distances are greater than 1.

We want the points of P to be structured in a suitable fashion. Thus, as a pre-
liminary step, we sort the points by x-coordinates and by y-coordinates separately
(such orderings will also be useful later on), and we partition the points of P ac-
cording to an infinite grid with unitary square cells by performing two sweeps on
the sorted points. Without loss of generality, we assume that no point lies on the
boundary of a grid cell. Given p ∈ P , let σ(p) denote the grid cell that contains p.
We refer to the set of at most 8 non-empty grid cells surrounding a cell Q as the
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open vicinity of Q, denoted N(Q), and to the union of Q and its open vicinity as
the closed vicinity of Q, denoted N [Q]. Note that a point p can only be adjacent
to points in the closed vicinity of σ(p), that is, N [p] ⊂ N [σ(p)]. Each point p ∈ P
stores a pointer to its containing cell σ(p). Also, each cell stores the list of points it
contains and pointers to the cells in its open vicinity. Since the graph is connected,
the diameter of the point set is at most n− 1, and thus this whole step can be done
in O(n log n) time.

We are now able to show how to compute a maximal independent setD efficiently.
We begin by making a copy P ′ of P , and by letting D ← ∅. Then we repeat the
two following steps while set P ′ is non-empty. (i) Choose an arbitrary point p ∈ P ′
and add it to set D. (ii) For each point p′ in the closed vicinity of σ(p), remove p′

from P ′ if ‖pp′‖ ≤ 1. When P ′ becomes empty, D is an independent dominating set.
This process takes O(n) time due to the two following facts. First, a cell belongs to
the closed vicinity of a constant number of cells. Second, the maximum number of
points inside a cell with pairwise distances greater than 1 is also a constant.

We now have that D is a maximal independent set, and therefore
a 5-approximation to the minimum dominating set. Next, we show how to modify D
in order to produce an independent dominating set with no reducible corona, there-
fore a 44/9-approximation to the minimum dominating set. The algorithm mirrors
the one in Section 3.1, but each step takes no more than O(n log n) time using the
geometric representation of the graph.

Since D is an independent set and a grid cell Q has side 1, a simple packing
argument shows that |D ∩Q| ≤ 4. We store the set D ∩Q in the corresponding cell
Q. In order to compute ND(p), it suffices to inspect the at most 36 points in D ∩Q
for Q ∈ N [σ(p)]. We can then build a list of coronas in O(n) time (steps (1) and
(2) of Section 3.1).

To perform step (3), we need to find out whether there is a core c such that
D ∪ {c} \ C is a dominating set, for each corona C = {p1, . . . , p5}. First, we make
S1 the union of ND(pi) for 1 ≤ i ≤ 5. Then, we let S2 be the subset of S1 containing
only the points p with ND(p) ⊆ C. These first two steps are similar to steps (3a) and
(3b) in Section 3.1. The remaining sub-steps of step (3) are significantly different,
though.

We proceed by making S3 = S2 ∪ C. We need to determine whether there is a
point p ∈ S3 that is adjacent to all points in S3. For each p ∈ S3, let β(p) denote
the disk of radius 1 centered at p. Let R denote the convex region defined by the
intersection of β(p) for all p ∈ S3. A point p is adjacent to all points in S3 if and
only if p ∈ R. We can compute the region R in O(|S3| log |S3|) time using divide-
and-conquer in a manner analogous to half-plane intersection [2]. We can then test
whether each point p ∈ S3 belongs to the region R in logarithmic time using binary
search (remember the points were previously sorted). If there is at least one point
p ∈ S3∩R, then we add p to the set B. Therefore, the whole step (3) takes O(n log n)
time.

In step (4) of the geometric algorithm, we choose an alternative set B′ ⊂ B
which can be computed in O(n) time as follows. For each p ∈ B, we add p to B′

and then remove from B all points that are contained in the cells within Euclidean
distance at most 4 of σ(p). Since by packing constraints there are O(1) points in
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the intersection of D and the closed vicinity of a cell, we can easily perform step (5)
in O(n) time. Finally, the number of repetitions triggered by step (6) is constant by
an argument identical to the one given for the graph-based algorithm.

The following theorem summarizes the result from Section 3.2.

Theorem 11. Given a set of n points representing a unit disk graph, it is possible
to find a 44/9-approximation to the minimum dominating set problem in O(n log n)
time in the Real RAM model of computation.

4 Achieving a 43/9-approximation

In the previous section, a 44/9-approximation was obtained by reducing coronas of
a maximal independent set D of graph G, that is, by subsequently replacing 5 petals
with 1 core in D as long as that operation preserved dominance. A natural step
to tighten the approximation factor is to allow for weak reductions, whereby the 5
petals of a corona C are removed from the independent dominating set D, yet not
only is a core c of C inserted into D but also some mutually non-adjacent witnesses
of c, as long as their number is no greater than 3 and they dominate all witnesses
of c. By doing so, the weak reduction of C (with respect to c) preserves dominance
and still shaves off at least one unit from the size of D. If such operation is possible
on a corona C, then C is said to be weakly reducible. A core c which has 4 (or more)
mutually non-adjacent witnesses is said to be an overwhelmed core.6

We consider the graph-based algorithm presented in Section 3.1 with some mod-
ifications to cope with weak reductions. The whole modified algorithm becomes:

(1) For each vertex v ∈ V \D, compute ND(v).

(2) For each vertex v ∈ V \D, if |ND(v)| = 5, add C = ND(v) to the list of coronas
C (unless it is already there), and add v to the list LC containing the cores of
C.

(3) Let B be an initially empty mapping of cores onto sets of witnesses. For each
corona C ∈ C, if there is a vertex c ∈ LC and an independent set Wc with at
most 3 witnesses of c such that (D \ C) ∪ {c} ∪Wc is a dominating set, then
add (c,Wc) to B.

(4) Choose a maximal subset B′ of the cores in B such that the pairwise distance
of the vertices in B′ is at least 5.

(5) For each vertex c ∈ B′, perform a (weak) reduction D ← (D\ND(c))∪{c}∪Wc.

(6) Repeat all the steps above until B′ = ∅.
6If c is an overwhelmed core of a corona C, then it might be the case that a weak reduction on

C with respect to c is still possible. If the subgraph G[W ] induced by the set W of witnesses of c
admits an independent dominating set W ′ ⊆W of size no greater than 3, then (D \C)∪ {c} ∪W ′
is still an independent dominating set of G, and its cardinality is strictly less than |D|. However,
one cannot decide in (close to) linear time whether such a dominating set exists, and that will not
be required by our algorithm.
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...

Figure 5: Example of graph with a maximal independent set (represented by solid
circles) containing only 1 weakly reducible corona. After every weak reduction
performed by the modified algorithm, except for the last one, a new weakly reducible
corona is created.

The new step (3) can be implemented as follows (for each corona C ∈ C):

(3a) Let S1 be the union of the open neighborhoods of the 5 petals of C.

(3b) Let S2 be the set of all vertices w ∈ S1 with ND(w) ⊆ C.

(3c) For each core c ∈ LC , greedily obtain a maximal independent setWc of S2\N [c].
If |Wc| ≤ 3, add (c,Wc) to B and break.

Because each core is evaluated separately as to whether it allows for a weak re-
duction (whereas in the algorithm of Section 3.1 a constant number of set operations
per corona was executed), step (3c) dominates the complexity of the whole sequence
of steps (1) to (5), with a total O(nm) time for running on all coronas C ∈ C. An-
other important difference, as far as time complexity goes, is that in this modified
algorithm the number of iterations of the main loop — steps (1) to (5) — is no longer
O(1), due to the fact that new (weakly) reducible coronas can be created, as illus-
trated in Figure 5. However, the number of iterations is certainly O(n), because the
size
of D decreases by at least 1 in each iteration. Hence the overall time complex-
ity of the modified algorithm is O(n2m).

Next, we establish the approximation factor of the modified algorithm. Note that
step (3c) asserts that the coronas that are not (weakly) reduced by the algorithm
present only overwhelmed cores.

Lemma 12. Let G = (V,E) be a unit disk graph, D an independent dominating set
in G, and D∗ a minimum dominating set of G. If all coronas
in D have only overwhelmed cores, then ρ = |D|/|D∗| ≤ 43/9.

Proof. We follow a strategy similar to that in the proof of Lemma 9 (also using the
concept of reliever defined therein): by employing the same function f : D∗ → (0, 5]
defined in (1), we prove there is an appropriate balance among vertices with high
(> 43/9) and low (≤ 4) images under f , thus yielding an average value for f(·) that
is no greater than 43/9 — the claimed approximation factor.

Let c∗ be a vertex in D∗ with f(c∗) > 43/9. Because 43/9 > 4.5, and all (at
most 5) terms in the summation that yields f are either 1 or no greater than 0.5,
we have that f(c∗) > 43/9 implies f(c∗) = 5. So c∗ is a core. By hypothesis,
c∗ is overwhelmed. Hence, c∗ possesses at least 4 mutually non-adjacent witnesses
w1, . . . , w4, each one implying the existence of a reliever r∗ ∈ D∗ with f(r∗) ≤
4. Surely, such relievers need not be all distinct, and different cores may share a
common reliever. Still, geometric properties of unit disk graphs allow us to derive
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upper bounds for the core-to-reliever ratio. We can thus obtain an upper bound to
the average value of f(·) in D∗, and consequently to the approximation factor of the
algorithm.

Suppose there are t cores c∗i ∈ D∗ such that f(c∗i ) = 5. For i = 1, . . . , t,
we let Ci be the corona having c∗i as a core, Wi be a set of (at least 4) mu-
tually non-adjacent witnesses of c∗i , and Ri be the set of relievers of c∗i . Now,
we construct a bipartite multigraph G′ = (C ′ ∪ R′, E ′) as follows. The parts
of G′ are C ′ = {c∗1, ..., c∗t} and R′ = R1 ∪ ... ∪ Rt. The multiset E ′ contains,
between each core c∗i ∈ C ′ and reliever r∗j ∈ R′, a number φ(c∗i , r

∗
j ) of paral-

lel edges that is equal to the number of petals of Ci adjacent to witnesses w
(of c∗i ) such that w is a neighbor of r∗j . Thus, the total number of edges incident to
a core c∗i ∈ C ′ is

d(c∗i ) =
∑
r∗j∈R′

φ(c∗i , r
∗
j ).

Analogously, the total number of edges incident to a reliever r∗j ∈ R′ is

d(r∗j ) =
∑
c∗i∈C′

φ(c∗i , r
∗
j ).

We now obtain an upper bound ρ′ = 43/9 for the average value of f(·)
over C ′ ∪ R′. Observe that C ′ contains all vertices c∗ of D∗ such
that f(c∗) > 43/9, hence the average value ρ of f(·) over the whole set D∗ ⊇ C ′∪R′
cannot be any greater.

Of course the average value we are interested in depends on the core-to-reliever
ratio |C ′|/|R′| in G′: the more cores (respectively, the fewer relievers) in C ′ (in R′),
the greater the average. Therefore, in order to obtain the desired upper bound ρ′,
we must consider the case in which the elements of C ′ (respectively, of R′) have
degrees in G′ that are as low (as high) as possible.

First, notice that if c∗ is a core of corona C and f(c∗) = 5, then it is not
possible that more than two non-adjacent witnesses of c∗ sharing a common reliever
r∗ are adjacent to the same petal p ∈ C. Otherwise, let w1, w2 and w3 be such
witnesses. Since p and r∗ are non-adjacent (due to the image of c∗ under f being 5),
the subgraph of G induced by {p, r∗, w1, w2, w3} is a K2,3. This is a contradiction,
because the graph K2,3 is not a unit disk graph [14]. Thus, since c∗ has at least four
witnesses, the number of petals of C adjacent to witnesses of c∗ — and therefore
the degree of each core in C ′ — is at least d4/2e = 2.

The above lower bound can be improved for cores c∗ ∈ C ′ having a reliever r∗

with exactly four neighbors in D. If a reliever r∗ has four neighbors in (the in-
dependent set) D, then the remaining neighbors of r∗ form a clique. Since there
is a witness w of c∗ among these remaining neighbors of r∗, then the other (at
least) three mutually non-adjacent witnesses of c∗ must have relievers distinct from
r∗. Moreover, by an argument analogous to the one used in the previous para-
graph, those witnesses must be adjacent to at least d3/2e = 2 petals of the corona
having c∗ as a core. This means there are at least two edges connecting c∗ to
its relievers in R′ \ {r∗}, plus one edge connecting c∗ to r∗. Hence, the degree
of c∗ in G′ is at least 3.
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The maximum degrees of vertices r∗ ∈ R′ depend on the number |ND(r∗)| of
neighbors of r∗ in D, and now we employ some of the geometric lemmas of Section 2
to infer suitable upper bounds. Recall that any set of petals is an independent set.

• If |ND(r∗)| = 4 (implying f(r∗) ≤ 4), then, by Lemma 6, there are at most 8
petals in the 2-neighborhood of r∗. Hence, d(r∗) ≤ 8.

• If |ND(r∗)| = 3 (implying f(r∗) ≤ 3), then, by Lemma 7, there are at most 16
petals in the 2-neighborhood of r∗. Hence, d(r∗) ≤ 16.

• If |ND(r∗)| = 2 (implying f(r∗) ≤ 2), then, by Lemma 8, there are at most 20
petals in the 2-neighborhood of r∗. Hence, d(r∗) ≤ 20.

• If |ND(r∗)| = 1 (implying f(r∗) ≤ 1), then, by Lemma 8, there are at most 21
petals in the 2-neighborhood of r∗. Hence, d(r∗) ≤ 21.

For k = 1, . . . , 4, let nk denote the number of relievers in G containing exactly k
neighbors inD, so that |R′| = ∑4

k=1 nk. Let also C ′4 ⊆ C ′ be the set of cores having at
least one reliever with exactly 4 neighbors in D,
and C ′3 = C ′ \ C ′4 be the set of cores whose relievers have at most three neigh-
bors in D. Finally, we let t3 = |C ′3| and t4 = |C ′4|, so that t = |C ′| = t3 + t4.

Since G′ is bipartite, the number of edges incident to C ′ and the number of edges
incident to R′ are the same. Consequently,∑

c∗∈C′
d(c∗) =

∑
r∗∈R′

d(r∗),

and

2t3 + 3t4 ≤ 8n4 + 16n3 + 20n2 + 21n1. (2)

The same reasoning holds for the subgraph of G′ induced by the cores
in C ′3 and their relievers in R′, so

2t3 ≤ 16n3 + 20n2 + 21n1. (3)

By dividing both sides of (3) by 2 and adding it to (2), we obtain

3(t3 + t4) ≤ 8n4 + 24n3 + 30n2 +
63

2
n1. (4)

As for the average ρ′ of f(·) over the elements of G′, we can write

ρ′ =
5(t3 + t4) + 4n4 + 3n3 + 2n2 + n1

t3 + t4 + n4 + n3 + n2 + n1

.

Now, substituting (t3 + t4) in the expression above by the upper bound obtained
from (4), we have

ρ′ ≤
52
3
n4 + 43n3 + 52n2 + 107

2
n1

11
3
n4 + 9n3 + 11n2 + 23

2
n1

.

Thus, ρ′ is bounded by a multivariate rational function whose maximum is
43/9 = 4.777 . . ., achieved when n1 = n2 = n4 = 0.
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Figure 6: Lower bound of 4.25 to the approximation factor of the modified graph-
based algorithm. The coordinates of the centers are given in Table 2.

The following theorem summarizes the result from Section 4.

Theorem 13. Given the adjacency list representation of a unit disk graph with n
vertices and m edges, it is possible to find a 43/9-approximation to the minimum
dominating set problem in O(n2m) time.

5 Conclusion and open problems

We introduced novel efficient algorithms for approximating the minimum dominating
set and minimum independent dominating set in unit disk graphs.

On one hand, a linear-time algorithm was devised attaining a sub-5 approxima-
tion factor, namely 44/9 < 4.889. Nevertheless, the best lower bound we know for
the proposed algorithm is 4.8, which corresponds to the unit disk graph given in
Figure 3. Closing this gap would likely require the development of new tools to
prove that certain graphs are not unit disk graphs, for which computer generated
proofs may be useful.

On the other hand, an enhanced approximation factor of 43/9 < 4.778 was
obtained by allowing for more local replacements, yet a lower bound of 4.25, cor-
responding to the unit disk graph given in Figure 6 (with coordinates in Table 2),
is the best we are aware of. Notwithstanding the O(n2) factor increase on its time
complexity, such a modified algorithm is still much faster than, say, the state-of-the-
art 4-approximation algorithm from [6], which requires a geometric model as input
and runs in O(n9) time. Moreover, since the number of (weak) reductions that are
performed remains linear, it may be possible to conceive either a refined analysis or
a smarter implementation.
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(0, 0), (0, 4500000),
(±336577, 3647829), (±3372414, 3440722), (±3657983, 1789254),
(±469471, 882947), (±2857376, 5297889), (±3887452, 5297889),
(±1043683, 2940723), (±2506389, 2940723), (±892089, 1789254),
(±2657983, 1789254), (±1775036, 1258725), (±529919, 5348048),
(±997564, 4430244), (±4605648, 790625), (±5515150, 1274216),
(±5515150, 2304292), (±4605648, 2787883), (±1775036, 2258725),
(±2373785, 4388387), (±4657983, 1789254), (±3372414, 4440722),
(±515038,−857167), (±999780, 20942), (±4371043, 4388387).

Table 2: Coordinates of the centers of the disks in Figure 6. All diameters are
equal to 1000001.
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