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Abstract

The potato-peeling problem (also known as convex skull) is a fundamental com-
putational geometry problem that consist in finding the largest convex shape inside
a given polygon. The fastest algorithm to date runs in O(n8) time for a polygon
with n vertices that may have holes. In this paper, we consider a digital version of
the problem. A set K ⊂ Z2 is digital convex if conv(K) ∩ Z2 = K, where conv(K)
denotes the convex hull of K. Given a set S of n lattice points, we present polyno-
mial time algorithms for the problems of finding the largest digital convex subset
K of S (digital potato-peeling problem) and the largest union of two digital convex
subsets of S. The two algorithms take roughly O(n3) and O(n9) time, respectively.
We also show that those algorithms provide an approximation to the continuous
versions.

1 Introduction

The potato-peeling problem [24] (also known as convex skull [35]) consists of finding the
convex polygon of maximum area that is contained inside a given polygon (possibly with
holes) with n vertices. The fastest exact algorithm known takes O(n7) time without holes
and O(n8) if there are holes [12]. The problem is arguably the simplest geometric problem
for which the fastest exact algorithm known is a polynomial of high degree and this high
complexity motivated the study of approximation algorithms [11, 26]. Multiple variations
of the problem have been considered, including triangle-mesh [1] and orthogonal [19, 36]
versions. In this paper, we consider a digital geometry version of the problem.

Digital geometry is the field of mathematics that studies the geometry of points with
integer coordinates, also known as lattice points [28]. Different definitions of convexity in
Z2 have been investigated, such as digital line, triangle, line [27], HV (for Horizontal and
Vertical [4]), and Q (for Quadrant [17]) convexities. These definitions guarantee that a
digital convex set is connected (in terms of the induced grid subgraph), which simplifies
several algorithmic problems.

Throughout this paper, however, we use the main and original definition of digital
convexity from the geometry of numbers [25]. A set of lattice points K ⊂ Zd is digital
convex if conv(K)∩Zd = K, where conv(K) denotes the convex hull of K. This definition
does not guarantee connectivity of the grid subgraph, but provides several other important
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Figure 1: (a) Input lattice set S. (b) Largest digital convex subset of S (Problem 1).
(c) Largest union of two digital convex subsets of S (Problem 2).

mathematical properties, such as being preserved under certain affine transformations.
The authors recently showed how to efficiently test digital convexity in the plane [15]. A
natural question is to determine the largest digital convex subset.

The digital potato-peeling problem is defined as follows and is illustrated in Fig-
ure 1(a,b).

Problem 1 (Digital potato-peeling). Given a set S ⊂ Z2 of n lattice points described by
their coordinates, determine the largest set K ⊆ S that is digital convex (i.e., conv(K)∩
Z2 = K), where largest refers to the area of conv(K).

Our algorithms can easily be modified to maximize the number of points in K instead
of the area of conv(K). Compared to the continuous version, the digital geometry setting
allows us to explicitly represent the whole set of input points, instead of limiting ourselves
to polygonal shapes with polygonal holes. Note that the input of the continuous and
digital problems is intrinsically different, hence we cannot compare the complexity of the
two problems. Related continuous problems have been studied, such as the maximum
volume of an empty convex body amidst n points [18], or the optimal island problem [6,
22], in which we are given two sets Sp, Sn ⊂ R2, and the goal is to determine that largest
subset K ⊆ Sp such that conv(K) ∩ Sn = ∅.

Heuristics for the digital potato-peeling problem have been presented in [10, 13],
but no exact algorithm was known. We solve this open problem by providing the first
polynomial-time exact algorithm.

We also solve the question of covering the largest area with two digital convex subsets.
The problem is defined as follows and is illustrated in Figure 1(a,c).

Problem 2 (Digital 2-potato peeling). Given a set S ⊂ Z2 of n lattice points described
by their coordinates, determine the largest set K = K1 ∪ K2 ⊆ S such that K1 and K2

are both digital convex, where largest refers to the area of conv(K1) ∪ conv(K2).

A related continuous problem consists of completely covering a polygon by a small
number of convex polygons inside of it. O’Rourke showed that covering a polygon with
the minimum number of convex polygons is decidable [29, 30], but the problem has been
shown to be NP-hard with or without holes [16, 31]. Shermer [34] presents a linear time
algorithm for the case of two convex polygons and Belleville [8] provides a linear time
algorithm for three. We are not aware of any previous results on finding a fixed (non-unit)
number of convex polygons inside a given polygon and maximizing the area covered.
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Our results

We present polynomial time algorithms to solve each of these two problems. In Section 2,
we show how to solve the digital potato-peeling problem in O(n3 + n2 log r) time, where
r is the diameter of the input S. We adapt an algorithm designed to solve the optimal
island problem [6, 22]. This algorithm builds the convex polygon conv(K) through its
triangulation. We use Pick’s theorem [32] to test digital convexity for each triangle and
the O(log r) factor in the running time comes from the gcd computation required to apply
Pick’s theorem. The algorithm makes use of the following two properties: (i) it is possible
to triangulate K using only triangles that share a common bottom-most vertex v and (ii)
if the polygons lying on both sides of one such triangle (including the triangle itself) are
convex, then the whole polygon is convex.

These two properties are no longer valid for Problem 2, in which the solution conv(K1)∪
conv(K2) is the union of two convex polygons. Also, since convex shapes are not pseudo-
disks (the boundaries may cross an arbitrarily large number of times), separating the
input with a constant number of lines is not an option. Instead of property (i), our
approach uses the fact that the union of two (intersecting) convex polygons can be tri-
angulated with triangles that share a common vertex ρ (that may not be a vertex of
either convex polygon). Since ρ may not have integer coordinates, we can no longer use
Pick’s theorem, and resort to the formulas from Beck and Robins [7] or the algorithm
from Barvinok [5] to count the lattice points inside each triangle in O(polylog r) time.

Furthermore, to circumvent the fact that the solution no longer obeys property (ii),
we use a directed acyclic graph (DAG) that encapsulates the orientation of the edges of
both convex polygons. For those reasons, the running time of our algorithm for Problem 2
increases to O(n9 + n6 polylog r). The corresponding algorithm is described in Section 3.

In Section 4, we show that a solution to the digital version of the problems provides
an approximation to the continuous versions, establishing a formal connection between
the continuous and digital versions.

Reducing the complexity of our algorithms or extending the result to higher numbers
of convex polygons remain intriguing open questions, which are discussed in Section 5.
Throughout, we assume the RAM model of computation, in which elementary operations
on the input coordinates take constant time.

2 Digital Potato Peeling

In this section, we present an algorithm to solve the digital potato-peeling problem in
O(n3 + n2 log r) time, where n is the number of input points and r is the diameter of the
point set.

Fischer [22] and Bautista et al. [6] showed how to solve the following related problem
in O(n3) time, where n is the total number of points.

Problem 3 (Optimal Island). Given two sets Sp, Sn ⊂ R2, determine the largest subset
K ⊆ Sp such that conv(K) ∩ Sn = ∅.

The potato peeling problem 1 for an input S ⊂ Z2 is the optimal island problem with
Sp = S and Sn = Z2 \ Sp. Restricting the problem to the bounding box of Sp, makes Sn
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finite as |Sn| = O(r2). The resulting O(r6) complexity being very large relative to r, we
do not use this direct approach. Nevertheless, the algorithm provides some key insights.

The algorithm consists of two phases. First, a list T of all valid triangles is computed.
A triangle4 is said to be valid if its vertices are a subset of Sp and if4∩Sn = ∅. Second,
using T and the fact that every convex polygon has a fan triangulation in which all the
triangles share a common bottom vertex, the solution is computed by appending valid
triangles using dynamic programming. In order to adapt this algorithm to solve the
digital potato peeling, it suffices to compute the list of valid triangles T .

2.1 Valid Triangles

For any triangle whose vertices are lattice points 4, and any digital set S: |4 ∩ S| =
|4 ∩ Z2| implies that 4 is valid. As in [6], we use the following result of Eppstein et
al. [20] to compute |4 ∩ S|.

Theorem 1. Let S be a set of n points in the plane. The set S can be preprocessed in
O(n2) time and space in order to, for any query triangle 4 with vertices in S, compute
the number of points |4 ∩ S| in constant time.

In order to compute |4 ∩ Z2|, first, for all pairs of points p1, p2 ∈ S, we compute
the number of lattice points lying on the edge p1p2 using a gcd computation. This takes
O(n2 log r) time, where r is the diameter of S. Now, using Pick’s formula [32] which
requires to compute both area(4) and the number of lattice points lying on the edges of
4, we determine in O(1) time the validity of a triangle. Since there are O(n3) triangles
with vertices in S, the list T of all valid triangles is computed in O(n3 + n2 log r) time.
Using T , the algorithm of Bautista et al. [6] determines the largest convex polygon formed
by triangles in T in O(n3) time. Hence, we have the following theorem.

Theorem 2. There exists an algorithm to solve Problem 1 (digital potato peeling) in
O(n3 + n2 log r) time, where n is the number of input points and r is the diameter of the
input.

3 Digital 2-Potato Peeling

In this section, we show how to find two digital convex sets K1, K2, maximizing the area
of conv(K1) ∪ conv(K2). We note that the solution described in this section can easily
be adapted to solve the optimal 2-islands problem:

Problem 4 (Optimal 2-Islands). Given two sets Sp, Sn ⊂ R2, determine the largest union
of subsets K1 ∪K2 such that K1 ∪K2 ⊆ Sp, conv(K1) ∩ Sn = ∅ and conv(K2) ∩ Sn = ∅.

Consider a solution of the digital 2-potato peeling problem. Either the two convex
hulls intersect or they do not (Figure 2). We treat those two cases separately and the
solution to Problem 2 is the largest among both. Hence, we consider the two following
variations of the 2-potato-peeling problem.

Problem 5 (Disjoint 2-potato peeling). Given a set S ⊂ Z2 of n lattice points given by
their coordinates, determine the largest two digital convex sets K1 ∪ K2 ⊆ S such that
conv(K1) ∩ conv(K2) = ∅.
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Figure 2: (a) The two optimal sets intersect. (b) The two optimal sets are disjoint and
there is a supporting separating line.
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Figure 3: (a) A fan triangulation of two intersecting convex polygons from a point ρ.
(b) Definitions used to solve Problem 7.

Problem 6 (Intersecting 2-potato peeling). Given a set S ⊂ Z2 of n lattice points given
by their coordinates, determine the largest union of two digital convex sets K1 ∪K2 ⊆ S
such that conv(K1) ∩ conv(K2) 6= ∅. In this case, largest means the maximum area of
conv(K1) ∪ conv(K2).

3.1 Disjoint Convex Polygons

Any two disjoint convex shapes can be separated by a straight line. Moreover two convex
polygons can be separated by a supporting line of an edge of one of the convex polygons
(Figure 2(b)).

For each ordered pair of distinct points p1, p2 ∈ S, we define two subsets S1, S2. The
set S1 contains the points on the line p1, p2 or to the left of it (according to the direction
p2 − p1). The set S2 contains the remaining points.

For each pair of sets S1, S2, we independently solve Problem 1 for each of S1 and S2.
Since there are O(n2) pairs and each pair takes O(n3 +n2 log r) time, we solve Problem 5
in O(n5 + n4 log r) time.

3.2 Intersecting Convex Polygons

The more interesting case is when the two convex polygons intersect (Problem 6). Note
that it is possible to triangulate the union of two convex polygons that share a common
boundary point ρ using a fan triangulation around ρ (Figure 3). Hence we consider the
following rooted version of the problem.

Problem 7 (Rooted 2-potato peeling). Given a set S ⊂ Z2 of n lattice points represented
by their coordinates and two edges e1, e2 ∈ S2 that cross at a point ρ, determine the largest
union of two digital convex sets K1, K2 ⊆ S such that e1 is an edge of conv(K1) and e2
is an edge of conv(K2).
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Let ρ be the intersection point of e1, e2. The strategy of the algorithm to solve
Problem 7 is to encode the problem into a DAG (V,E) whose longest directed path
corresponds to the desired solution. To avoid confusion, we use the terms node and arc
for the DAG and keep the terms vertex and edge for the polygons. It is well known that
the longest directed path in a DAG (V,E) can be calculated in O(|V |+ |E|) time [33].

Let T be the set of valid triangles with two vertices from S and ρ as the remaining
vertex. The nodes V = T 2 ∪{v0} are ordered pairs of valid triangles and a starting node
v0. The number of nodes is |V | = O(n4). Before we define the arcs, we give an intuitive
idea of our objective.

Each node (41,42) ∈ V is such that 41 (resp. 42) is used to build the fan trian-
gulation of conv(K1) (resp. conv(K2)). The arcs will be defined in a way that, at each
step as we walk through a path of the DAG, we add one triangle to either conv(K1) or
to conv(K2). The arcs enforce the convexity of both conv(K1) and conv(K2). Further-
more, we enforce that we always append a triangle to the triangulation that is the least
advanced of the two (in clockwise order), unless we have already reached the last triangle
of conv(K1). This last condition is important to allow us to define the arc lengths in
a way that corresponds to the area of the union of the two convex polygons. Figure 4
illustrates the result of following a path on the DAG.

The edge e1 (respectively, e2) from the problem input defines two halfplanes, one
on each side. Let H1 (resp. H2) be the halfplane that contains K1 (resp. K2). We
have not yet determined K1 or K2, but all four possibilities of halfplanes may be tried
independently. From now on, we only consider the O(n) points of S lying in the region
H1 ∪ H2. Let p1, . . . , pn be the points of S sorted clockwise around ρ, breaking ties
arbitrarily. The edge e1 (resp. e2) has p1 (resp. pn) as a vertex. We define the indices
a < b such that e1 = (p1, pb), e2 = (pa, pn) (Figure 3).

We are now ready to define the set E of arcs of the DAG. There are three types of
arcs. The type-0 arcs start from the initial node v0 to (41,42) if p1 is a vertex of 41 and
pa a vertex of 42. These two triangles of vertices ρ, p1, pj with j > 1 and ρ, pa, pv with
v > a are respectively bounded by the edges e1 and e2. They initialize the triangulations
of our two polygons conv(K1) and conv(K2). There are O(n2) type-0 arcs.

A type-1 arc corresponds to advancing the triangulation of conv(K1), while a type-2
arc corresponds to advancing the triangulation of conv(K2). There are O(n) type-1, 2
arcs coming out of each node. A type-1 arc goes from (41,42) to (43,42) if:

• the quadrilateral 41 ∪43 is convex,

• 41 has vertices ρ, pi, pj with i < j < b,

• 42 has vertices ρ, pu, pv with a ≤ u < v,

• 43 has vertices ρ, pj, pk with j < k ≤ b,

• and j ≤ v.

Similarly, there is a type-2 arc from (41,42) to (41,44) if:

• the quadrilateral 42 ∪44 is convex,

• 41 has vertices ρ, pi, pj with i < j ≤ b,
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Figure 4: Steps of the algorithm from Section 3.2. Figure (a) represents the solution,
while Figures (b) to (h) represent the triangulation obtained at each node of a path. The
newly covered area that is assigned as the length of the corresponding arc is marked.
In (b), we have the initial pair of edges e1, e2 which corresponds to the starting vertex v0.
After following a type-0 arc, a first pair of triangles with vertices p1 and pa is obtained
in (c). The triangle 41 is brown and triangle 42 yellow. From (c) to (d), we follow a
type-1 arc. The triangle 41 (less advanced than triangle 42) advances. From (d) to (e),
we follow a type-2 arc, since triangle 42 is less advanced. From (e) to (f) we have again a
type-2 arc, and from (f) to (g) we have a type-1 arc. In (g), the triangle 41 has reached
the final node pb and cannot advance anymore. We have only type-2 arcs to follow until
42 reaches pn, at a node in V1.
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• 42 has vertices ρ, pu, pv with a ≤ u < v,

• 44 has vertices ρ, pv, pw with v < w,

• and either v ≤ j or j = b.

The length of each arc corresponds to the area of the new region covered by appending
a new triangle by following the arc. Therefore, the length of a type-0 arc from v0 to
(41,42) is the area of 41 ∪ 42. The length of a type-1 arc from (41,42) to (43,42)
is defined as the area of 43 \ 42. Similarly, the length of a type-2 arc from (41,42) to
(41,44) is defined as the area of 44 \ 41.

We define a set of end nodes V1 as follows. A node (41,42) is an end node if pb is a
vertex of 41 and pn is a vertex of 42. The construction of the DAG allows us to prove
the following lemma.

Lemma 3. There is a bijection between the directed paths of the DAG (V,E) (starting
from v0 and ending in V1) and the digital convex sets K1, K2 ⊂ S such that e1 is an edge
of conv(K1) and e2 is an edge of conv(K2). Furthermore, the length of each path is equal
to the corresponding area of conv(K1) ∪ conv(K2). (We assume that K1 (resp. K2) lie
above the supporting line of e1 (resp. e2).)

Proof. First we show that the existence of two digital convex sets K1, K2 ⊂ S as in the
lemma statement implies the existence of a directed path in the DAG as in the lemma
statement. Let K1 (resp. K2) be two convex sets lying above the supporting line of
e1 (resp. e2). Both conv(K1) and conv(K2) contain ρ as a boundary point and hence
can be triangulated from ρ. It is easy to see that there is a path corresponding to this
triangulation. Next, we show that the converse also holds.

The definition of the arcs is such that advancing through one of them adds a triangle
to one of the two polygons while preserving convexity, which ensures that all paths
correspond to convex polygons. Furthermore, the starting node ensures that the two
convex polygons respectively start from p1 and pa, while the set of ending nodes ensure
that the two convex polygons respectively end at pb and pn. Hence all paths from v0
to V1 correspond to two convex polygons that fit the lemma statement, one from edge
e1 = p1, pb and one from edge e2 = pa, pn. The validity test on each triangle ensures that
the paths describes digital convex sets.

The definition of the arcs enforces that we only move forward the least advanced
triangle, that is the triangle that has the minimum maximum index among its vertices.
The only exception is when conv(K1) is completed, that is the triangle with vertex pb has
been added to its triangulation. This ensures that the new area covered by a type-1, 2
arc is simply the set theoretic difference of two triangles (instead of a triangle and an
arbitrary convex object). As the length of the arcs is defined as the area of the difference
of the two triangles, the total length of the path is equal to the area of the union of the
two convex polygons. Hence each path from v0 to V1 describe two digital convex sets
K1, K2 ∈ S such that e1 is an edge of conv(K1) and e2 is an edge of conv(K2), and the
length of each path is equal to the corresponding area of conv(K1) ∪ conv(K2).

Theorem 4. There exists an algorithm to solve Problem 2 (digital 2-potato peeling) in
O(n9 +n6 polylog r) time, where n is the number of input points and r is the diameter of
the input.
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Proof. As explained in Section 3.1, solving the disjoint case (Problem 5) takes O(n5 +
n4 log r) time. Next, we show how to solve the rooted intersecting case (Problem 7) in
O(n5 + n2 polylog r) time, proving the theorem.

Assume without loss of generality that K1, K2 are respectively above the supporting
lines of e1, e2 (all four possibilities may be tried independently).

Our algorithm starts by computing the DAG (V,E) with O(n4) nodes, each repre-
senting a pair of triangles. Since each node has at most O(n) incoming arcs, the number
of arcs is O(n5). Hence the longest path can be found in O(n5) time.

To build the set of nodes V , we need to test the validity of O(n2) triangles. Since ρ
may not be a lattice point, Pick’s theorem [32] cannot be used. Still, ρ is a rational point
with denominators bounded by O(r2). Hence, we can use either the formulas from Beck
and Robins [7] or the algorithm from Barvinok [5] to calculate the number of lattice points
|T ∩Z2| inside each triangle T in O(polylog r) time. As in Section 2, we compute |T ∩S|
using a triangle range counting query, which takes O(log n) time after preprocessing S in
O(n2) time [14]. The triangle is valid if and only if |T ∩ Z2| = |T ∩ S|. The two steps
to test the validity of a triangle take O(polylog r) and O(log n) time. Since the diameter
r of n lattice points is Ω(

√
n), the dominating term is O(polylog r). Hence, we test the

validity of each triangle in O(polylog r) time, which gives a total time of O(n2 polylog r)
to build the list of valid triangles required to build V .

Consequently, we solve Problem 7 in O(n5 + n2 polylog r) time. To obtain a solution
to Problem 2, we note that there are O(n2) candidates for the edge e1, as well as for the
edge e2. Testing all O(n4) possible edges e1, e2, we achieve the claimed running time of
O(n9 + n6 polylog r) time.

4 From Digital to Continuous

In this section, we show that the exact algorithms for the digital potato-peeling problem
and the digital 2-potato-peeling problem can be used to compute an approximation of
the respective continuous problems with an arbitrarily small approximation error. For
simplicity, we focus on the potato-peeling problem, but the 2-potato-peeling case is anal-
ogous. We note that the reduction presented here does not lead to efficient approximation
algorithms and is presented only to formally connect the continuous and digital versions
of the problem.

Problem 8 (Continuous potato-peeling). Given a polygon P (that may have holes) of n
vertices, determine the largest convex polygon K ⊆ P , where largest refers to the area of
K.

We start with some definitions. Let KC be the polygon of the optimal solution to the
continuous problem above and AC be the area of KC . Given an approximation parameter
ε > 0, we show how to obtain a set of lattice points S ⊆ P such that the area AD of the
convex hull of the solution KD of Problem 1 with input S satisfies |AC−AD| = O(rε). In
this section, we use lattice points that are not integers, but points with coordinates that
are multiples of ε. Let Λε denote the set of all points with coordinates that are multiple
of ε. Of course, a uniform scaling maps Λε to the integer lattice used in the remainder of
the paper, and hence the integer lattice algorithms also apply to Λε.

9



For a polygon P , the erosion of P , denoted P− is the subset of P formed by points
within L∞ distance at least 2ε of all points outside P (Figure 5(a)). Let A−C be the area
of the optimal solution to the continuous potato-peeling problem with input P−.

We only give here the main directions of the proof. A more detailed version of the
proof can be found in the appendix 5. First, by bounding the number of lattice cells that
a convex curve of a given length can cross, we bound by O(rε) the area difference between
any convex polygon and the convex hull of the lattice points inside it. Then, we use an
erosion of 2ε in order to smooth the input and avoid difficulties related to comb like input
polygons. We bound the area difference by O(rε) between the solution of problem 1 for
any polygon and the solution for the erosion of this polygon. Finally, despite the digital
solution being potentially outside the input polygon, it can be shown that the area lying
outside the input polygon is bounded by O(rε) which gives us the following theorem:

Theorem 5. Let AC be the area of the solution KC of Problem 8 with input polygon P
of diameter r. Let ε > 0 be a parameter and S = Λε ∩ P−, where P− is the erosion of P
by 2ε and Λε is the lattice of size ε. The area AD of the convex hull of the solution KD

of Problem 1 with input S satisfies |AC − AD| = O(rε).

The polygon conv(KD) in the previous theorem may partially extend outside P . Nev-
ertheless, the solution KD of Problem 1 can be used to obtain a convex polygon K ⊆ P
which has an area A satisfying |AC − AD| = O(rε).

5 Conclusion and Open Problems

The (continuous) potato peeling problem is a very peculiar problem in computational
geometry. The fastest algorithms known have running times that are polynomials of
substantially high degree. Also, we are not aware of any algorithms (or difficulty results)
for the natural extensions to higher dimensions (even 3d) or to a fixed number of convex
bodies.

In this paper, we focused on a digital version of the problem. Many problems in the
intersection of digital, convex, and computational geometry remain open. Our study falls
in the following framework of problems, all of which receive as input a set of n lattice
points S ⊂ Zd for constant d and are based on a fixed parameter k ≥ 1.

1. Is S the union of at most k digital convex sets?

2. What is the smallest superset of S that is the union of at most k digital convex
sets?

3. What is the largest subset of S that is the union of at most k digital convex sets?

In [15], the authors considered the first problem for k = 1, presenting polynomial
time solutions (which may still leave room for major improvements for d > 3). We are
not aware of any previous solutions for k > 1. In contrast, the continuous version of
the problem is well studied. The case of k = 1 can be solved easily by a convex hull
computation or by linear programming. Polynomial algorithms are known for d = 2 and
k ≤ 3 [8, 34], as well as for d = 3 and k ≤ 2 [9]. The problem is already NP-complete
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for d = k = 3 [9]. Hence, the continuous version remains open only for d = 2 and fixed
k > 3.

It is easy to obtain polynomial time algorithms for the second problem when k = 1,
since the solution consists of all points in the convex hull of S. The continuous version
for d = k = 2 can be solved in O(n4 log n) time [3]. Also, the orthogonal version of
the problem is well studied (see for example [21]). We know of no results for the digital
version.

In this paper, we considered the digital version of the third problem for d = 2 and
k = 1, 2, presenting algorithms with respective running times of O(n3 + n2 log r) and
O(n9+n6 polylog r), where r is the diameter of S. Since the first problem trivially reduces
to the third problem, we also solved the first problem for k = d = 2 in O(n9+n6 polylog r)
time. It is surprising that we are not aware of any faster algorithm for the first problem
in this particular case.

The third problem for d > 2 or k > 2 remains open. The DAG approach that we used
for d = 2 is unlikely to generalize to higher dimensions, since there is no longer a single
order by which to transverse the boundary of a convex polytope. Surprisingly, even the
continuous version seems to be unresolved for d > 2 or k ≥ 2.
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Appendix

From Digital to Continuous

The width of P is the minimum distance between two parallel lines `1, `2 such that P is
between `1 and `2.

The following lemma that bounds the area difference between a convex polygon and
the convex hull of its intersection with a lattice set will be useful to our proof.

Lemma 6. Let C be a convex polygon of diameter r. The convex hull H = conv(C ∩Λε)
satisfies

area(C) ≤ area(H) + 6
√

2πrε+ 16ε2.

Proof. The lattice Λε induces a grid with vertex set Λε and square cells of side length ε.
Let X− be the set of grid cells that are completely contained in C and X∂ be the set of
cells that are partially contained in C. All cells in X∂ intersect the boundary ∂C of C.

Since the perimeter of a convex shape is at most π times its diameter [2], the perimeter
of ∂C is at most πr. Since a curve of perimeter p intersects at most 3p/ε

√
2 + 4 grid cells

of side length ε [23], we have |X∂| ≤ 3πr/ε
√

2 + 4.
All cells in X− are contained in H and C is covered by X− ∪X∂. Therefore, the area

of C \H is at most the area in X∂, which is

ε2|X∂| ≤ 4ε2 ·
(

3

ε
√

2
πr + 4

)
= 6
√

2πrε+ 16ε2,

proving the lemma.

The following lemma bounds the area difference between the optimal solutions of the
continuous potato peeling problem with inputs P and P−.

Lemma 7. Let P be a polygon of diameter r and P− be the erosion of P . Let C (resp. C ′)
denote the largest convex polygon inside P (resp. P−). We have the following inequality:

area(C) ≤ area(C ′) + 2
√

2πrε.

Proof. The erosion C− of C is a convex polygon that lies inside P−. Hence the area of
C ′ is at least as large as the area of C−.

As C is a convex polygon of diameter at most r, the perimeter of C is at most πr.
As every eroded points from C in order to obtain C− are inside C and at a maximum
distance of 2

√
2ε of the boundary of C, they are all included inside a set of rectangles

that lie inside C with the edges of C as sides and width 2
√

2ε. Hence, the area difference
between C and its erosion is at most 2

√
2επr, which proves the lemma.

The digital solution may have portions that lie outside the input polygon P of the
continuous version. However, this portion cannot be too big, as shown in the following
lemma.

Lemma 8. Let P be a polygon of diameter r and P− be the erosion of P . Let S = P−∩Λε,
and KD be the largest digital convex subset of S. The following inequality holds:

area(conv(KD) \ P ) ≤ 2rε.
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Figure 5: (a) A polygon P , its erosion P−, and the set Λε ∩P−. (b) To include the point
p that is outside P , conv(KD) has to go between the lattice points within L∞ distance
2ε of p.

Proof. Let p be a point in conv(KD) \ P . As S is included inside P−, all the lattice
points within L∞ distance ε of p are not in S (see Figure 5). All 16 lattice points at
a L∞ distance less than 2ε of p are not in S. Hence, in order to include p, conv(KD)
has to lie between two vertically (or horizontally) consecutive lattice points x1 and x2,
which are separated by distance ε. Furthermore p is at a horizontal (or vertical) distance
strictly greater than ε from x1 and x2. The widest angle the incoming and outgoing
edges of C can form is hence 2 arctan(1/2), effectively forming a turning angle of at least
π − 2 arctan(1/2). As the sum of turning angles inside a convex polygon is equal to 2π
and can never decrease, and as π − 2 arctan(1/2) > 2π/3 such a turning angle can only
happen twice. Also, as in order to include any point p outside of P , conv(KD) has to go
in between x1 and x2, the width of this (possible non-contiguous region) including p is at
most ε and the diameter at most r, hence, the area is bounded by rε. Therefore, there
can be no more than two such regions in conv(KD) (even though each of them can enter
and leave P multiple times), which proves the lemma.

Using lemma 7, it follows that AC−A−C ≤ 2
√

2πrε. Lemma 6 gives us that A−C−AD ≤
6
√

2πrε+ 16ε2. Lemma 8 gives us that AD − 2rε ≤ AC . Hence,

AC − 8
√

2πrε− 16ε2 ≤ AD ≤ AC + 2rε,

proving the following theorem.

Theorem 9. Let AC be the area of the solution KC of Problem 8 with input polygon P
of diameter r. Let ε > 0 be a parameter and S = Λε ∩ P−, where P− is the erosion of P
by 2ε and Λε is the lattice of size ε. The area AD of the convex hull of the solution KD

of Problem 1 with input S satisfies |AC − AD| = O(rε).

The polygon conv(KD) in the previous theorem may partially extend outside P . Nev-
ertheless, the solution KD of Problem 1 can be used to obtain a convex polygon K ⊆ P
which has an area A satisfying |AC − AD| = O(rε).

The same proof strategy can be applied to obtain an approximation to the continuous
version of the 2-potato-peeling problem using the digital version of the problem.
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