Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

Economical Convex Coverings and Applications

Sunil Arya – Hong Kong University of Science and Technology
Guilherme D. da Fonseca – Aix-Marseille Université and LIS
David M. Mount – University of Maryland, College Park

SODA 2023

Definition

Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

(c,ε) -covering:

- Given c, ε , and a convex body $K \subset \mathbb{R}^n$ (with a central origin)
- \blacksquare Collection $\mathcal Q$ of convex bodies
- Union covers K
- Factor-c expansion of each $Q \in Q$ about its centroid lies inside $(1 + \varepsilon)K$
- Usually c = 2

- A constant contraction forms a packing
- Bodies are centrally symmetric

Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

(c,ε) -covering:

- Given c, ε , and a convex body $K \subset \mathbb{R}^n$ (with a central origin)
- \blacksquare Collection $\mathcal Q$ of convex bodies
- $\blacksquare Union covers K$
- Factor-*c* expansion of each $Q \in Q$ about its centroid lies inside $(1 + \varepsilon)K$
- Usually c = 2

- A constant contraction forms a packing
- Bodies are centrally symmetric

Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

(c,ε) -covering:

- Given c, ε , and a convex body $K \subset \mathbb{R}^n$ (with a central origin)
- Collection \mathcal{Q} of convex bodies
- Union covers K
- Factor-c expansion of each $Q \in Q$ about its centroid lies inside $(1 + \varepsilon)K$
- Usually c = 2

- A constant contraction forms a packing
- Bodies are centrally symmetric

Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

(c,ε) -covering:

- Given c, ε , and a convex body $K \subset \mathbb{R}^n$ (with a central origin)
- \blacksquare Collection ${\mathcal Q}$ of convex bodies
- Union covers K
- Factor-*c* expansion of each $Q \in Q$ about its centroid lies inside $(1 + \varepsilon)K$
- Usually c = 2

- A constant contraction forms a packing
- Bodies are centrally symmetric

Definition

Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

(c,ε) -covering:

- Given c, ε , and a convex body $K \subset \mathbb{R}^n$ (with a central origin)
- Collection \mathcal{Q} of convex bodies
- Union covers K
- Factor-*c* expansion of each $Q \in Q$ about its centroid lies inside $(1 + \varepsilon)K$
- Usually c = 2

- A constant contraction forms a packing
- Bodies are centrally symmetric

Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

(c,ε) -covering:

- Given c, ε , and a convex body $K \subset \mathbb{R}^n$ (with a central origin)
- Collection \mathcal{Q} of convex bodies
- Union covers K
- Factor-*c* expansion of each $Q \in Q$ about its centroid lies inside $(1 + \varepsilon)K$
- Usually c = 2

- A constant contraction forms a packing
- Bodies are centrally symmetric

Previous and New Cover Sizes

Definition

Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion

Bibliography

Previous (c, ε) cover sizes (for constant c):

- $2^{O(n)}/\log^n(1/\varepsilon)$ for ℓ_∞ balls [ENN11]
- $n^{O(n)}/\varepsilon^{(n-1)/2}$ for any convex body [AM18]
- $2^{O(n)}/\varepsilon^{n/2}$ for ℓ_p balls [NV22]
- Lower bound for ℓ_2 balls: $2^{-O(n)}/\varepsilon^{(n-1)/2}$ [NV22]

Our cover size:

• $2^{O(n)}/\varepsilon^{(n-1)/2}$ for any convex body

Application 1: Polytope Approximation

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

- We want an approximation P of K such that: $K \subseteq P \subseteq (1+\varepsilon)K$
- Implies Banach-Mazur metric
- Compared to Hausdorff:
 Finer approximation in narrow directions
- Goal: small number of vertices

From (c, ϵ) -covering to polytope approximation:

Let X be the set of centers of any (c, ε') -covering of $K(1 + \varepsilon/c)$. Then $K \subset \operatorname{conv}(X) \subset K(1 + \varepsilon)$.

- Number of vertices: $|\mathcal{Q}| = 2^{O(n)} / \varepsilon^{(n-1)/2}$
- Matches best previous bound [NNR20]

Application 2: Approximate Closest Vector Problem (CVP)

Definition Cover Size

Application 1

- Application 2
- Macbeath
- Packing
- Large
- Small
- Polar
- Cap
- Сар
- Primal-Polar
- Inner Cone
- First Try
- Difference
- Conclusion Bibliography

Closest Vector Problem (CVP) :

Given:

- *n*-dimensional lattice L in \mathbb{R}^n
- target vector $t \in \mathbb{R}^n$
- convex body K representing a "norm" $\|\cdot\|_K$
- Find:

vector x minimizing $||tx||_K$

• Approximation: r' with $||tr'||_{V} < (1 + 1)$

Application 2: Approximate Closest Vector Problem (CVP)

Definition Cover Size

Application 1

- Application 2
- Macbeath
- Packing
- Large
- Small
- Polar
- Cap
- Primal-Polar
- Inner Cone
- First Try
- Difference
- Conclusion
- Bibliography

Closest Vector Problem (CVP) :

Given:

- *n*-dimensional lattice L in \mathbb{R}^n
- target vector $t \in \mathbb{R}^n$
- convex body K representing a "norm" $\|\cdot\|_K$
- Find:

vector x minimizing $||tx||_K$

- Approximation:
 - x' with $||tx'||_K \leq (1+\varepsilon)||tx||_K$

Application 2: Approximate Closest Vector Problem (CVP)

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone

Inner Cone First Try Difference Conclusion Bibliography

From (c, ϵ) -covering to approximate CVP [NV22] :

Given a $(2, \varepsilon)$ -covering of K consisting of N centrally symmetric convex bodies, we can solve $(1 + 7\varepsilon)$ -CVP under $\|\cdot\|_K$ with $\widetilde{O}(N)$ calls to a 2-CVP solver.

- Previous solution in $2^{O(n)}/\varepsilon^n$ time [DK16]
- We use it to get $2^{O(n)}/\varepsilon^{(n-1)/2}$ time
- Same time for approximate integer programming

Definition Cover Size Application 1 Application 2 Macbeath Packing

Large

Small

Polar

Cap Primal-Polar Inner Cone

First Try

Difference

Conclusion

Bibliography

Macbeath region [Mac52]:

- Given a convex body K, $x \in K$, and $\lambda > 0$:
- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- M(x) = M¹(x): intersection of K and K reflected around x

- M(x): largest centrally symmetric convex body centered on x
- $M^{\lambda}(x)$: M(x) scaled by λ around x

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone

First Try

Difference

Conclusion

Bibliography

Macbeath region [Mac52]:

- Given a convex body K, $x \in K$, and $\lambda > 0$:
- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- M(x) = M¹(x): intersection of K and K reflected around x

- M(x): largest centrally symmetric convex body centered on x
- $M^{\lambda}(x)$: M(x) scaled by λ around x

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone

First Try

Difference

Conclusion

Bibliography

Macbeath region [Mac52]:

- Given a convex body K, $x \in K$, and $\lambda > 0$:
- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- M(x) = M¹(x): intersection of K and K reflected around x

- M(x): largest centrally symmetric convex body centered on x
- $M^{\lambda}(x)$: M(x) scaled by λ around x

Definition Cover Size Application 1 Application 2 Macbeath Packing

Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

Macbeath region [Mac52]:

- Given a convex body K, $x \in K$, and $\lambda > 0$:
- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- M(x) = M¹(x): intersection of K and K reflected around x

- M(x): largest centrally symmetric convex body centered on x
- $M^{\lambda}(x)$: M(x) scaled by λ around x

Maximal Packing of Macbeath Regions

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

- Our covering is defined by a maximal set of disjoint Macbeath regions for K_{ε} with $\lambda = 1/4c$
- Scaling them by 4 to $\lambda=1/c$ gives our $(c,\varepsilon)\text{-cover }\mathcal{Q}$ of K
- Scaling \mathcal{Q} by c to $\lambda = 1$ stays inside K_{ε}
- Previous bound was $|Q| = n^{O(n)} / \varepsilon^{(n-1)/2}$ [AAFM22]
- We show that $|\mathcal{Q}| = 2^{O(n)} / \varepsilon^{(n-1)/2}$
- New techniques are needed

Large Macbeath Regions

- Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small
- Polar
- Cap
- Primal-Polar Inner Cone
- First Try Difference
- Conclusion
- Bibliography

- Assume $\operatorname{vol}(K_{\varepsilon}) = 1$
- $\mathcal{Q}_{\geq t}$: Subset of regions of volume at least t
- Shrinking the regions by 4 produces a packing
- Hence, $|Q_{\geq t}| = O(4^n/t) = 2^{O(n)}/t$
- For $t = \varepsilon^{(n+1)/2}$: $|\mathcal{Q}_{\geq t}| = 2^{O(n)} / \varepsilon^{(n+1)/2}$
- Bounds with n-1 instead of n+1 come from splitting K into layers
- Roughly, Macbeath regions with center x at distance α from the boundary are in a layer of volume O(α)
- As α increases, Macbeath regions get larger
- Forms a geometric progression

Large Macbeath Regions

- Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small
- Polar Cap
- Сар
- Primal-Polar Inner Cone
- First Try Difference
- Conclusion
- Bibliography

- Assume $\operatorname{vol}(K_{\varepsilon}) = 1$
- $\mathcal{Q}_{\geq t}$: Subset of regions of volume at least t
- Shrinking the regions by 4 produces a packing
- Hence, $|Q_{\geq t}| = O(4^n/t) = 2^{O(n)}/t$
- For $t = \varepsilon^{(n+1)/2}$: $|\mathcal{Q}_{\geq t}| = 2^{O(n)} / \varepsilon^{(n+1)/2}$
- Bounds with n-1 instead of n+1 come from splitting K into layers
- Roughly, Macbeath regions with center x at distance α from the boundary are in a layer of volume O(α)
- As α increases, Macbeath regions get larger
- Forms a geometric progression

Large Macbeath Regions

- Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small
- Polar Cap
- Primal-Polar Inner Cone
- First Try Difference
- Differenc
- Conclusion
- Bibliography

- Assume $\operatorname{vol}(K_{\varepsilon}) = 1$
- $\mathcal{Q}_{\geq t}$: Subset of regions of volume at least t
- Shrinking the regions by 4 produces a packing
- Hence, $|Q_{\geq t}| = O(4^n/t) = 2^{O(n)}/t$
- For $t = \varepsilon^{(n+1)/2}$: $|\mathcal{Q}_{\geq t}| = 2^{O(n)} / \varepsilon^{(n+1)/2}$
- Bounds with n-1 instead of n+1 come from splitting K into layers
- Roughly, Macbeath regions with center x at distance α from the boundary are in a layer of volume O(α)
- As α increases, Macbeath regions get larger
- Forms a geometric progression

Small Macbeath Regions

- Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion Bibliography
- Consider a tiny Macbeath region of volume $O(\varepsilon^n)$
- Such Macbeath region must be close to a portion of K's boundary with high curvature
- By convexity, K's boundary curvature is bounded
- Therefore, the number of such Macbeath regions is $2^{O(n)}$
- How to make this formal for all small regions?

Polar Body

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

■ *q*: point

- Polar hyperplane $q^* = \{p : p \cdot q = 1\}$
- *K*: convex body
- Polar convex body $K^* = \{p : p \cdot q \le 1 \text{ for all } q \in K\}$
- High curvature maps to low curvature
- $\blacksquare \text{ Mahler volume vol}(K) \cdot \text{vol}(K^*) \geq 2^{-O(n)} \cdot \omega_n^2$
- If the origin is well-centered: $\operatorname{vol}(K) \cdot \operatorname{vol}(K^*) \leq 2^{O(n)} \cdot \omega_r^2$
- ω_n : volume of the *n*-dimensional unit Euclidean ball

Polar Body

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

■ *q*: point

- Polar hyperplane $q^* = \{p : p \cdot q = 1\}$
- *K*: convex body
- Polar convex body $K^* = \{p : p \cdot q \le 1 \text{ for all } q \in K\}$
- High curvature maps to low curvature
- $\blacksquare \text{ Mahler volume vol}(K) \cdot \text{vol}(K^*) \geq 2^{-O(n)} \cdot \omega_n^2$
- If the origin is well-centered: $\operatorname{vol}(K) \cdot \operatorname{vol}(K^*) \leq 2^{O(n)} \cdot \omega_n^2$
- ω_n : volume of the *n*-dimensional unit Euclidean ball

Cap

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

Cap:

intersection of K and a halfspace

- Base of a cap: intersection of K and a hyperplane
- Width of a cap:

maximum orthogonal distance from the base (often ε)

- x: centroid of the base of a cap C
- Cap and Macbeath region have similar volumes: $2^{-O(n)} \cdot \operatorname{vol}(C) \leq \operatorname{vol}(M(x)) \leq 2 \cdot \operatorname{vol}(C)$

Caps in the Primal and Polar

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone

First Try Difference Conclusion Bibliography

Key Lemma:

For a cap C of K and a related cap D of the polar $K^*,$ both of width at least ε :

 $\operatorname{vol}_K(C) \cdot \operatorname{vol}_{K^*}(D) \geq 2^{-O(n)} \varepsilon^{n+1}.$

Relationship: ray from the origin orthogonal to the base of C intersects D.

- We can bound the number of Macbeath regions: small caps in the primal are large in the polar
- How do we prove the lemma?

Dual Cap and Inner Cone

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try

Difference

Conclusion

Bibliography

Dual cap:

set of hyperplanes containing point \boldsymbol{z} but no point of \boldsymbol{K}

Inner cone:

points in all rays from a point z towards a point in K

Dual Cap and Inner Cone

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion

Bibliography

Dual cap:

set of hyperplanes containing point \boldsymbol{z} but no point of \boldsymbol{K}

Inner cone:

points in all rays from a point \boldsymbol{z} towards a point in \boldsymbol{K}

First Attempt to Prove the Key Lemma

Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone

Definition

- First Try
- Difference Conclusion Bibliography

- Region Υ: Intersection of the inner cone and the base hyperplane of D
 - \blacksquare We show: Υ is the polar of the base of C scaled by $\Theta(\varepsilon)$
 - Remember: Mahler volume $vol(K) \cdot vol(K^*) = 2^{O(n)}$
 - \blacksquare Problem 1: Υ is larger than the base of D
 - Easy fix: Scale up D by O(n)
 - Problem 2: Increases the volume by $n^{O(n)}$

First Attempt to Prove the Key Lemma

Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone

Definition

- First Try
- Difference Conclusion Bibliography

- Region Y: Intersection of the inner cone and the base hyperplane of D
- \blacksquare We show: Υ is the polar of the base of C scaled by $\Theta(\varepsilon)$
- Remember: Mahler volume $vol(K) \cdot vol(K^*) = 2^{O(n)}$
- Problem 1: Υ is larger than the base of D
- Easy fix: Scale up D by O(n)
- Problem 2: Increases the volume by $n^{O(n)}$

First Attempt to Prove the Key Lemma

Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone

Definition

- First Try
- Difference Conclusion Bibliography

- Region Y: Intersection of the inner cone and the base hyperplane of D
 - \blacksquare We show: Υ is the polar of the base of C scaled by $\Theta(\varepsilon)$
 - Remember: Mahler volume $vol(K) \cdot vol(K^*) = 2^{O(n)}$
- \blacksquare Problem 1: Υ is larger than the base of D
- Easy fix: Scale up D by O(n)
- Problem 2: Increases the volume by $n^{O(n)}$

Difference Body

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try

Difference

Conclusion Bibliography

Minkowski sum:

- $A \oplus B = \{p+q : p \in A, q \in B\}$
- Difference body:
 - $\Delta(K) = K \oplus (-K)$
- $\operatorname{vol}(\Delta(K)) \leq 4^n \operatorname{vol}(K)$ [RS59]
- No $n^{O(n)}$ factor

Difference Body

- Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone
- First Try
- Difference
- Conclusion Bibliography

Minkowski sum:

- $A \oplus B = \{p+q : p \in A, q \in B\}$
- Difference body:
 - $\Delta(K) = K \oplus (-K)$
- No $n^{O(n)}$ factor

Difference Body and Inner Cone

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference

Conclusion Bibliography B_Δ: difference body of the base of a cap scaled by 5 (instead of O(n))
B_Δ contains Υ

Conclusion

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Cap Primal-Polar Inner Cone First Try Difference Conclusion

Bibliography

- We show that given a cap C of K there is a cap D of the polar K^* with $\mathrm{vol}(C)\cdot\mathrm{vol}(D)~\geq~2^{-O(n)}\varepsilon^{n+1}$
- Key tools: Mahler volume and difference body
- Small caps in the primal take a large volume in the polar
- We get a (c,ε) -covering $\mathcal Q$ with $|\mathcal Q|=2^{O(n)}/\varepsilon^{n/2}$
- Implies polytope approximation in the Banach-Mazur metric
- Implies the same running time for ε -approximate CVP and integer programming

Bibliography

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Primal-Polar Inner Cone First Try Difference Conclusion

Bibliography

- [AAFM22] R. Arya, S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal Bound on the Combinatorial Complexity of Approximating Polytopes. ACM Trans. Algorithms 18, 1–29, 2022.
 - [AM18] A. Abdelkader and D. M. Mount. Economical Delone sets for approximating convex bodies. Proc. 16th Scand. Workshop Algorithm Theory, 4:1–4:12, 2018.
 - [DK16] D. Dadush and G. Kun. Lattice sparsification and the approximate closest vector problem. Theo. of Comput., 12, pp. 1–34, 2016.
 - [ENN11] F. Eisenbrand, N. Hähnle, and M. Niemeier. Covering cubes and the closest vector problem. Proc. 27th Annu. Sympos. Comput. Geom., 417–423, 2011.
 - [Mac52] A. M. Macbeath. A theorem on non-homogeneous lattices. Annals of Mathematics, 54:431–438, 1952.
 - [NNR20] M. Naszódi, F. Nazarov, and D. Ryabogin. Fine approximation of convex bodies by polytopes. Amer. J. Math, 142, 809–820, 2020.
 - [NV22] M. Naszódi and M. Venzin. Covering convex bodies and the closest vector problem. Discrete Comput. Geom., 67, 1191–1210, 2022.
 - [RS59] C. A. Rogers and G. C. Shephard. The difference body of a convex body. Arch. Math., 8, 220–233, 1959.

Definition Cover Size Application 1 Application 2 Macbeath Packing Large Small Polar Primal-Polar Inner Cone First Try Difference Conclusion Bibliography

Thank you!