Economical Convex Coverings and Applications

Sunil Arya - Hong Kong University of Science and Technology
Guilherme D. da Fonseca - Aix-Marseille Université and LIS
David M. Mount - University of Maryland, College Park

Introduction

(c, ε)-covering:

- Given c, ε, and a convex body $K \subset \mathbb{R}^{n}$ (with a central origin)
- Collection \mathcal{Q} of convex bodies
- Union covers K
- Factor- c expansion of each $Q \in Q$ about its centroid lies inside $(1+\varepsilon) K$
- Usually $c=2$

In our case:

- A constant contraction forms a packing
- Bodies are centrally symmetric

Introduction

(c, ε)-covering:

■ Given c, ε, and a convex body $K \subset \mathbb{R}^{n}$ (with a central origin)

- Collection \mathcal{Q} of convex bodies
- Union covers K
- Factor-c exnansion of each $Q \in Q$ about its centroid lies inside $(1+\varepsilon) K$
- Usually $c=2$

In our case:

- A constant contraction forms a packing
- Bodies are centrally symmetric

Introduction

(c, ε)-covering:

- Given c, ε, and a convex body $K \subset \mathbb{R}^{n}$ (with a central origin)
- Collection \mathcal{Q} of convex bodies
- Union covers K
- Factor-c expansion of each $Q \in \mathcal{Q}$ about its centroid lies inside $(1+\varepsilon) K$
- Usually $c=2$

In our case:

- A constant contraction forms a packing
- Bodies are centrally symmetric

Introduction

($\mathrm{c}, \mathrm{\varepsilon}$)-covering:

- Given c, ε, and a convex body $K \subset \mathbb{R}^{n}$ (with a central origin)
- Collection \mathcal{Q} of convex bodies
- Union covers K
- Factor-c expansion of each $Q \in \mathcal{Q}$ about its centroid lies inside $(1+\varepsilon) K$
- Usually $c=$?

In our case:

- A constant contraction forms a packing
- Bodies are centrally symmetric

Introduction

($\mathrm{c}, \mathrm{\varepsilon}$)-covering:

- Given c, ε, and a convex body $K \subset \mathbb{R}^{n}$ (with a central origin)
- Collection \mathcal{Q} of convex bodies
- Union covers K
- Factor-c expansion of each $Q \in \mathcal{Q}$ about its centroid lies inside $(1+\varepsilon) K$
- Usually $c=2$

In our case:

- A constant contraction forms a packing
- Bodies are centrally symmetric

Introduction

(c, ε)-covering:

- Given c, ε, and a convex body $K \subset \mathbb{R}^{n}$ (with a central origin)
- Collection \mathcal{Q} of convex bodies
- Union covers K
- Factor-c expansion of each $Q \in \mathcal{Q}$ about its centroid lies inside $(1+\varepsilon) K$
- Usually $c=2$

In our case:

- A constant contraction forms a packing
- Bodies are centrally symmetric

Previous and New Cover Sizes

Previous (c, ε) cover sizes (for constant c):

- $2^{O(n)} / \log ^{n}(1 / \varepsilon)$ for ℓ_{∞} balls [ENN11]
- $n^{O(n)} / \varepsilon^{(n-1) / 2}$ for any convex body [AM18]
- $2^{O(n)} / \varepsilon^{n / 2}$ for ℓ_{p} balls [NV22]
- Lower bound for ℓ_{2} balls: $2^{-O(n)} / \varepsilon^{(n-1) / 2}$ [NV22]

Our cover size:

- $2^{O(n)} / \varepsilon^{(n-1) / 2}$ for any convex body

Application 1: Polytope Approximation

- We want an approximation P of K such that: $K \subseteq P \subseteq(1+\varepsilon) K$
■ Implies Banach-Mazur metric
- Compared to Hausdorff:

Finer approximation in narrow directions
■ Goal: small number of vertices
From (c, ε)-covering to polytope approximation:
Let X be the set of centers of any $\left(c, \varepsilon^{\prime}\right)$-covering of $K(1+\varepsilon / c)$. Then $K \subset \operatorname{conv}(X) \subset K(1+\varepsilon)$.

■ Number of vertices: $|\mathcal{Q}|=2^{O(n)} / \varepsilon^{(n-1) / 2}$

■ Matches best previous bound [NNR20]

Application 2: Approximate Closest Vector Problem (CVP)

Closest Vector Problem (CVP) :

- Given:
- n-dimensional lattice L in \mathbb{R}^{n}
- target vector $t \in \mathbb{R}^{n}$
- convex body K representing a "norm" $\|\cdot\|_{K}$
- Find:
vector x minimizing $\|t x\|_{K}$
- Approximation:
${ }^{\prime}$ with $\left\|t x^{\prime}\right\|_{K} \leq(1+\varepsilon)\|t x\|_{K}$

Application 2: Approximate Closest Vector Problem (CVP)

Closest Vector Problem (CVP) :

- Given:
- n-dimensional lattice L in \mathbb{R}^{n}
- target vector $t \in \mathbb{R}^{n}$
- convex body K representing a "norm" $\|\cdot\|_{K}$
- Find:
vector x minimizing $\|t x\|_{K}$
- Approximation:
x^{\prime} with $\left\|t x^{\prime}\right\|_{K} \leq(1+\varepsilon)\|t x\|_{K}$

Application 2: Approximate Closest Vector Problem (CVP)

From (c, ε)-covering to approximate CVP [NV22]
Given a $(2, \varepsilon)$-covering of K consisting of N centrally symmetric convex bodies, we can solve $(1+7 \varepsilon)$-CVP under $\|\cdot\|_{K}$ with $\widetilde{O}(N)$ calls to a 2 -CVP solver.

- Previous solution in $2^{O(n)} / \varepsilon^{n}$ time [DK16]
- We use it to get $2^{O(n)} / \varepsilon^{(n-1) / 2}$ time
- Same time for approximate integer programming

Macbeath region [Mac52]

- Given a convex body $K, x \in K$, and $\lambda>0$:
- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x

Equivalently:

- $M(x)$: largest centrally symmetric convex body centered on x
- $M^{\lambda}(x): M(x)$ scaled by λ around x

Macbeath region [Mac52]

- Given a convex body $K, x \in K$, and $\lambda>0$:
- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x

Equivalently:

- $M(x)$: largest centrally symmetric convex body centered on x
- $M^{\lambda}(x): M(x)$ scaled by λ around x

Macbeath region [Mac52]

- Given a convex body $K, x \in K$, and $\lambda>0$:
- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x

Equivalently:

- $M(x)$: largest centrally symmetric convex body centered on x
- $M^{\lambda}(x): M(x)$ scaled by λ around x

Macbeath region [Mac52]

- Given a convex body $K, x \in K$, and $\lambda>0$:
- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x

Equivalently:

- $M(x)$: largest centrally symmetric convex body centered on x
- $M^{\lambda}(x): M(x)$ scaled by λ around x

Maximal Packing of Macbeath Regions

- Our covering is defined by a maximal set of disjoint Macbeath regions for K_{ε} with $\lambda=1 / 4 c$
- Scaling them by 4 to $\lambda=1 / c$ gives our (c, ε)-cover \mathcal{Q} of K
- Scaling \mathcal{Q} by c to $\lambda=1$ stays inside K_{ε}
- Previous bound was $|\mathcal{Q}|=n^{O(n)} / \varepsilon^{(n-1) / 2}$ [AAFM22]
- We show that $|\mathcal{Q}|=2^{O(n)} / \varepsilon^{(n-1) / 2}$
- New techniques are needed

Large Macbeath Regions

- Assume $\operatorname{vol}\left(K_{\varepsilon}\right)=1$
- $\mathcal{Q}_{\geq t}$: Subset of regions of volume at least t
- Shrinking the regions by 4 produces a packing
- Hence, $\left|\mathcal{Q}_{\geq t}\right|=O\left(4^{n} / t\right)=2^{O(n)} / t$
- For $t=\varepsilon^{(n+1) / 2}:\left|\mathcal{Q}_{\geq t}\right|=2^{O(n)} / \varepsilon^{(n+1) / 2}$
- Bounds with $n-1$ instead of $n+1$ come from splitting K into layers
- Roughly, Macbeath regions with center x at distance α from the boundary are in a layer of volume $O(\alpha)$
- As α increases, Macbeath regions get larger
- Forms a geometric progression

Large Macbeath Regions

- Assume $\operatorname{vol}\left(K_{\varepsilon}\right)=1$
- $\mathcal{Q}_{\geq t}$: Subset of regions of volume at least t
- Shrinking the regions by 4 produces a packing
- Hence, $\left|\mathcal{Q}_{\geq t}\right|=O\left(4^{n} / t\right)=2^{O(n)} / t$
- For $t=\varepsilon^{(n+1) / 2}:\left|\mathcal{Q}_{\geq t}\right|=2^{O(n)} / \varepsilon^{(n+1) / 2}$
- Bounds with $n-1$ instead of $n+1$ come from splitting K into layers
- Roughly, Macbeath regions with center x at distance α from the boundary are in a layer of volume $O(\alpha)$
- As α increases, Macbeath regions get larger
- Forms a geometric progression

Large Macbeath Regions

- Assume $\operatorname{vol}\left(K_{\varepsilon}\right)=1$
- $\mathcal{Q}_{\geq t}$: Subset of regions of volume at least t

■ Shrinking the regions by 4 produces a packing

- Hence, $\left|\mathcal{Q}_{\geq t}\right|=O\left(4^{n} / t\right)=2^{O(n)} / t$
- For $t=\varepsilon^{(n+1) / 2}:\left|\mathcal{Q}_{\geq t}\right|=2^{O(n)} / \varepsilon^{(n+1) / 2}$
- Bounds with $n-1$ instead of $n+1$ come from splitting K into layers
- Roughly, Macbeath regions with center x at distance α from the boundary are in a layer of volume $O(\alpha)$
- As α increases, Macbeath regions get larger
- Forms a geometric progression

Small Macbeath Regions

- How to make this formal for all small regions?

Polar Body

■ q : point

- Polar hyperplane $q^{*}=\{p: p \cdot q=1\}$
- K : convex body
- Polar convex body $K^{*}=\{p: p \cdot q \leq 1$ for all $q \in K\}$
- High curvature maps to low curvature

■ Mahler volume $\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{*}\right) \geq 2^{-O(n)} \cdot \omega_{n}^{2}$

- If the origin is well-centered:

- ω_{n} : volume of the n-dimensional unit Euclidean ball
- q: point
- Polar hyperplane $q^{*}=\{p: p \cdot q=1\}$
- K : convex body
- Polar convex body $K^{*}=\{p: p \cdot q \leq 1$ for all $q \in K\}$
- High curvature maps to low curvature
- Mahler volume $\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{*}\right) \geq 2^{-O(n)} \cdot \omega_{n}^{2}$
- If the origin is well-centered: $\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{*}\right) \leq 2^{O(n)} \cdot \omega_{n}^{2}$
- ω_{n} : volume of the n-dimensional unit Euclidean ball

Cap

- Cap:
intersection of K and a halfspace
- Base of a cap:
intersection of K and a hyperplane
- Width of a cap:
maximum orthogonal distance from the base (often ε)
- x : centroid of the base of a cap C
- Cap and Macbeath region have similar volumes:

$$
2^{-O(n)} \cdot \operatorname{vol}(C) \leq \operatorname{vol}(M(x)) \leq 2 \cdot \operatorname{vol}(C)
$$

Caps in the Primal and Polar

Key Lemma:

For a cap C of K and a related cap D of the polar K^{*}, both of width at least ε :

$$
\operatorname{vol}_{K}(C) \cdot \operatorname{vol}_{K^{*}}(D) \geq 2^{-O(n)} \varepsilon^{n+1}
$$

Relationship: ray from the origin orthogonal to the base of C intersects D.

- We can bound the number of Macbeath regions: small caps in the primal are large in the polar
- How do we prove the lemma?

Dual Cap and Inner Cone

- Dual cap:
set of hyperplanes containing point z but no point of K

- Inner cone:
points in all rays from a point
towards a point in K

Dual Cap and Inner Cone

- Dual cap:
set of hyperplanes containing point z but no point of K

- Inner cone:
points in all rays from a point z towards a point in K

First Attempt to Prove the Key Lemma

- Region Υ : Intersection of the inner cone and the base hyperplane of D
- We show: Υ is the polar of the base of C scaled by $\Theta(\varepsilon)$

- Remember: Mahler volume $\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{*}\right)=2^{O(n)}$
- Problem 1: Υ is larger than the base of D
- Easy fix: Scale up D by $O(n)$
- Problem 2: Increases the volume by $n^{O(n)}$

First Attempt to Prove the Key Lemma

- Region Υ : Intersection of the inner cone and the base hyperplane of D
- We show: Υ is the polar of the base of C scaled by $\Theta(\varepsilon)$

- Remember: Mahler volume
$\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{*}\right)=2^{O(n)}$
- Problem 1: Υ is larger than the base of D
- Easy fix: Scale up D by $O(n)$
- Problem 2: Increases the volume by $n^{O(n)}$

First Attempt to Prove the Key Lemma

- Region Υ : Intersection of the inner cone and the Packing base hyperplane of D
- We show: Υ is the polar of the base of C scaled by $\Theta(\varepsilon)$

- Remember: Mahler volume

$$
\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{*}\right)=2^{O(n)}
$$

- Problem 1: Υ is larger than the base of D
- Easy fix: Scale up D by $O(n)$
- Problem 2: Increases the volume by $n^{O(n)}$

Difference Body

- Minkowski sum:
$A \oplus B=\{p+q: p \in A, q \in B\}$

Difference Body

- Minkowski sum:
$A \oplus B=\{p+q: p \in A, q \in B\}$
- Difference body:
$\Delta(K)=K \oplus(-K)$
- $\operatorname{vol}(\Delta(K)) \leq 4^{n} \operatorname{vol}(K)[R S 59]$
- No $n^{O(n)}$ factor

Difference Body and Inner Cone

- B_{Δ} : difference body of the base of a cap scaled by 5 (instead of $O(n)$)
- B_{Δ} contains Υ

Conclusion

- We show that given a cap C of K there is a cap D of the polar K^{*} with $\operatorname{vol}(C) \cdot \operatorname{vol}(D) \geq 2^{-O(n)} \varepsilon^{n+1}$
- Key tools: Mahler volume and difference body
- Small caps in the primal take a large volume in the polar
- We get a (c, ε)-covering \mathcal{Q} with $|\mathcal{Q}|=2^{O(n)} / \varepsilon^{n / 2}$
- Implies polytope approximation in the Banach-Mazur metric
- Implies the same running time for ε-approximate CVP and integer programming

[AAFM22] R. Arya, S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal Bound on the Combinatorial Complexity of Approximating Polytopes. ACM Trans. Algorithms 18, 1-29, 2022.
[AM18] A. Abdelkader and D. M. Mount. Economical Delone sets for approximating convex bodies. Proc. 16th Scand. Workshop Algorithm Theory, 4:1-4:12, 2018.
[DK16] D. Dadush and G. Kun. Lattice sparsification and the approximate closest vector problem. Theo. of Comput., 12, pp. 1-34, 2016.
[ENN11] F. Eisenbrand, N. Hähnle, and M. Niemeier. Covering cubes and the closest vector problem. Proc. 27th Annu. Sympos. Comput. Geom., 417-423, 2011.
[Mac52] A. M. Macbeath. A theorem on non-homogeneous lattices. Annals of Mathematics, 54:431-438, 1952.
[NNR20] M. Naszódi, F. Nazarov, and D. Ryabogin. Fine approximation of convex bodies by polytopes. Amer. J. Math, 142, 809-820, 2020.
[NV22] M. Naszódi and M. Venzin. Covering convex bodies and the closest vector problem. Discrete Comput. Geom., 67, 1191-1210, 2022.
[RS59] C. A. Rogers and G. C. Shephard. The difference body of a convex body. Arch. Math., 8, 220-233, 1959.

Thank you!

