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Introduction

(c,ε)-covering:

Given c, ε, and a convex body K ⊂ Rn (with a
central origin)

Collection Q of convex bodies

Union covers K

Factor-c expansion of each Q ∈ Q about its
centroid lies inside (1 + ε)K

Usually c = 2

In our case:

A constant contraction forms a packing

Bodies are centrally symmetric

K

O
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Previous and New Cover Sizes

Kε = (1 + ε)K

K

Previous (c, ε) cover sizes (for constant c):

2O(n)/ logn(1/ε) for `∞ balls [ENN11]

nO(n)/ε(n−1)/2 for any convex body [AM18]

2O(n)/εn/2 for `p balls [NV22]

Lower bound for `2 balls: 2−O(n)/ε(n−1)/2 [NV22]

Our cover size:

2O(n)/ε(n−1)/2 for any convex body
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Application 1: Polytope Approximation

We want an approximation P of K such that:
K ⊆ P ⊆ (1 + ε)K

Implies Banach-Mazur metric

Compared to Hausdorff:
Finer approximation in narrow directions

Goal: small number of vertices

From (c,ε)-covering to polytope approximation:

Let X be the set of centers of any (c, ε′)-covering of
K(1 + ε/c). Then K ⊂ conv(X) ⊂ K(1 + ε).

Number of vertices: |Q| = 2O(n)/ε(n−1)/2

Matches best previous bound [NNR20]

O
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Application 2: Approximate Closest Vector Problem (CVP)

Closest Vector Problem (CVP) :

Given:

n-dimensional lattice L in Rn
target vector t ∈ Rn
convex body K representing a “norm” ‖ · ‖K

Find:
vector x minimizing ‖tx‖K
Approximation:
x′ with ‖tx′‖K ≤ (1 + ε)‖tx‖K

t

K

x
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Application 2: Approximate Closest Vector Problem (CVP)

From (c,ε)-covering to approximate CVP [NV22] :

Given a (2, ε)-covering of K consisting of N centrally
symmetric convex bodies, we can solve (1 + 7ε)-CVP

under ‖ · ‖K with Õ(N) calls to a 2-CVP solver.

Previous solution in 2O(n)/εn time [DK16]

We use it to get 2O(n)/ε(n−1)/2 time

Same time for approximate integer programming

t

K

x

x′
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Main Tool: Macbeath Regions

K

x

Macbeath region [Mac52]:

Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

Equivalently:

M(x): largest centrally symmetric convex body
centered on x

Mλ(x): M(x) scaled by λ around x
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Maximal Packing of Macbeath Regions

Our covering is defined by a maximal set of
disjoint Macbeath regions for Kε with λ = 1/4c

Scaling them by 4 to λ = 1/c gives our
(c, ε)-cover Q of K

Scaling Q by c to λ = 1 stays inside Kε

Previous bound was |Q| = nO(n)/ε(n−1)/2

[AAFM22]

We show that |Q| = 2O(n)/ε(n−1)/2

New techniques are needed

Kε = (1 + ε)K

K
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Large Macbeath Regions

Assume vol(Kε) = 1

Q≥t: Subset of regions of volume at least t

Shrinking the regions by 4 produces a packing

Hence, |Q≥t| = O(4n/t) = 2O(n)/t

For t = ε(n+1)/2: |Q≥t| = 2O(n)/ε(n+1)/2

Bounds with n− 1 instead of n+ 1 come from
splitting K into layers

Roughly, Macbeath regions with center x at
distance α from the boundary are in a layer of
volume O(α)

As α increases, Macbeath regions get larger

Forms a geometric progression

Kε = (1 + ε)K

K
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Small Macbeath Regions

Consider a tiny Macbeath region of volume O(εn)

Such Macbeath region must be close to a portion of K’s
boundary with high curvature

By convexity, K’s boundary curvature is bounded

Therefore, the number of such Macbeath regions is 2O(n)

How to make this formal for all small regions?

K
Ri
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Polar Body

K∗

K

q: point

Polar hyperplane q∗ = {p : p · q = 1}

K: convex body

Polar convex body K∗ = {p : p · q ≤ 1 for all q ∈ K}
High curvature maps to low curvature

Mahler volume vol(K) · vol(K∗) ≥ 2−O(n) · ω2
n

If the origin is well-centered:
vol(K) · vol(K∗) ≤ 2O(n) · ω2

n

ωn: volume of the n-dimensional unit Euclidean ball
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Cap

Cap:
intersection of K and a halfspace

Base of a cap:
intersection of K and a hyperplane

Width of a cap:
maximum orthogonal distance from the base
(often ε)

x: centroid of the base of a cap C

Cap and Macbeath region have similar volumes:
2−O(n) · vol(C) ≤ vol(M(x)) ≤ 2 · vol(C)

K

x
C

ε
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Caps in the Primal and Polar

Key Lemma:

For a cap C of K and a related cap D of the polar K∗,
both of width at least ε:

volK(C) · volK∗(D) ≥ 2−O(n)εn+1.

Relationship: ray from the origin orthogonal to the base
of C intersects D.

We can bound the number of Macbeath regions:
small caps in the primal are large in the polar

How do we prove the lemma?

K

O

C

K∗

O

D
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Dual Cap and Inner Cone

Dual cap:
set of hyperplanes containing point z
but no point of K

Inner cone:
points in all rays from a point z
towards a point in K

O

O

z

z∗

K

K∗

h

h∗

dcapK(z)

(dcapK(z))
∗
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Dual Cap and Inner Cone

Dual cap:
set of hyperplanes containing point z
but no point of K

Inner cone:
points in all rays from a point z
towards a point in K

z

K

O

icone(z)
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First Attempt to Prove the Key Lemma

Region Υ: Intersection of the inner cone and the
base hyperplane of D

We show: Υ is the polar of the base of C scaled
by Θ(ε)

Remember: Mahler volume
vol(K) · vol(K∗) = 2O(n)

Problem 1: Υ is larger than the base of D

Easy fix: Scale up D by O(n)

Problem 2: Increases the volume by nO(n)

KO

C

K∗O

D

HC

z = H∗
C

Υ
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Difference Body

Minkowski sum:
A⊕B = {p+ q : p ∈ A, q ∈ B}
Difference body:
∆(K) = K ⊕ (−K)

vol(∆(K)) ≤ 4n vol(K) [RS59]

No nO(n) factor

⊕

=

A B

A⊕B
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Difference Body and Inner Cone

B∆: difference body of the base of a cap scaled by 5 (instead of O(n))

B∆ contains Υ

K

z

C

B∆ B

ε

Θ(ε)icone(K, z)

Υ
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Conclusion

We show that given a cap C of K there is a cap D of the polar K∗ with
vol(C) · vol(D) ≥ 2−O(n)εn+1

Key tools: Mahler volume and difference body

Small caps in the primal take a large volume in the polar

We get a (c, ε)-covering Q with |Q| = 2O(n)/εn/2

Implies polytope approximation in the Banach-Mazur metric

Implies the same running time for ε-approximate CVP and integer programming

K

O

C

K∗

O

D

⊕

=

K −K

∆(K)

Kε = (1 + ε)K

K

O

O
t

K

x
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[NV22] M. Naszódi and M. Venzin. Covering convex bodies and the closest vector problem. Discrete
Comput. Geom., 67, 1191–1210, 2022.

[RS59] C. A. Rogers and G. C. Shephard. The difference body of a convex body. Arch. Math., 8,
220–233, 1959.



Definition

Cover Size

Application 1

Application 2

Macbeath

Packing

Large

Small

Polar

Cap

Primal-Polar

Inner Cone

First Try

Difference

Conclusion

Bibliography

20 / 20

Marc Chagall

Thank you!
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