
Approximate Nearest Neighbor Searching with

Non-Euclidean and Weighted Distances

Ahmed Abdelkader∗

Department of Computer Science
University of Maryland, College Park, Maryland 20742

akader@cs.umd.edu

Sunil Arya†

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology, Hong Kong

arya@cse.ust.hk

Guilherme D. da Fonseca‡

Université Clermont Auvergne, LIMOS, and INRIA Sophia Antipolis, France
fonseca@isima.fr

David M. Mount∗

Department of Computer Science and Institute for Advanced Computer Studies
University of Maryland, College Park, Maryland 20742

mount@umd.edu

Abstract

We present a new approach to ε-approximate nearest-neighbor queries in fixed dimension
under a variety of non-Euclidean distances. We consider two families of distance functions: (a)
convex scaling distance functions including the Mahalanobis distance, the Minkowski metric and
multiplicative weights, and (b) Bregman divergences including the Kullback-Leibler divergence
and the Itakura-Saito distance.

As the fastest known data structures rely on the lifting transformation, their application is
limited to the Euclidean metric, and alternative approaches for other distance functions are much
less efficient. We circumvent the reliance on the lifting transformation by a careful application of
convexification, which appears to be relatively new to computational geometry.

We are given n points in Rd, each a site possibly defining its own distance function. Under
mild assumptions on the growth rates of these functions, the proposed data structures answer
queries in logarithmic time using O(n log(1/ε)/εd/2) space, which nearly matches the best known
results for the Euclidean metric.

1 Introduction

Nearest-neighbor searching is a fundamental retrieval problem with numerous applications in fields
such as machine learning, data mining, data compression, and pattern recognition. A set of n points,

∗Research supported by NSF grant CCF–1618866.
†Research supported by the Research Grants Council of Hong Kong, China under project number 16200014.
‡Research supported by the European Research Council under ERC Grant Agreement number 339025 GUDHI

(Algorithmic Foundations of Geometric Understanding in Higher Dimensions).

1

called sites, is preprocessed into a data structure such that, given any query point q, it is possible
to report the site that is closest to q. The most common formulation involves points in Rd under
the Euclidean metric. Unfortunately, the best solution achieving O(log n) query time uses roughly
O(nd/2) storage space [20], which is too high for many applications.

This has motivated the study of approximations. Given an approximation parameter ε > 0,
ε-approximate nearest-neighbor searching (ε-ANN) returns any site whose distance from q is within
a factor of 1 + ε of the distance to the true nearest neighbor. Throughout, we focus on Rd for fixed d
and on data structures that achieve logarithmic query time of O(log n

ε). The objective is to produce
data structures of linear storage while minimizing the dependencies on ε, which typically grow
exponentially with the dimension. Har-Peled showed that logarithmic query time could be achieved
for Euclidean ε-ANN queries using roughly O(n/εd) space through the approximate Voronoi diagram
(AVD) data structure [24]. Despite subsequent work on the problem (see, e.g., [8, 10]), the storage
requirements needed to achieve logarithmic query time remained essentially unchanged for over 15
years.

Recently, the authors [5,6] succeeded in reducing the storage to O(n/εd/2) by applying techniques
from convex approximation.1 Unlike the simpler data structure of [24], which can be applied to
a variety of metrics, this recent data structure exploits properties that are specific to Euclidean
space, which significantly limits its applicability. In particular, it applies a reduction to approximate
polytope membership [8] based on the well-known lifting transformation [22]. However, this
transformation applies only for the Euclidean distance.

Note that all aforementioned data structures rely on the triangle inequality. Therefore, they
cannot generally be applied to situations where each site is associated with its own distance function
as arises, for example, with multiplicatively weighted sites (defined below).

Har-Peled and Kumar introduced a powerful technique to overcome this limitation through the
use of minimization diagrams [25]. For each site pi, let fi : Rd → R+ be the associated distance
function. Let Fmin denote the pointwise minimum of these functions, that is, the lower-envelope
function. Clearly, approximating the value of Fmin at a query point q is equivalent to approximating
the distance to q’s nearest neighbor.2 Har-Peled and Kumar proved that ε-ANN searching over a
wide variety of distance functions (including additively and multiplicatively weighted sites) could
be cast in this manner [25]. They formulated this problem in a very abstract setting, where no
explicit reference is made to sites. Instead the input is expressed in terms of abstract properties
of the distance functions, such as their growth rates and “sketchability.” While this technique is
very general, the complexity bounds are much worse than for the corresponding concrete versions.
For example, in the case of Euclidean distance with multiplicative weights, in order to achieve
logarithmic query time, the storage used is O((n logd+2 n)/ε2d+2 + n/εd

2+d). Similar results are
achieved for a number of other distance functions that are considered in [25].

This motivates the question of whether it is possible to answer ANN queries for non-Euclidean
distance functions while matching the best bounds for Euclidean ANN queries. In this paper, we
present a general approach for designing such data structures achieving O(log n

ε) query time and

O((n/εd/2) log 1
ε) storage. Thus, we suffer only an extra log 1

ε factor in the space compared to the
best results for Euclidean ε-ANN searching. We demonstrate the power of our approach by applying
it to a number of natural problems:

1Chan [18] presented a similar result by a very different approach, and it generalizes to some other distance
functions, however the query time is not logarithmic.

2The idea of using envelopes of functions for the purpose of nearest-neighbor searching has a long history, and it is
central to the well-known relationship between the Euclidean Voronoi diagram of a set of points in Rd and the lower
envelope of a collection of hyperplanes in Rd+1 through the lifting transformation [22].

2

F

p̂

p q

DF (q‖p)

q̂

(b)(a)

`1
`2

`∞`3 `4

Figure 1: (a) Unit balls in different Minkowski norms. (b) Geometric interpretation of the Bregman
divergence.

Minkowski Distance: The `k distance (see Figure 1(a)) between two points p and q is defined as

‖q − p‖k = (
∑d

i=1 |pi − qi|k)
1
k . Our results apply for any real constant k > 1.

Multiplicative Weights: Each site p is associated with weight wp > 0 and fp(q) = wp‖q − p‖.
The generalization of the Voronoi diagram to this distance function is known as the Möbius
diagram [15]. Our results generalize from `2 to any Minkowski `k distance, for constant k > 1.

Mahalanobis Distance: Each site p is associated with a d× d positive-definite matrix Mp and
fp(q) =

√
(p− q)ᵀMp(p− q). Mahalanobis distances are widely used in machine learning and

statistics. Our results hold under the assumption that for each point p, the ratio between the
maximum and minimum eigenvalues of Mp is bounded.

Scaling Distance Functions: Each site p is associated with a closed convex body Kp whose
interior contains the origin, and fp(q) is the smallest r such that (q − p)/r ∈ Kp (or zero
if q = p). (These are also known as convex distance functions [19].) These generalize and
customize normed metric spaces by allowing metric balls that are not centrally symmetric and
allowing each site to have its own distance function.

Scaling distance functions generalize the Minkowski distance, multiplicative weights, and the
Mahalanobis distance. Our results hold under the assumption that the convex body Kp inducing
the distance function satisfies certain assumptions. First, it needs to be fat in the sense that it can
be sandwiched between two Euclidean balls centered at the origin whose radii differ by a constant
factor. Second, it needs to be smooth in the sense that the radius of curvature for every point
on Kp’s boundary is within a constant factor of its diameter. (Formal definitions will be given in
Section 4.2.)

Theorem 1.1 (ANN for Scaling Distances). Given an approximation parameter 0 < ε ≤ 1 and a
set S of n sites in Rd where each site p ∈ S is associated with a fat, smooth convex body Kp ⊂ Rd
(as defined above), there exists a data structure that can answer ε-approximate nearest-neighbor
queries with respect to the respective scaling distance functions defined by Kp with

Query time: O
(

log
n

ε

)
and Space: O

(
n log 1

ε

εd/2

)
.

3

Another important application that we consider is the Bregman divergence. Bregman divergences
generalize the squared Euclidean distance [16], the Kullback-Leibler divergence (also known as
relative entropy) [27], and the Itakura-Saito distance [26] among others. They have numerous
applications in machine learning and computer vision [13,30].

Bregman Divergence: Given an open convex domain X ⊆ Rd, a strictly convex and differentiable
real-valued function F on X , and q, p ∈ X , the Bregman divergence of q from p is

DF (q, p) = F (q)− (F (p) +∇F (p) · (q − p)).

where ∇F denotes the gradient of F and “·” is the standard dot product.

The Bregman divergence has the following geometric interpretation (see Figure 1(b)). Let p̂
denote the vertical projection of p onto the graph of F , that is, (p, F (p)), and define q̂ similarly.
DF (q, p) is the vertical distance between q̂ and the hyperplane tangent to F at the point p̂.
Equivalently, DF (q, p) is just the error that results by estimating F (q) by a linear model at p.

The Bregman divergence possibly lacks many of the properties of typical distance functions.
It is generally not symmetric, that is, DF (q, p) 6= DF (p, q), and it generally does not satisfy the
triangle inequality, but it is a convex function in its first argument. Throughout, we treat the first
argument q as the query point and the second argument p as the site, but it is possible to reverse
these through dualization [16].

Data structures have been presented for answering exact nearest-neighbor queries in the Bregman
divergence by Cayton [17] and Nielson et al. [28], but no complexity analysis was given. Worst-case
bounds have been achieved by imposing restrictions on the function F . Various different complexity
measures have been proposed, including the following. Given a parameter µ ≥ 1, and letting ‖p− q‖
denote the Euclidean distance between p and q:

• DF is µ-asymmetric if for all p, q ∈ X , DF (q, p) ≤ µDF (p, q).

• DF is µ-similar3 if for all p, q ∈ X , ‖q − p‖2 ≤ DF (q, p) ≤ µ‖q − p‖2.

Abdullah et al. [1] presented data structures for answering ε-ANN queries for decomposable4

Bregman divergences in spaces of constant dimension under the assumption of bounded similarity.
Later, Abdullah and Venkatasubramanian [2] established lower bounds on the complexity of Bregman
ANN searching under the assumption of bounded asymmetry.

Our results for ANN searching in the Bregman divergence are stated below. They hold under a
related measure of complexity, called τ -admissibility, which is more inclusive (that is, weaker) than
µ-similarity, but seems to be more restrictive than µ-asymmetry. It is defined in Section 5.1, where
we also explore the relationships between these measures.

Theorem 1.2 (ANN for Bregman Divergences). Given a τ -admissible Bregman divergence DF

for a constant τ defined over an open convex domain X ⊆ Rd, a set S of n sites in Rd, and an
approximation parameter 0 < ε ≤ 1, there exists a data structure that can answer ε-approximate
nearest-neighbor queries with respect to DF with

Query time: O
(

log
n

ε

)
and Space: O

(
n log 1

ε

εd/2

)
.

3Our definition of µ-similarity differs from that of [3]. First, we have replaced 1/µ with µ for compatibility
with asymmetry. Second, their definition allows for any Mahalanobis distance, not just Euclidean. This is a trivial
distinction in the context of nearest-neighbor searching, since it is possible to transform between such distances by
applying an appropriate positive-definite linear transformation to the query space. Lemma 6.4 shows that the result is
a Bregman divergence.

4The sum of one-dimensional Bregman divergences.

4

Note that our results are focused on the existence of these data structures, and construction is not
discussed. While we see no significant impediments to their efficient construction by modifying the
constructions of related data structures, a number of technical results would need to be developed.
We therefore leave the question of efficient construction as a rather technical but nonetheless
important open problem.

1.1 Methods

Our solutions are all based on the application of a technique, called convexification. Recently, the
authors showed how to efficiently answer several approximation queries with respect to convex
polytopes [5–7], including polytope membership, ray shooting, directional width, and polytope
intersection. As mentioned above, the linearization technique using the lifting transformation can
be used to produce convex polyhedra for the sake of answering ANN queries, but it is applicable
only to the Euclidean distance (or more accurately the squared Euclidean distance and the related
power distance [12]). In the context of approximation, polytopes are not required. The convex
approximation methods described above can be adapted to work on any convex body, even one with
curved boundaries. This provides us with an additional degree of flexibility. Rather than applying a
transformation to linearize the various distance functions, we can go a bit overboard and “convexify”
them.

Convexification techniques have been used in non-linear optimization for decades [14], for example
the αBB optimization method locally convexifies constraint functions to produce constraints that are
easier to process [4]. However, we are unaware of prior applications of this technique in computational
geometry in the manner that we use it. (For an alternate use, see [21].)

The general idea involves the following two steps. First, we apply a quadtree-like approach to
partition the query space (that is, Rd) into cells so that the restriction of each distance function
within each cell has certain “nice” properties, which make it possible to establish upper bounds
on the gradients and the eigenvalues of their Hessians. We then add to each function a common
“convexifying” function whose Hessian has sufficiently small (in fact negative) eigenvalues, so that all
the functions become concave (see Figure 3 in Section 3 below). We then exploit the fact that the
lower envelope of concave functions is concave. The region lying under this lower envelope can be
approximated by standard techniques, such as the ray-shooting data structure of [6]. We show that
if the distance functions satisfy our admissibility conditions, this can be achieved while preserving
the approximation errors.

The rest of the paper is organized as follows. In the next section we present definitions and
preliminary results. Section 3 discusses the concept of convexification, and how it is applied to
vertical ray shooting on the minimization diagram of sufficiently well-behaved functions. In Section 4,
we present our solution to ANN searching for scaling distance functions, proving Theorem 1.1. In
Section 5, we do the same for the case of Bregman divergence, proving Theorem 1.2. Finally, in
Section 6 we present technical details that have been deferred from the main body of the paper.

2 Preliminaries

In this section we present a number of definitions and results that will be useful throughout the
paper.

5

2.1 Notation and Assumptions

For the sake of completeness, let us recall some standard definitions. Given a function f : Rd → R,
its graph is the set of (d+ 1)-dimensional points (x, f(x)), its epigraph is the set of points on or
above the graph, and its hypograph is the set of points on or below the graph (where the (d+ 1)-st
axis is directed upwards). The level set (also called level surface if d ≥ 3) of f is the set of points
x ∈ Rd for which f has the same value.

The gradient and Hessian of a function generalize the concepts of the first and second derivative
to a multidimensional setting. The gradient of f , denoted ∇f , is defined as the vector field(∂f
∂x1

, . . . , ∂f∂xd

)ᵀ
. The gradient vector points in a direction in which the function grows most rapidly,

and it is orthogonal to the level surface. For any point x and any unit vector v, the rate of change
of f along v is given by the dot product ∇f(x) · v. The Hessian of f at x, denoted ∇2f(x), is a
d× d matrix of second-order partial derivatives at x. For twice continuously differentiable functions,
∇2f(x) is symmetric, implying that it has d (not necessarily distinct) real eigenvalues.

Given a d-vector v, let ‖v‖ denote its length under the Euclidean norm, and the Euclidean
distance between points p and q is ‖q − p‖. Given a d × d matrix A, its spectral norm is ‖A‖ =
sup {‖Ax‖ / ‖x‖ : x ∈ Rd and x 6= 0}. Since the Hessian is a symmetric matrix, it follows that
‖∇2f(x)‖ is the largest absolute value attained by the eigenvalues of ∇2f(x).

A real-valued function f defined on a nonempty subset X of Rd is convex if the domain X is
convex and for any x, y ∈ X and α ∈ [0, 1], f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y), and it is
concave if −f is convex. A twice continuously differentiable function on a convex domain is convex
if and only if its Hessian matrix is positive semidefinite in the interior of the domain. It follows that
all the eigenvalues of the Hessian of a convex function are nonnegative.

Given a function f : Rd → R and a closed Euclidean ball B (or generally any closed bounded
region), let f+(B) and f−(B) denote the maximum and minimum values, respectively, attained
by f(x) for x ∈ B. Similarly, define ‖∇f+(B)‖ and ‖∇2f+(B)‖ to be the maximum values of the
norms of the gradient and Hessian, respectively, for any point in B.

2.2 Minimization Diagrams and Vertical Ray Shooting

Consider a convex domain X ⊆ Rd and a set of functions F = {f1, . . . , fm}, where fi : X → R+.
Let Fmin denote the associated lower-envelope function, that is Fmin(x) = min1≤i≤m fi(x). As
Har-Peled and Kumar [25] observed, for any ε > 0, we can answer ε-ANN queries on any set S by
letting fi denote the distance function to the ith site, and computing any index i (called a witness)
such that fi(q) ≤ (1 + ε)Fmin(q).

We can pose this as a geometric approximation problem in one higher dimension. Consider the
hypograph in Rd+1 of Fmin, and let us think of the (d+ 1)st axis as indicating the vertical direction.
Answering ε-ANN queries in the above sense can be thought of as approximating the result of a
vertical ray shot upwards from the point (q, 0) ∈ Rd+1 until it hits the lower envelope, where the
allowed approximation error is εFmin(q). Because the error is relative to the value of Fmin(q), this
is called a relative ε-AVR query. It is also useful to consider a variant in which the error is absolute.
An absolute ε-AVR query returns any witness i such that fi(q) ≤ ε+ Fmin(q) (see Fig. 2).

The hypograph of a general minimization diagram can be unwieldy. Our approach to answer
AVR queries efficiently will involve subdividing space into regions such that within each region it
is possible to transform the hypograph into a convex shape. In the next section, we will describe
this transformation. Given this, our principal utility for answering ε-AVR queries efficiently is
encapsulated in the following lemma (see Figure 2). The proof has been deferred to Section 6.

6

f1
f3

f2

Fmin

ε

q

1

0

X

Figure 2: Approximate AVR query assuming absolute errors. For the query q, the exact answer is
f2, but f3 would be acceptable.

Lemma 2.1. (Answering ε-AVR Queries) Consider a unit ball B ⊆ Rd and a family of concave
functions F = {f1, . . . , fm} defined over B such that for all 1 ≤ i ≤ m and x ∈ B, fi(x) ∈ [0, 1] and
‖∇fi(x)‖ ≤ 1. Then, for any 0 < ε ≤ 1, there is a data structure that can answer absolute ε-AVR
queries in time O(log 1

ε) and storage O((1ε)d/2).

3 Convexification

In this section we discuss the key technique underlying many of our results. As mentioned above,
our objective is to answer ε-AVR queries with respect to the minimization diagram, but this is
complicated by the fact that it does not bound a convex set.

In order to overcome this issue, let us make two assumptions. First, we restrict the functions
to a bounded convex domain, which for our purposes may be taken to be a closed Euclidean ball
B in Rd. Second, let us assume that the functions are smooth, implying in particular that each
function fi has a well defined gradient ∇fi and Hessian ∇2fi for every point of B. As mentioned
above a function fi is convex (resp., concave) over B if and only if all the eigenvalues of ∇2fi(x)
are nonnegative (resp., nonpositive). Intuitively, if the functions fi are sufficiently well-behaved it
is possible to compute upper bounds on the norms of the gradients and Hessians throughout B.
Given F and B, let Λ+ denote an upper bound on the largest eigenvalue of ∇2fi(x) for any function
fi ∈ F and for any point x ∈ B.

We will apply a technique called convexification from the field of nonconvex optimization [4, 14].
If we add to fi any function whose Hessian has a maximum eigenvalue at most −Λ+, we will
effectively “overpower” all the upward curving terms, resulting in a function having only nonpositive
eigenvalues, that is, a concave function.5 The lower envelope of concave functions is concave, and so
techniques for convex approximation (such as Lemma 2.1) can be applied to the hypograph of the
resulting lower-envelope function.

To make this more formal, let p ∈ Rd and r ∈ R denote the center point and radius of B,
respectively. Define a function φ (which depends on B and Λ+) to be

φ(x) =
Λ+

2

r2 − d∑
j=1

(xj − pj)2
 =

Λ+

2
(r2 − ‖x− p‖2).

It is easy to verify that φ evaluates to zero along B’s boundary and is positive within B’s interior.
Also, for any x ∈ Rd, the Hessian of ‖x− p‖2 (as a function of x) is a d× d diagonal matrix 2I, and

5While this intuition is best understood for convex functions, it can be applied whenever there is an upper bound
on the maximum eigenvalue.

7

therefore ∇2φ(x) = −Λ+I. Now, defineÛfi(x) = fi(x) + φ(x), for 1 ≤ i ≤ m, andÙFmin(x) = min
1≤i≤m

Ûfi(x) = Fmin(x) + φ(x).

Because all the functions are subject to the same offset at each point x, ÙFmin preserves the
relevant combinatorial structure of Fmin, and in particular fi yields the minimum value to Fmin(x)
at some point x if and only if Ûfi yields the minimum value to ÙFmin(x). Absolute vertical errors are
preserved as well. Observe that ÙFmin(x) matches the value of Fmin along B’s boundary and is larger
within its interior. Also, since ∇2φ(x) = −Λ+I, it follows from elementary linear algebra that each
eigenvalue of ∇2 Ûfi(x) is smaller than the corresponding eigenvalue of ∇2fi(x) by Λ+. Thus, all the
eigenvalues of Ûfi(x) are nonpositive, and so Ûfi is concave over B. In turn, this implies that ÙFmin is
concave, as desired. We will show that, when properly applied, relative errors are nearly preserved,
and hence approximating the convexified lower envelope yields an approximation to the original
lower envelope.

3.1 A Short Example

As a simple application of this technique, consider the following problem. Let F = {f1, . . . , fm}
be a collection of m multivariate polynomial functions over Rd each of constant degree and having
coefficients whose absolute values are O(1) (see Figure 3(a)). It is known that the worst-case
combinatorial complexity of the lower envelope of algebraic functions of fixed degree in Rd lies
between Ω(nd) and O(nd+α) for any α > 0 [29], which suggests that any exact solution to computing
a point on the lower envelope Fmin will either involve high space or high query time.

=+

(a) (b) (c)

f1

f2
f3

f̃1 f̃3

f̃2φ

Figure 3: Convexification.

Let us consider a simple approximate formulation by restricting F to a unit d-dimensional
Euclidean ball B centered at the origin. Given a parameter ε > 0, the objective is to compute for
any query point q ∈ Rd an absolute ε-approximation by returning the index of a function fi such
that fi(q) ≤ Fmin(q) + ε. (While relative errors are usually desired, this simpler formulation is
sufficient to illustrate how convexification works.) Since the degrees and coefficients are bounded,
it follows that for each x ∈ B, the norms of the gradients and Hessians for each function fi are
bounded. A simple naive solution would be to overlay B with a grid with cells of diameter Θ(ε)
and compute the answer for a query point centered within each grid cell. Because the gradients are

8

bounded, the answer to the query for the center point is an absolute ε-approximation for any point
in the cell. This produces a data structure with space O((1ε)d).

To produce a more space-efficient solution, we apply convexification. Because the eigenvalues of
the Hessians are bounded for all x ∈ B and all functions fi, it follows that there exists an upper
bound Λ+ = O(1) on all the Hessian eigenvalues. Therefore, by computing the convexifying function
φ described above (see Figure 3(b)) to produce the new function ÙFmin (see Figure 3(c)) we obtain a
concave function. It is easy to see that φ has bounded gradients and therefore so does ÙFmin. The
hypograph of the resulting function when suitably trimmed is a convex body of constant diameter
residing in Rd+1. After a suitable scaling (which will be described later in Lemma 3.2), the functions
can be transformed so that we may apply Lemma 2.1 to answer approximate vertical ray-shooting
queries in time O(log 1

ε) with storage O((1ε)d/2). This halves the exponential dependence in the
dimension over the simple approach.

3.2 Admissible Distance Functions

A key question for us is whether the convexification process preserves approximation errors. We
will show that if the functions satisfy certain admissibility properties, then this will be the case.
We are given a domain X ⊆ Rd, and we assume that each distance function is associated with a
defining site p ∈ X . Consider a distance function fp : X → R+ with a well-defined gradient and
Hessian for each point of X .6 Given τ > 0, we say that fp is τ -admissible if for all x ∈ X :

(i) ‖∇fp(x)‖‖x− p‖ ≤ τfp(x), and

(ii) ‖∇2fp(x)‖‖x− p‖2 ≤ τ2fp(x).

Intuitively, an admissible function exhibits growth rates about the site that are polynomially upper
bounded. For example, it is easy to prove that fp(x) = ‖x− p‖c is O(c)-admissible, for any c ≥ 1.

Admissibility implies bounds on the magnitudes of the function values, gradients, and Hessians.
Given a Euclidean ball B and site p, we say that B and p are β-separated if dist(p,B)/ diam(B) ≥ β
(where dist(p,B) is the minimum Euclidean distance between p and B and diam(B) B’s diameter).
The following lemma presents upper bounds on f+(B), ‖∇f+(B)‖, and ‖∇2f+(B)‖ in terms of
these quantities. (Recall definitions from Section 2.1.) The proof is rather technical and has been
deferred to Section 6.

Lemma 3.1. Consider an open convex domain X , a site p ∈ X , a τ -admissible distance function
fp, and a Euclidean ball B ⊂ X . If B and p are (τκ)-separated for κ > 1, then:

(i) f+p (B) ≤ f−p (B)κ/(κ− 1),

(ii) ‖∇f+p (B)‖ ≤ f+p (B)/(κdiam(B)), and

(iii) ‖∇2f+p (B)‖ ≤ f+p (B)/(κdiam(B))2.

For the special case of κ = 2, we obtain the following specific bounds.

Corollary 3.1. Consider an open convex domain X , a site p ∈ X , a τ -admissible distance function
fp, and a Euclidean ball B ⊂ X . If B and p are (2τ)-separated, then:

(i) f+p (B) ≤ 2f−p (B),

6This assumption is really too strong, since distance functions often have undefined gradients or Hessians at certain
locations (e.g., the sites themselves). For our purposes it suffices that the gradient and Hessian are well defined at any
point within the region where convexification will be applied.

9

(ii) ‖∇f+p (B)‖ ≤ f+p (B)/(2 · diam(B)), and

(iii) ‖∇2f+p (B)‖ ≤ f+p (B)/(2 · diam(B))2.

3.3 Convexification and Ray Shooting

A set F = {f1, . . . , fm} of τ -admissible functions is called a τ -admissible family of functions. Let
Fmin denote the associated lower-envelope function. In Lemma 2.1 we showed that absolute ε-AVR
queries could be answered efficiently in a very restricted context. This will need to be generalized
the purposes of answering ANN queries, however.

The main result of this section states that if the sites defining the distance functions are
sufficiently well separated from a Euclidean ball, then (through convexification) ε-AVR queries can
be efficiently answered. The key idea is to map the ball and functions into the special structure
required by Lemma 2.1, and to analyze how the mapping process affects the gradients and Hessians
of the functions.

Lemma 3.2. (Convexification & Ray-Shooting) Consider a Euclidean ball B ∈ Rd and a family
of τ -admissible distance functions F = {f1, . . . , fm} over B such that each associated site is (2τ)-
separated from B. Given any ε > 0, there exists a data structure that can answer relative ε-AVR
queries with respect to Fmin in time O(log 1

ε) with storage O((1ε)d/2).

Proof. We will answer approximate vertical ray-shooting queries by a reduction to the data structure
given in Lemma 2.1 for answering approximate central ray-shooting queries. In order to apply this
lemma, we need to transform the problem into the canonical form prescribed by that lemma.

We may assume without loss of generality that f1 is the function that minimizes f−1 (B) among
all the functions in F . By Corollary 3.1(i), f+1 (B) ≤ 2f−1 (B). For all i, we may assume that
f−i (B) ≤ 2f−1 (B) for otherwise this function is greater than f1 throughout B, and hence it does not
contribute to Fmin. Under this assumption, it follows that f+i (B) ≤ 4f−1 (B).

In order to convert these functions into the desired form, define h = 5f−1 (B), r = radius(B),
and let c ∈ Rd denote the center of B. Let B0 be a unit ball centered at the origin, and for any
x ∈ B0, let x′ = rx+ c. Observe that x ∈ B0 if and only if x′ ∈ B. For each i, define the normalized
distance function

gi(x) =
fi(x

′)

h
.

We assert that these functions satisfy the following properties. They are straightforward
consequences of admissibility and separation. For completeness, they are proved in Lemma 6.1 in
Section 6.

(a) g+i (B0) ≤ 4/5 and g−i (B0) ≥ 1/5

(b) ‖∇g+i (B0)‖ ≤ 1/2

(c) ‖∇2g+i (B0)‖ ≤ 1/4

Next, we convexify these functions. To do this, define φ(x) = (1−‖x‖2)/8. Observe that for any
x ∈ B0, φ(x) ∈ [0, 1/8] and ‖∇φ(x)‖ = ‖x‖/4 and ∇2φ(x) is the diagonal matrix −(1/4)I. DefineÛgi(x) = gi(x) + φ(x).

It is easily verified that these functions satisfy the following properties.

(a) Ûg+i (B0) ≤ 1 and Ûg−i (B0) ≥ 1/5

10

(b) ‖∇Ûg+i (B0)‖ ≤ ‖∇g+i (B0)‖+ ‖∇φ+(B0)‖ < 1

(c) ‖∇2Ûg+i (B0)‖ ≤ ‖∇2g+i (B0)‖ − (1/4) ≤ 0

By property (c), these functions are concave over B0. Given that Ûg−i (B0) ≥ 1/5, in order to
answer AVR queries to a relative error of ε, it suffices to answer AVR queries to an absolute error
of ε′ = ε/5. Therefore, we can apply Lemma 2.1 (using ε′ in place of ε) to obtain a data structure
that answers relative ε-AVR queries with respect to Fmin in time O(log 1

ε) with storage O((1ε)d/2),
as desired.

Armed with this tool, we are now in a position to present the data structures for answering
ε-ANN queries for each of our applications, which we do in the subsequent sections.

4 Answering ANN Queries for Scaling Distance Functions

Recall that in a scaling distance we are given a convex body K that contains the origin in its interior,
and the distance from a query point q to a site p is defined to be zero if p = q and otherwise it is
the smallest r such that (q − p)/r ∈ K.7 The body K plays the role of a unit ball in a normed
metric, but we do not require that the body be centrally symmetric. In this section we establish
Theorem 1.1 by demonstrating a data structure for answering ε-ANN queries given a set S of n sites,
where each site pi is associated with a scaling distance whose unit ball is a fat, smooth convex body.

Before presenting the data structure, we present two important preliminary results. The first,
given in Section 4.1, explains how to subdivide space into a number of regions, called cells, that
possess nice separation properties with respect to the sites. The second, given in Section 4.2, presents
key technical properties of scaling functions whose unit balls are fat and smooth.

w

(b) (c) (d)

Bw

≥ α diam(B)

w

≥ β diam(Bw)
w

(a)

Bw

w
B

Figure 4: Basic separation properties for Lemma 4.1.

4.1 AVD and Separation Properties

In order to apply the convexification process, we will first subdivide space into regions, each of
which satisfies certain separation properties with respect to the sites S. This subdivision results
from a height-balanced variant of a quadtree, called a balanced box decomposition tree (or BBD
tree) [11]. Each cell of this decomposition is either a quadtree box or the set-theoretic difference of
two such boxes. Each leaf cell is associated with an auxiliary ANN data structure for the query
points in the cell, and together the leaf cells subdivide all of Rd.

7This can be readily generalized to squared distances, that is, the smallest r such that (q − p)/
√
r ∈ K. A relative

error of 1 + ε in the squared distance, reduces to computing a
√

1 + ε relative error in the original distance. Since√
1 + ε ≈ (1 + ε/2) for small ε, our approach can be applied but with a slightly smaller value of ε. This generalizes to

any constant power.

11

The separation properties are essentially the same as those of the AVD data structure of [10].
For any leaf cell w of the decomposition, the sites can be partitioned into three subsets, any of which
may be empty (see Figure 4(a)). First, a single site may lie within w. Second, a subset of sites,
called the outer cluster, is well-separated from the cell. Finally, there may be a dense cluster of
points, called the inner cluster, that lie within a ball Bw that is well-separated from the cell. After
locating the leaf cell containing the query point, the approximate nearest neighbor is computed
independently for each of these subsets (by a method to be described later), and the overall closest is
returned. The next lemma formalizes these separation properties. It follows easily from Lemma 6.1
in [9]. Given a BBD-tree cell w and a point p ∈ Rd, let dist(p, w) denote the minimum Euclidean
distance from p to any point in w.

Lemma 4.1 (Basic Separation Properties). Given a set S of n points in Rd and real parameters
α, β ≥ 2. It is possible to construct a BBD tree T with O(αdn log β) nodes, whose leaf cells cover
Rd and for every site p ∈ S, either

(i) it lies within w, but there can be at most one site for which this holds (see Figure 4(b)),

(ii) (outer cluster) letting B denote the smallest Euclidean ball enclosing w, dist(p,B) ≥ α·diam(B)
(see Figure 4(c)), or

(iii) (inner cluster) there exists a ball Bw associated with w such that dist(Bw, w) ≥ β · diam(Bw)
and p ∈ Bw (see Figure 4(d)).

Furthermore, it is possible to compute the tree T in total time O(αdn log n log β), and the leaf
cell containing a query point can be located in time O(log(αn) + log log β)

4.2 Admissibility for Scaling Distances

In this section we explore how properties of the unit ball affect the effectiveness of convexification.
Recall from Section 3 that convexification relies on the admissibility of the distance function, and
we show here that this will be guaranteed if unit balls are fat, well centered, and smooth.

Given a convex body K and a parameter 0 < γ ≤ 1, we say that K is centrally γ-fat if there exist
Euclidean balls B and B′ centered at the origin, such that B ⊆ K ⊆ B′, and radius(B)/ radius(B′) ≥
γ. Given a parameter 0 < σ ≤ 1, we say that K is σ-smooth if for every point x on the boundary of
K, there exists a closed Euclidean ball of diameter σ · diam(K) that lies within K and has x on its
boundary. We say that a scaling distance function is a (γ, σ)-distance if its associated unit ball B is
both centrally γ-fat and σ-smooth.

In order to employ convexification for scaling distances, it will be useful to show that smoothness
and fatness imply that the associated distance functions are admissible. This is encapsulated in
the following lemma. It follows from a straightforward but rather technical exercise in multivariate
differential calculus. We include a complete proof in Section 6.

Lemma 4.2. Given positive reals γ and σ, let fp be a (γ, σ)-distance over Rd scaled about some
point p ∈ Rd. There exists τ (a function of γ and σ) such that fp is τ -admissible.

Our results on ε-ANN queries for scaling distances will be proved for any set of sites whose
associated distance functions (which may be individual to each site) are all (γ, σ)-distances for fixed
γ and σ. Our results on the Minkowski and Mahalanobis distances thus arise as direct consequences
of the following easy observations.

Lemma 4.3.

12

(i) For any positive real k > 1, the Minkowski distance `k is a (γ, σ)-distance, where γ and σ are
functions of k and d.

This applies to multiplicatively weighted Minkowski distances as well.

(ii) The Mahalanobis distance defined by a matrix Mp is a (γ, σ)-distance, where γ and σ are
functions of Mp’s minimum and maximum eigenvalues.

4.3 ANN Data Structure for Scaling Functions

Let us return to the discussion of how to answer ε-ANN queries for a family of (γ, σ)-distance
functions. By Lemma 4.2, such functions are τ -admissible, where τ depends only on γ and σ.

We begin by building an (α, β)-AVD over Rd by invoking Lemma 4.1 for α = 2τ and β = 10τ/ε.
(These choices will be justified below.) For each leaf cell w, the nearest neighbor of any query point
q ∈ w can arise from one of the three cases in the lemma. Case (i) is trivial since there is just one
point.

Case (ii) (the outer cluster) can be solved easily by reduction to Lemma 3.2. Recall that we have
a BBD-tree leaf cell w, and the objective is to compute an ε-ANN from among the outer cluster,
that is, a set whose sites are at Euclidean distance at least α · diam(w) from w. Let B denote the
smallest Euclidean ball enclosing w and let F be the family of distance functions associated with the
sites of the outer cluster. Since α = 2τ , B is (2τ)-separated from the points of the outer cluster. By
Lemma 3.2, we can answer ε-AVR queries with respect to Fmin, and this is equivalent to answering
ε-ANN queries with respect to the outer cluster. The query time is O(log 1

ε) and the storage is

O((1ε)d/2).
All that remains is case (iii), the inner cluster. Recall that these sites lie within a ball Bw such

that dist(Bw, w) ≥ β ·diam(Bw). In approximate Euclidean nearest-neighbor searching, a separation
as large as β would allow us to replace all the points of Bw with a single representative site, but this
is not applicable when different sites are associated with different scaling distance functions. We
will show instead that queries can be answered by partitioning the query space into a small number
of regions such that Lemma 3.2 can be applied to each region. Let {p1, . . . , pm} denote the sites
lying within Bw, and let F = {f1, . . . , fm} denote the associated family of (γ, σ)-distance functions.

Let p′ be the center of Bw, and for 1 ≤ i ≤ m, define the perturbed distance function f ′i(x) =
fi(x+ pi − p′) to be the function that results by moving pi to p′ without altering the unit metric
ball. Let F ′ denote the associated family of distance functions. Our next lemma shows that this
perturbation does not significantly alter the function values.

Lemma 4.4. Let p ∈ Rd be the site of a τ -admissible distance function f . Let B be a ball containing
p and let x be a point that is β-separated from B for β ≥ 2τ . Letting p′ denote B’s center, define
f ′(x) = f(x+ p− p′). Then

|f ′(x)− f(x)|
f(x)

≤ 2τ

β
.

Proof. Define Bx to be the translate of B whose center coincides with x. Since p and p′ both lie
within B, x and x+p−p′ both lie within Bx. Let κ = β/τ . Since x and B are β-separated, p′ and Bx
are also β-separated. Equivalently, they are (τκ)-separated. Because κ ≥ 2, κ/(κ− 1) ≤ (1 + 2/κ).
Because f ′ has the same unit metric ball as f , it is also τ -admissible, and so by Lemma 3.1

f ′
+

(Bx) ≤ κ

κ− 1
f ′
−

(Bx) ≤
(

1 +
2

κ

)
f ′
−

(Bx)

=

(
1 +

2τ

β

)
f ′
−

(Bx).

13

Letting x′ = x− (p− p′), we have f(x) = f ′(x′). Clearly x′ ∈ Bx. Let us assume that f ′(x) ≥ f(x).
(The other case is similar.) We have

f ′(x)− f(x) = f ′(x)− f ′(x′) ≤ f ′
+

(Bx)− f ′−(Bx)

≤ 2τ

β
f ′
−

(Bx) ≤ 2τ

β
f ′(x′) =

2τ

β
f(x),

which implies the desired inequality.

Since every point x ∈ w is β-separated from Bw, by applying this perturbation to every function
in F , we alter relative errors by at most 2τ/β. By selecting β so that (1 + 2τ/β)2 ≤ 1 + ε/2, we
assert that the total error is at most ε/2. To see this, consider any query point x, and let fi be the
function that achieves the minimum value for Fmin(x), and let f ′j be the perturbed function that
achieves the minimum value for F ′min(x). Then

fj(x) ≤
(

1 +
2τ

β

)
f ′j(x) ≤

(
1 +

2τ

β

)
f ′i(x)

≤
(

1 +
2τ

β

)2

fi(x) ≤
(

1 +
ε

2

)
fi(x).

It is easy to verify that for all sufficiently small ε, our choice of β = 10τ/ε satisfies this condition
(and it is also at least 2τ as required by the lemma).

We can now explain how to answer ε-ANN queries for the inner cluster. Consider the sites of
the inner cluster, which all lie within Bw (see Figure 5(a)). We apply Lemma 4.4 to produce the
perturbed family F ′ of τ -admissible functions (see Figure 5(b)).

w
Bw

(a) (c)

2

s

Bw

(b)

p′p′ p′

q

Bw′
q′

Figure 5: (a) Inner-cluster sites with their respective distance functions, (b) their perturbation to a
common site p′, and (c) the reduction to Lemma 3.2.

Since these are all scaling distance functions, the nearest neighbor of any query point q ∈ Rd
(irrespective of whether it lies within w) is the same for every point on the ray from p′ through q.
Therefore, it suffices to evaluate the answer to the query for any single query point q′ on this ray.
In particular, let us fix a hypercube of side length 2 centered at p′ (see Figure 5(c)). We will show
how to answer (ε/3)-AVR queries for points on the boundary of this hypercube with respect to F ′.
A general query will then be answered by computing the point where the ray from p′ to the query
point intersects the hypercube’s boundary and returning the result of this query. The total error
with respect to the original functions will be at most (1 + ε/2)(1 + ε/3), and for all sufficiently small
ε, this is at most 1 + ε, as desired.

All that remains is to show how to answer (ε/3)-AVR queries for points on the boundary of
the hypercube. Let s = 1/(2τ + 1), and let W be a set of hypercubes of diameter s that cover the

14

boundary of the hypercube of side length 2 centered at p′ (see Figure 5(c)). The number of such boxes
is O(τd−1). For each w′ ∈W , let Bw′ be the smallest ball enclosing w′. Each point on the hypercube
is at distance at least 1 from p′. For each w′ ∈W , we have dist(p′, Bw′) ≥ 1− s = 2τ · diam(Bw′),
implying that p′ and Bw′ are (2τ)-separated. Therefore, by Lemma 3.2 there is a data structure
that can answer (ε/3)-AVR queries with respect to the perturbed distance functions F ′min in time
O(log 1

ε) with storage O((1ε)d/2).
In summary, a query is answered by computing the ray from p′ through q, and determining

the unique point q′ on the boundary of the hypercube that is hit by this ray. We then determine
the hypercube w′ containing q′ in constant time and invoke the associated data structure for
answering (ε/3)-AVR queries with respect to F ′. The total storage needed for all these structures is
O(τd−1/εd/2). For any query point, we can determine which of these data structures to access in
O(1) time. Relative to the case of the outer cluster, we suffer only an additional factor of O(τd−1)
to store these data structures.

Under our assumption that γ and σ are constants, it follows that both τ and α are constants and β
is O(1/ε). By Lemma 4.1, the total number of leaf nodes in the (α, β)-AVD is O(n log 1

ε). Combining

this with the O(1/εd/2) space for the data structure to answer queries with respect to the outer cluster
and O(τd−1/εd/2) overall space for the inner cluster, we obtain a total space of O((n log 1

ε)/εd/2).
The query time is simply the combination of the O(log(αn) + log log β) = O(log n+ log log 1

ε) time
to locate the leaf cell (by Lemma 4.1), and the O(log 1

ε) time to answer O(ε)-AVR queries. The
total query time is therefore O(log n

ε), as desired. This establishes Theorem 1.1.

5 Answering ANN Queries for Bregman Divergences

In this section we demonstrate how to answer ε-ANN queries for a set of n sites over a Bregman diver-
gence. We assume that the Bregman divergence is defined by a strictly convex, twice-differentiable
function F over an open convex domain X ⊆ Rd. As mentioned in the introduction, given a site p,
we interpret the divergence DF (x, p) as a distance function of x about p, that is, analogous to fp(x)
for scaling distances. Thus, gradients and Hessians are defined with respect to the variable x. Our
results will be based on the assumption that the divergence is τ -admissible for a constant τ . This
will be defined formally in the following section.

5.1 Measures of Bregman Complexity

In Section 1 we introduced the concepts of similarity and asymmetry for Bregman divergences. We
can extend the notion of admissibility to Bregman divergences by defining a Bregman divergence
DF to be τ -admissible if the associated distance function fp(·) = DF (·, p) is τ -admissible.

It is natural to ask how the various criteria of Bregman complexity (asymmetry, similarity, and
admissibility) relate to each other. For the sake of relating admissibility with asymmetry, it will be
helpful to introduce a directionally-sensitive variant of admissibility. Given fp and τ as above, we
say that fp is directionally τ -admissible if for all x ∈ X , ∇fp(x) · (x− p) ≤ τfp(x). (Note that only
the gradient condition is used in this definition.) The following lemma provides some comparisons.
The proof is rather technical and has been deferred to Section 6.

Lemma 5.1. Given an open convex domain X ⊆ Rd:

(i) Any µ-similar Bregman divergence over X is 2µ-admissible.

(ii) Any µ-admissible Bregman divergence over X is directionally µ-admissible.

15

(iii) A Bregman divergence over X is µ-asymmetric if and only if it is directionally (1 + µ)-
admissible.

Note that claim (i) is strict since the Bregman divergence DF defined by F (x) = x4 over X = R
is not µ-similar for any µ, but it is 4-admissible. We do not know whether claim (ii) is strict, but
we conjecture that it is.

5.2 ANN Data Structure for Bregman Divergences

Let us return to the discussion of how to answer ε-ANN queries for a τ -admissible Bregman
divergence over a domain X . Because any distance function that is τ -admissible is τ ′-admissible for
any τ ′ ≥ τ , we may assume that τ ≥ 1.8 We begin by building an (α, β)-AVD over Rd by invoking
Lemma 4.1 for α = 2τ and β = 4τ2/ε. (These choices will be justified below.) For each leaf cell w,
the nearest neighbor of any query point q ∈ w can arise from one of the three cases in the lemma.
Cases (i) and (ii) are handled in exactly the same manner as in Section 4.3. (Case (i) is trivial, and
case (ii) applies for any τ -admissible family of functions.)

It remains to handle case (iii), the inner cluster. Recall that these sites lie within a ball Bw
such that dist(Bw, w) ≥ β · diam(Bw). We show that as a result of choosing β sufficiently large, for
any query point in w the distance from all the sites within Bw are sufficiently close that we may
select any of these sites as the approximate nearest neighbor. This is a direct consequence of the
following lemma. The proof has been deferred to Section 6.

Lemma 5.2. Let D be a τ -admissible Bregman divergence and let 0 < ε ≤ 1. Consider any leaf
cell w of the (α, β)-AVD, where β ≥ 4τ2/ε. Then, for any q ∈ w and points p, p′ ∈ Bw

|D(q, p)−D(q, p′)|
D(q, p)

≤ ε.

Under our assumption that τ is a constant, α is a constant and β is O(1/ε). The analysis
proceeds much like the case for scaling distances. By Lemma 4.1, the total number of leaf nodes in
the (α, β)-AVD is O(n log 1

ε). We require only one representative for cases (i) and (iii), and as in

Section 4.3, we need space O(1/εd/2) to handle case (ii). The query time is simply the combination
of the O(log(αn) + log log β) = O(log n + log log 1

ε) time to locate the leaf cell (by Lemma 4.1),
and the O(log 1

ε) time to answer O(ε)-AVR queries for case (ii). The total query time is therefore
O(log n

ε), as desired. This establishes Theorem 1.2.

6 Deferred Technical Details

In this section we present a number of technical results and proofs, which have been deferred from
the main presentation.

6.1 On Vertical Ray Shooting

We present a proof of Lemma 2.1 from Section 2.2, which shows how to answer approximate vertical
ray-shooting queries for the lower envelope of concave functions in a very restricted context.

8Indeed, it can be shown that any distance function that is convex, as Bregman divergences are, cannot be
τ -admissible for τ < 1.

16

Lemma 2.1. (Answering ε-AVR Queries) Consider a unit ball B ⊆ Rd and a family of concave
functions F = {f1, . . . , fm} defined over B such that for all 1 ≤ i ≤ m and x ∈ B, fi(x) ∈ [0, 1] and
‖∇fi(x)‖ ≤ 1. Then, for any 0 < ε ≤ 1, there is a data structure that can answer absolute ε-AVR
queries in time O(log 1

ε) and storage O((1ε)d/2).

Proof. We will follow the strategy presented in [8] for answering ε-ANN queries. It combines
(1) a data structure for answering approximate central ray-shooting queries, in which the rays
originate from a common point and (2) an approximation-preserving reduction from vertical to
central ray-shooting queries [6].

Let K denote a closed convex body that is represented as the intersection of a finite set of
halfspaces. We assume that K is centrally γ-fat for some constant γ (recall the definition from
Section 4.2). An ε-approximate central ray-shooting query (ε-ACR query) is given a query ray
that emanates from the origin and returns the index of one of K’s bounding hyperplanes h whose
intersection with the ray is within distance ε · diam(K) of the true contact point with K’s boundary.
We will make use of the following result, which is paraphrased from [6].

Approximate Central Ray-Shooting: Given a convex polytope K in Rd that is centrally γ-fat
for some constant γ and an approximation parameter 0 < ε ≤ 1, there is a data structure that
can answer ε-ACR queries in time O(log 1

ε) and storage O(1/ε(d−1)/2).

As in Section 4 of [6], we can employ a projective transformation that converts vertical ray
shooting into central ray shooting. While the specific transformation presented there was tailored
to work for a set of hyperplanes that are tangent to a paraboloid, a closer inspection reveals that
the reduction can be generalized (with a change in the constant factors) provided that the following
quantities are all bounded above by a constant: (1) the diameter of the domain of interest, (2) the
difference between the maximum and minimum function values throughout this domain, and (3)
the absolute values of the slopes of the hyperplanes (or equivalently, the norms of the gradients
of the functions defined by these hyperplanes). This projective transformation produces a convex
body in Rd+1 that is centrally γ-fat for some constant γ, and it preserves relative errors up to a
constant factor.

Therefore, by applying this projective transformation, we can reduce the problem of answering
ε-AVR queries in dimension d for the lower envelope of a set of linear functions to the aforementioned
ACR data structure in dimension d+ 1. The only remaining issue is that the functions of F are
concave, not necessarily linear. Thus, the output of the reduction is a convex body bounded by
curved patches, not a polytope. We address this by applying Dudley’s Theorem [23] to produce a
polytope that approximates this convex body to an absolute Hausdorff error of ε/2. (In particular,
Dudley’s construction samples O(1/εd/2) points on the boundary of the convex body, and forms the
approximation by intersecting the supporting hyperplanes at each of these points.) We then apply
the ACR data structure to this approximating polytope, but with the allowed error parameter set
to ε/2. The combination of the two errors, results in a total allowed error of ε.

In order to obtain a witness, each sample point from Dudley’s construction is associated with
the function(s) that are incident to that point. We make the general position assumption that no
more than d+ 1 functions can coincide at any point on the lower envelope of F , and hence each
sample point is associated with a constant number of witnesses. The witness produced by the ACR
data structure will be one of the bounding hyperplanes. We check each of the functions associated
with the sample point that generated this hyperplane, and return the index of the function having
the smallest function value.

17

6.2 On Admissibility and Scaling Functions

Next, we present a proof of Lemma 3.1 from Section 3.2. It establishes the key properties of
admissible functions, which will be used throughout our analysis.

Lemma 3.1. Consider an open convex domain X , a site p ∈ X , a τ -admissible distance function
fp, and a Euclidean ball B ⊂ X . If B and p are (τκ)-separated for κ > 1, then:

(i) f+p (B) ≤ f−p (B)κ/(κ− 1),

(ii) ‖∇f+p (B)‖ ≤ f+p (B)/(κdiam(B)), and

(iii) ‖∇2f+p (B)‖ ≤ f+p (B)/(κdiam(B))2.

Proof. To prove (i), let x+ and x− denote the points of B that realize the values of f+p (B) and

f−p (B), respectively. By applying the mean value theorem, there exists a point s ∈ x−x+ such that
f+p (B)− f−p (B) = ∇fp(s) · (x+ − x−). By the Cauchy-Schwarz inequality

f+p (B)− f−p (B) = ∇fp(s) · (x+ − x−) ≤ ‖∇fp(s)‖‖x+ − x−‖.

By τ -admissibility, ‖∇fp(s)‖ ≤ τfp(s)/‖s−p‖, and since x+, x−, s ∈ B, we have ‖x+−x−‖/‖s−p‖ ≤
diam(B)/ dist(p,B) ≤ 1/(τκ). Thus,

f+p (B)− f−p (B) ≤ τfp(s)

‖s− p‖
‖x+ − x−‖ ≤ τfp(s)

τγ
≤

f+p (B)

κ
.

This implies that f+p (B) ≤ f−p (B)κ/(κ− 1), establishing (i).
To prove (ii), consider any x ∈ B. By separation, dist(p,B) ≥ τκ diam(B). Combining this

with τ -admissibility and (i), we have

‖∇fp(x)‖ ≤ τfp(x)

‖x− p‖
≤

τf+p (B)

dist(p,B)
≤

τf+p (B)

τκ diam(B)
=

f+p (B)

κ diam(B)
.

This applies to any x ∈ B, thus establishing (ii).
To prove (iii), again consider any x ∈ B. By separation and admissibility, we have

‖∇2fp(x)‖ ≤ τ2fp(x)

‖x− p‖2
≤

τ2f+p (B)

dist2(p,B)
≤

f+p (B)

(κ diam(B))2
.

This applies to any x ∈ B, thus establishing (iii).

We next present a proof of the three properties of the normalized distance functions that were
introduced in the proof of Lemma 3.2. These properties follow in a straightforward manner from
admissibility.

Lemma 6.1. Each of the normalized distance functions g(x) = f(x′)/h defined in the proof of
Lemma 3.2 satisfy the following properties:

(a) g+(B0) ≤ 4/5 and g−(B0) ≥ 1/5,

(b) ‖∇g+(B0)‖ ≤ 1/2, and

(c) ‖∇2g+(B0)‖ ≤ 1/4.

18

Proof. For any x ∈ B0, we have

g(x) ≤ f+(B)

h
≤ 2f−(B)

h
≤ 4f−1 (B)

h
=

4

5
,

and

g(x) ≥ f−(B)

h
≥ f−1 (B)

h
=

1

5
,

which establishes (a).
Before establishing (b) and (c), observe that by the chain rule in differential calculus, ∇g(x) =

(r/h)∇f(x′) and ∇2g(x) = (r2/h)∇2f(x′). (Recall that x and x′ are corresponding points in B0

and B, respectively.) Since B0 is a unit ball, diam(B0) = 2. Thus, by Corollary 3.1(ii),

‖∇g(x)‖ =
r

h
‖∇f(x′)‖ ≤ r

h

f+(B)

2(2r)
≤ 1

4
,

which establishes (b). By Corollary 3.1(iii),

‖∇2g(x)‖ =
r2

h
‖∇f(x′)‖ ≤ r2

h

f+(B)

(2(2r))2
≤ 1

16
,

which establishes (c).

Here is a proof of Lemma 4.2 from Section 4.2, which relates the admissibility of a scaling
distance function to the fatness and smoothness of the associated metric ball.

Lemma 4.2. Given positive reals γ and σ, let fp be a (γ, σ)-distance over Rd scaled about some
point p ∈ Rd. There exists τ (a function of γ and σ) such that fp is τ -admissible.

Proof. For any point x ∈ Rd, we will show that (i) ‖∇fp(x)‖ · ‖x−p‖ ≤ fp(x)/γ and (ii) ‖∇2fp(x)‖ ·
‖x− p‖2 ≤ 2fp(x)/(σγ3) . It will follow that fp is τ -admissible for τ =

√
2/(σγ3).

Let K denote the unit metric ball associated with fp and let K ′ denote the scaled copy of K that
just touches the point x. Let r be the unit vector in the direction px (we refer to this as the radial
direction), and let n be the outward unit normal vector to the boundary of K ′ at x. (Throughout
the proof, unit length vectors are defined in the Euclidean sense.) As K ′ is centrally γ-fat, it is easy
to see that the cosine of the angle between r and n, that is, r · n, is at least γ. As the boundary of
K ′ is the level surface of fp, it follows that ∇fp(x) is directed along n. To compute the norm of the
gradient, note that

∇fp(x) · r = lim
δ→0

fp(x+ δr)− fp(x)

δ
.

As fp is a scaling distance function, it follows that

fp(x+ δr)− fp(x) =
δ

‖x− p‖
fp(x).

Thus

∇fp(x) · r =
fp(x)

‖x− p‖
.

Recalling that r · n ≥ γ, we obtain

‖∇fp(x)‖ ≤ fp(x)

γ‖x− p‖
.

19

Thus ‖∇fp(x)‖ · ‖x− p‖ ≤ fp(x)/γ, as desired.
We next bound the norm of the Hessian ∇2fp(x). As the Hessian matrix is positive semidefinite,

recall that it has a full set of independent eigenvectors that are mutually orthogonal, and its norm
equals its largest eigenvalue. Because fp is a scaling distance function, it changes linearly along the
radial direction. Therefore, one of the eigenvectors of ∇2fp(x) is in direction r, and the associated
eigenvalue is 0 (see Figure 6). It follows that the remaining eigenvectors all lie in a subspace that
is orthogonal to r. In particular, the eigenvector associated with its largest eigenvalue must lie in
this subspace. Let u denote such an eigenvector of unit length, and let λ denote the associated
eigenvalue.

K ′

p

u t

r

x

yδ
xδ

δ

n

T

z′0

z′δ
zδ

B

Figure 6: Proof of Lemma 4.2.

Note that λ is the second directional derivative of fp in the direction u. In order to bound λ,
we find it convenient to first bound the second directional derivative of fp in a slightly different
direction. Let T denote the hyperplane tangent to K ′ at point x. We project u onto T and let
t denote the resulting vector scaled to have unit length. We will compute the second directional
derivative of fp in the direction t. Let λt denote this quantity. In order to relate λt with λ, we write
t as (t · r)r+ (t · u)u. Since r and u are mutually orthogonal eigenvectors of ∇2fp(x), by elementary
linear algebra, it follows that λt = (t · r)2λr + (t · u)2λu, where λr and λu are the eigenvalues
associated with r and u, respectively. Since λr = 0, λu = λ, and t · u = r · n ≥ γ, we have λt ≥ γ2λ,
or equivalently, λ ≤ λt/γ

2. In the remainder of the proof, we will bound λt, which will yield the
desired bound on λ.

Let xδ = x + δt and ψ(δ) = fp(xδ). Clearly λt = ψ′′(0). Using the Taylor series and the fact
that ψ′(0) = ∇fp(x) · t = 0, it is easy to see that

ψ′′(0) = 2 · lim
δ→0

ψ(δ)− ψ(0)

δ2
.

Letting yδ denote the intersection point of the segment pxδ with the boundary of K ′, and observing
that both x and yδ lie on ∂K ′ (implying that fp(x) = fp(yδ)), we have

ψ(δ) = fp(xδ) =
‖xδ − p‖
‖yδ − p‖

fp(x),

and thus

ψ(δ)− ψ(0) =
‖xδ − p‖ − ‖yδ − p‖

‖yδ − p‖
fp(x) =

‖xδ − yδ‖
‖yδ − p‖

fp(x).

It follows that

ψ′′(0) = 2 · lim
δ→0

1

δ2
‖xδ − yδ‖
‖yδ − p‖

fp(x) =
2fp(x)

‖x− p‖
· lim
δ→0

‖xδ − yδ‖
δ2

.

20

We next compute this limit. Let B ⊂ K ′ denote the maximal ball tangent to K ′ at x and let R
denote its radius. As K ′ is σ-smooth, we have that

R ≥ σ

2
· diam(K ′) ≥ σ

2
· ‖x− p‖.

Consider the line passing through p and xδ. For sufficiently small δ, it is clear that this line must
intersect the boundary of the ball B at two points. Let zδ denote the intersection point closer to xδ
and z′δ denote the other intersection point. Clearly, ‖xδ − yδ‖ ≤ ‖xδ − zδ‖ and, by the power of the
point theorem, we have

δ2 = ‖xδ − x‖2 = ‖xδ − zδ‖ · ‖xδ − z′δ‖.

It follows that
‖xδ − yδ‖

δ2
≤ ‖xδ − zδ‖

δ2
=

1

‖xδ − z′δ‖
.

Thus

lim
δ→0

‖xδ − yδ‖
δ2

≤ lim
δ→0

1

‖xδ − z′δ‖
=

1

‖x− z′0‖
,

where z′0 denotes the point of intersection of the line passing through p and x with the boundary
of B. Since the cosine of the angle between this line and the diameter of ball B at x equals r · n,
which is at least γ, we have ‖x− z′0‖ ≥ 2γR. It follows that

lim
δ→0

‖xδ − yδ‖
δ2

≤ 1

2γR
≤ 1

σγ‖x− p‖
.

Substituting this bound into the expression found above for λt, we obtain

λt = ψ′′(0) ≤ 2fp(x)

σγ‖x− p‖2
.

Recalling that λ ≤ λt/γ2, we have

λ ≤ 2fp(x)

σγ3‖x− p‖2
,

which implies that ‖∇2fp(x)‖ · ‖x− p‖2 ≤ 2fp(x)/(σγ3). This completes the proof.

6.3 On Bregman Divergences

The following lemma provides some properties of Bregman divergences, which will be used later.
Throughout, we assume that a Bregman divergence is defined by a strictly convex, twice-differentiable
function F over an open convex domain X ⊆ Rd. Given a site p, we interpret the divergence DF (x, p)
as a distance function of x about p, and so gradients and Hessians are defined with respect to
the variable x. The following lemma provides a few useful observations regarding the Bregman
divergence. We omit the proof since these all follow directly from the definition of Bregman
divergence. Observation (i) is related to the symmetrized Bregman divergence [1]. Observation (ii),
known as the three-point property [16], generalizes the law of cosines when the Bregman divergence
is the Euclidean squared distance.

Lemma 6.2. Given any Bregman divergence DF defined over an open convex domain X , and points
q, p, p′ ∈ X :

(i) DF (q, p) +DF (p, q) = (∇F (q)−∇F (p)) · (q − p)

21

(ii) DF (q, p′) +DF (p′, p) = DF (q, p) + (q − p′) · (∇F (p)−∇F (p′))

(iii) ∇DF (q, p) = ∇F (q)−∇F (p)

(iv) ∇2DF (q, p) = ∇2F (q).

In parts (iii) and (iv), derivatives involving DF (q, p) are taken with respect to q.

The above result allows us to establish the following upper and lower bounds on the value,
gradient, and Hessian of a Bregman divergence based on the maximum and minimum eigenvalues of
the function’s Hessian.

Lemma 6.3. Let F be a strictly convex function defined over some domain X ⊆ Rd, and let DF

denote the associated Bregman divergence. For each x ∈ X , let λmin(x) and λmax(x) denote the
minimum and maximum eigenvalues of ∇2F (x), respectively. Then, for all p, q ∈ X , there exist
points r1, r2, and r3 on the open line segment pq such that

1
2λmin(r1)‖q − p‖2 ≤ DF (q, p) ≤ 1

2λmax(r1)‖q − p‖2

λmin(r2)‖q − p‖ ≤ ‖∇DF (q, p)‖ ≤ λmax(r3)‖q − p‖
λmin(q) ≤ ‖∇2DF (q, p)‖ ≤ λmax(q).

Proof. To establish the first inequality, we apply Taylor’s theorem with the Lagrange form of the
remainder to obtain

F (q) = F (p) +∇F (p) · (q − p) +
1

2
(q − p)ᵀ∇2F (r1)(q − p),

for some r1 on the open line segment pq. By substituting the above expression for F (q) into the
definition of DF (q, p) we obtain

DF (q, p) = F (q)− F (p)−∇F (p) · (q − p) =
1

2
(q − p)ᵀ∇2F (r1)(q − p).

By basic linear algebra, we have

λmin(r1)‖q − p‖2 ≤ (q − p)ᵀ∇2F (r1)(q − p) ≤ λmax(r1)‖q − p‖2.

Therefore,
λmin(r1)

2
‖q − p‖2 ≤ DF (q, p) ≤ λmax(r1)

2
‖q − p‖2,

which establishes the first assertion.
For the second assertion, we recall from Lemma 6.2(iii) that ∇DF (q, p) = ∇F (q)−∇F (p). Let v

be any unit vector. By applying the mean value theorem to the function ψ(t) = vᵀ∇F (p+ t(q − p))
for 0 ≤ t ≤ 1, there exists a point r2 ∈ pq (which depends on v) such that vᵀ(∇F (q)−∇F (p)) =
vᵀ∇2F (r2)(q − p). Taking v to be the unit vector in the direction of q − p, and applying the
Cauchy-Schwarz inequality, we obtain

‖∇F (q)−∇F (p)‖ ≥ |vᵀ(∇F (q)−∇F (p))| = |vᵀ∇2F (r2)(q − p)| ≥ λmin(r2)‖q − p‖.

For the upper bound, we apply the same approach, but take v to be the unit vector in the direction
of ∇F (q)−∇F (p). There exists r3 ∈ pq such that

‖∇F (q)−∇F (p)‖ = |vᵀ(∇F (q)−∇F (p))| = |vᵀ∇2F (r3)(q−p)| ≤ ‖∇2F (r3)(q−p)‖ ≤ λmax(r3)‖q−p‖.

This establishes the second assertion.
The final assertion follows from the fact that ∇2DF (q, p) = ∇2F (q) (Lemma 6.2(iv)) and the

definition of the spectral norm.

22

With the help of this lemma, we can now present a proof of Lemma 5.1 from Section 5.1, which
relates the various measures of complexity for Bregman divergences.

Lemma 5.1. Given an open convex domain X ⊆ Rd:

(i) Any µ-similar Bregman divergence over X is 2µ-admissible.

(ii) Any µ-admissible Bregman divergence over X is directionally µ-admissible.

(iii) A Bregman divergence over X is µ-asymmetric if and only if it is directionally (1 + µ)-
admissible.

Proof. For each x ∈ X , let λmin(x) and λmax(x) denote the minimum and maximum eigenvalues
of ∇2F (x), respectively. We first show that for all x ∈ X , 2 ≤ λmin(x) and λmax(x) ≤ 2µ. We will
prove only the second inequality, since the first follows by a symmetrical argument. Suppose to the
contrary that there was a point x ∈ X such that λmax(x) > 2µ. By continuity and the fact that X
is convex and open, there exists a point q ∈ X distinct from x such that for any r on the open line
segment qx,

(q − x)ᵀ∇2F (r)(q − x) > 2µ‖q − x‖2. (1)

Specifically, we may take q to lie sufficiently close to x along x + v, where v is the eigenvector
associated with λmax(x). As in the proof of Lemma 6.3, we apply Taylor’s theorem with the Lagrange
form of the remainder to obtain

DF (q, x) = F (q)− F (x)−∇F (x) · (q − x)

=
1

2
(q − x)ᵀ∇2F (r)(q − x) =

(
1

t

)2 1

2
(r − x)ᵀ∇2F (r)(r − x).

By Eq. (1), we have DF (q, x) > µ‖q − x‖2. Therefore, DF is not µ-similar. This yields the desired
contradiction.

Because 2 ≤ λmin(x) ≤ λmax(x) ≤ 2µ for all x ∈ X , by Lemma 6.3, we have

‖q − p‖2 ≤ DF (q, p), ‖∇DF (q, p)‖ ≤ 2µ‖q − p‖, and ‖∇2DF (q, p)‖ ≤ 2µ,

which imply

‖∇DF (q, p)‖ ‖q − p‖ ≤ 2µDF (q, p) and ‖∇2DF (q, p)‖ ‖q − p‖2 ≤ 2µDF (q, p),

which together imply that D is 2µ-admissible, as desired.
To prove (ii), observe that by the Cauchy-Schwarz inequality ∇DF (q, p) · (q−p) ≤ ‖∇DF (q, p)‖ ·

‖q − p‖, and therefore, any divergence that satisfies the condition for µ-admissibility immediately
satisfies the condition for directional µ-admissibility.

To show (iii), consider any points p, q ∈ X . Recall the facts regarding the Bregman divergence
presented in Lemma 6.2. By combining observations (i) and (iii) from that lemma, we have
DF (q, p) +DF (p, q) = ∇DF (q, p) · (q− p). Observe that if D is directionally (1 +µ)-admissible, then

DF (q, p) +DF (p, q) = ∇DF (q, p) · (q − p) ≤ (1 + µ)DF (q, p),

which implies that DF (p, q) ≤ µ(DF (q, p), and hence D is µ-asymmetric. Conversely, if D is
µ-asymmetric, then

∇DF (q, p) · (q − p) = DF (q, p) +DF (p, q) ≤ DF (q, p) + µDF (q, p) = (1 + µ)DF (q, p),

implying that DF is directionally (1 + µ)-admissible. (Recall that directional admissibility requires
only that the gradient condition be satisfied.)

23

Next, we provide a proof of Lemma 5.2 from Section 5.2,

Lemma 5.2. Let D be a τ -admissible Bregman divergence and let 0 < ε ≤ 1. Consider any leaf
cell w of the (α, β)-AVD, where β ≥ 4τ2/ε. Then, for any q ∈ w and points p, p′ ∈ Bw

|D(q, p)−D(q, p′)|
D(q, p)

≤ ε.

Proof. Without loss of generality, we may assume that D(q, p) ≥ D(q, p′). By adding D(p, p′) to
the left side of Lemma 6.2(ii) and rearranging terms, we have

D(q, p)−D(q, p′) ≤ (D(q, p)−D(q, p′)) +D(p, p′)

= (D(p′, p) + (∇F (p′)−∇F (p)) · (q − p′)) +D(p, p′)

= (∇F (p′)−∇F (p)) · (q − p′)) + (D(p′, p) +D(p, p′)).

By Lemma 6.2(i) we have

D(q, p)−D(q, p′) ≤ (∇F (p′)−∇F (p)) · (q − p′) + (∇F (p′)−∇F (p)) · (p′ − p)
= (∇F (p′)−∇F (p)) · (q − p).

Let v be any unit vector. Applying the mean value theorem to the function ψ(t) = vᵀ∇F (p+
t(p′ − p)) for 0 ≤ t ≤ 1, implies that there exists a point r ∈ pp′ (which depends on v) such that
vᵀ(∇F (p′)−∇F (p)) = vᵀ∇2F (r)(p′ − p). Taking v to be the unit vector in the direction of q − p,
and applying the Cauchy-Schwarz inequality, we obtain

D(q, p)−D(q, p′) ≤ (∇2F (r)(p′ − p)) · (q − p) ≤ ‖∇2F (r)‖‖p′ − p‖‖q − p‖.

By Lemma 6.2(iv) and τ -admissibility, ‖∇2F (r)‖ = ‖∇2D(r, q)‖ ≤ τD(r, q)/‖r− q‖2, which implies

D(q, p)−D(q, p′) ≤ τD(r, q)

‖r − q‖2
‖p′ − p‖‖q − p‖. (2)

Since r lies on the segment between p′ and p, it follows that r ∈ Bw. Letting δ = diam(Bw), we have
max(‖p′− p‖, ‖r− p‖) ≤ δ and ‖r− q‖ ≥ βδ. By the triangle inequality, ‖q− p‖ ≤ ‖q− r‖+ ‖r− p‖.
Therefore,

‖q − p‖
‖r − q‖

≤ ‖q − r‖+ ‖r − p‖
‖r − q‖

= 1 +
‖r − p‖
‖r − q‖

≤ 1 +
1

β
,

and since clearly β ≥ 1,
‖p′ − p‖‖q − p‖
‖r − q‖2

≤ 1

β

(
1 +

1

β

)
≤ 2

β
. (3)

We would like to express the right-hand side of Eq. (2) in terms of p rather than r. By the
τ -admissibility of D and the fact that r, p ∈ Bw, we can apply Lemma 3.1(i) (with the distance
function fq(·) = D(·, q) and κ = β/τ) to obtain D(r, q) ≤ D(p, q)/(1 − τ/β). Combining Eq. (3)
with this, we obtain

D(q, p)−D(q, p′) ≤ 2τ

β
D(r, q) ≤ 2τ

β(1− τ/β)
D(p, q).

In Lemma 5.1(iii) we showed that any (1 + µ)-admissible Bregman divergence is µ-asymmetric, and
by setting µ = τ − 1 it follows that D(p, q) ≤ (τ − 1)D(q, p). Putting this all together, we obtain

D(q, p)−D(q, p′) ≤ 2τ(τ − 1)

β(1− τ/β)
D(q, p).

All that remains is to set β sufficiently large to obtain the desired result. Since τ ≥ 1 and ε ≤ 1, it
is easily verified that setting β = 4τ2/ε suffices to produce the desired conclusion.

24

Lemma 6.4. Consider a Bregman divergence DF defined over an open, convex domain X . Given
any invertible affine transformation A, let G = F ◦A−1, and let DG denote the associated Bregman
divergence over the domain Y = A(X). Then for any q, p ∈ X , DF (q, p) = DG(Aq,Ap).

Proof. By applying the multivariate form of the chain rule with respect to y,the gradient G is

∇G(y) = A−ᵀ∇F (A−1y),

where A−ᵀ is a shorthand for (A−1)ᵀ.
Let q′ = Aq and p′ = Ap. By definition of the Bregman divergence, we have

DG(q′, p′) = G(q′)−G(p′)−∇G(p′) · (q′ − p′)
= G(Aq)−G(Ap)−∇G(Ap) · (Aq −Ap)
= F (q)− F (p)− (A−ᵀ∇F (p)) · (A(q − p)).

Using the facts that u · v = uᵀv and (uv)ᵀ = vᵀuᵀ, (A−ᵀ∇F (p)) · (A(q − p)) is equal to

= (A−ᵀ∇F (p))ᵀ(A(q − p))
= ∇F (p)ᵀ(A−ᵀ)ᵀA(q − p)
= ∇F (p)ᵀA−1A(q − p) = ∇F (p)ᵀ(q − p)
= ∇F (p) · (q − p).

Therefore, DG(q′, p′) = F (q)− F (p)−∇F (p) · (q − p) = DF (q, p), as desired.

References

[1] A. Abdullah, J. Moeller, and S. Venkatasubramanian. Approximate Bregman near neighbors in
sublinear time: Beyond the triangle inequality. In Proc. 28th Annu. Sympos. Comput. Geom.,
pages 31–40, 2012.

[2] A. Abdullah and S. Venkatasubramanian. A directed isoperimetric inequality with application
to Bregman near neighbor lower bounds. In Proc. 47th Annu. ACM Sympos. Theory Comput.,
pages 509–518, 2015.

[3] M. R. Ackermann and J. Blömer. Coresets and approximate clustering for Bregman divergences.
In Proc. 20th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 1088–1097, 2009.

[4] I. P. Androulakis, C. D. Maranas, and C. A. Floudas. αBB: A global optimization method for
general constrained nonconvex problems. J. Global Optim., 7:337–363, 1995.

[5] S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal ε-kernel construction and related
problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1–15, 2017.

[6] S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership. In
Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270–288, 2017.

[7] S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate convex intersection detection with
applications to width and Minkowski sums. In Proc. 26th Annu. European Sympos. Algorithms,
pages 3:1–14, 2018.

25

[8] S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries.
SIAM J. Comput., 47(1):1–51, 2018.

[9] S. Arya, T. Malamatos, and D. M. Mount. The effect of corners on the complexity of approximate
range searching. Discrete Comput. Geom., 41:398–443, 2009.

[10] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate nearest
neighbor searching. J. Assoc. Comput. Mach., 57:1–54, 2009.

[11] S. Arya and D. M. Mount. Approximate range searching. Comput. Geom. Theory Appl.,
17:135–163, 2000.

[12] F. Aurenhammer. Power diagrams: Properties, algorithms and applications. SIAM J. Comput.,
16:78–96, 1987.

[13] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman divergences. J.
of Machine Learning Research, 6:1705–1749, 2005.

[14] D. P. Bertsekas. Convexification procedures and decomposition methods for nonconvex opti-
mization problems 1. J. Optim. Theory Appl., 29:169–197, 1979.

[15] J.-D. Boissonnat and M. Karavelas. On the combinatorial complexity of Euclidean Voronoi
cells and convex hulls of d-dimensional spheres. In Proc. 14th Annu. ACM-SIAM Sympos.
Discrete Algorithms, pages 305–312, 2003.

[16] J.-D. Boissonnat, F. Nielsen, and R. Nock. Bregman Voronoi diagrams. Discrete Comput.
Geom., 44:281–307, 2010.

[17] L. Cayton. Fast nearest neighbor retrieval for Bregman divergences. In Proc. 25th Internat.
Conf. Machine Learning, pages 112–119, 2008.

[18] T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational geometry.
J. Comput. Geom., 9(2):3–20, 2017.

[19] L. P. Chew and R. L. D. III. Voronoi diagrams based on convex distance functions. In Proc.
First Annu. Sympos. Comput. Geom., pages 235–244, 1985.

[20] K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput., 17(4):830–
847, 1988.

[21] K. L. Clarkson. Building triangulations using ε-nets. In Proc. 38th Annu. ACM Sympos. Theory
Comput., pages 326–335, 2006.

[22] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, 3rd edition, 2010.

[23] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J. Approx.
Theory, 10(3):227–236, 1974.

[24] S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd Annu.
IEEE Sympos. Found. Comput. Sci., pages 94–103, 2001.

[25] S. Har-Peled and N. Kumar. Approximating minimization diagrams and generalized proximity
search. SIAM J. Comput., 44:944–974, 2015.

26

[26] F. Itakura and S. Saito. Analysis synthesis telephony based on the maximum likelihood method.
In Proc. Sixth Internat. Congress Accoustics, volume 17, pages C17–C20, 1968.

[27] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Stat., 22(1):79–86,
1951.

[28] F. Nielsen, P. Piro, and M. Barlaud. Bregman vantage point trees for efficient nearest neighbor
queries. 2009 IEEE Internat. Conf. on Multimedia and Expo, pages 878–881, 2009.

[29] M. Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discrete
Comput. Geom., 12:327–345, 1994.

[30] S. Si, D. Tao, and B. Geng. Bregman divergence-based regularization for transfer subspace
learning. IEEE Trans. Knowl. and Data Eng., 22(7):929–942, 2010.

27

	Introduction
	Methods

	Preliminaries
	Notation and Assumptions
	Minimization Diagrams and Vertical Ray Shooting

	Convexification
	A Short Example
	Admissible Distance Functions
	Convexification and Ray Shooting

	Answering ANN Queries for Scaling Distance Functions
	AVD and Separation Properties
	Admissibility for Scaling Distances
	ANN Data Structure for Scaling Functions

	Answering ANN Queries for Bregman Divergences
	Measures of Bregman Complexity
	ANN Data Structure for Bregman Divergences

	Deferred Technical Details
	On Vertical Ray Shooting
	On Admissibility and Scaling Functions
	On Bregman Divergences

	References

