Shadoks Approach to

 Minimum Partition into Plane Subgraphs
CG:SHOP Competition

■ Part of SoCG (International Symposium on Computational Geometry)

- 4th year, started in 2018

■ Hard geometric optimization problems

- Different problem each year

■ ~ 200 instances given
■ ~ 3 months to compute solutions

- Send our solutions (not the code)
- Score based on the quality of the solutions
- Top teams invited to publish in SoCG proceedings and ACM Journal of Experimental Algorithmics
■ This talk is about the 2022 competition, but let's look at previous years...

CG:SHOP 2019

Minimum (or Maximum) Area Polygon:

- Input: A set of points $S \subset \mathbb{R}^{2}$
- Output: A simple polygon with vertex set S

■ Goal: Minimize (or maximize) the area

- Related to Euclidean TSP

■ Two categories: minimization, maximization

- We got 2nd place

■ Techniques: greedy and local search

CG:SHOP 2020

Minimum Convex Partition:

11 convex regions

Coordinated Motion Planning:

- Input: Sets $S, T \subset \mathbb{Z}^{2}$ of start and target locations for n robots and possibly a set of obstacles
- Output: A sequence of movements for all robots from start to target avoiding collisions
- Goal: Minimize the total time (makespan) or the total number of movements (energy)
- 1st place in makespan category, 3rd place in energy category
- Used storage network and conflict optimizer

Target:

CG:SHOP 2022

Partition Into Plane Graphs:

- Input: A graph G embedded in the plane with straight edges
- Output: A partition of G into plane graphs
- Goal: Minimize the number of partitions (colors)
- We won 1st place
- Best solution among all teams to every instance

Reduction to Vertex Coloring

- Each segment becomes a vertex
- Two segments that "cross" define an edge

Instances

- 225 instances

■ From 2518 to 74166 segments

- Based on random points or polygons
- Random points: density $\sim 40 \%$
- Polygons: density $\sim 15 \%$

Random points instance: 4641 segments

Strategy

■ Find initial solutions:

- Greedy
. DSATUR
- Convex hull area
- Squeaky wheel
- Improve existing solutions
- Conflict optimizer (technique from previous year)

Polygon instance: 5013 segments

Greedy

- Order of the n segments is very important Optimal order always exists!
- May not be optimal even for 2 colors!

Greedy

Introduction

- Order of the n segments is very important Optimal order always exists!
- May not be optimal even for 2 colors!

Greedy

Introduction

- Order of the n segments is very important Optimal order always exists!
- May not be optimal even for 2 colors!

Greedy coloring: [MIT76]

- For each segment s :
- color $[s] \leftarrow$ first valid color

Greedy

Introduction

Competition

- Order of the n segments is very important Optimal order always exists!
- May not be optimal even for 2 colors!

Greedy

Introduction

- Order of the n segments is very important Optimal order always exists!
- May not be optimal even for 2 colors!

Angle

- Sorting by high to low degree is common Slow since all pairs of segments are tested
- Sorting by angle works well for the challenge Complexity still $O\left(n^{2}\right)$, but fast in practice

■ 5.5 seconds for 74166 segments and 537 colors

- Since it is fast, we can run many times, for example with random starting angles
■ 10 attempts take 55 seconds: 502 colors

3 colors produced by angle

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
- Number of different colors crossed
- Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O\left(n^{2} k\right)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
- Number of different colors crossed
- Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O\left(n^{2} k\right)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Greedy coloring with a dynamic choice of

Initial

 which segment to color next- Color the segment that maximizes:
- Number of different colors crossed
- Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O\left(n^{2} k\right)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
- Number of different colors crossed
- Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O\left(n^{2} k\right)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Greedy coloring with a dynamic choice of

Initial

 which segment to color next- Color the segment that maximizes:
- Number of different colors crossed
- Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O\left(n^{2} k\right)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Greedy coloring with a dynamic choice of

Initial

 which segment to color next- Color the segment that maximizes:
- Number of different colors crossed
- Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O\left(n^{2} k\right)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Greedy coloring with a dynamic choice of

Initial

 which segment to color next- Color the segment that maximizes:
- Number of different colors crossed
- Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O\left(n^{2} k\right)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
- Number of different colors crossed
- Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O\left(n^{2} k\right)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Uses DSatur ordering to color segments

■ Does not assign the first valid color
■ Instead, colors asegment s with the valid color C that minimizes

$$
\operatorname{area}(\operatorname{hull}(C \cup\{s\}))-\operatorname{area}(\operatorname{hull}(C))
$$

- Uses the geometry of the instances

■ Same complexity as DSATUR and barely slower

- 97 seconds for 74166 segments and 488 colors

■ Uses DSatur ordering to color segments
■ Does not assign the first valid color

- Instead, colors asegment s with the valid color C that minimizes

$$
\operatorname{area}(\operatorname{hull}(C \cup\{s\}))-\operatorname{area}(\operatorname{hull}(C))
$$

- Uses the geometry of the instances

■ Same complexity as DSATUR and barely slower

- 97 seconds for 74166 segments and 488 colors

- Uses DSatur ordering to color segments

■ Does not assign the first valid color
■ Instead, colors asegment s with the valid color C that minimizes

$$
\operatorname{area}(\operatorname{hull}(C \cup\{s\}))-\operatorname{area}(\operatorname{hull}(C))
$$

- Uses the geometry of the instances

■ Same complexity as DSATUR and barely slower

- 97 seconds for 74166 segments and 488 colors

- Uses DSatur ordering to color segments

■ Does not assign the first valid color
■ Instead, colors asegment s with the valid color C that minimizes

$$
\operatorname{area}(\operatorname{hull}(C \cup\{s\}))-\operatorname{area}(\operatorname{hull}(C))
$$

- Uses the geometry of the instances

■ Same complexity as DSATUR and barely slower

- 97 seconds for 74166 segments and 488 colors

■ Uses DSatur ordering to color segments

Initial

■ Does not assign the first valid color

- Instead, colors asegment s with the valid color C that minimizes

$$
\operatorname{area}(\operatorname{hull}(C \cup\{s\}))-\operatorname{area}(\operatorname{hull}(C))
$$

- Uses the geometry of the instances

■ Same complexity as DSATUR and barely slower
■ 97 seconds for 74166 segments and 488 colors

- Uses DSatur ordering to color segments

Initial

■ Does not assign the first valid color

- Instead, colors asegment s with the valid color C that minimizes

$$
\operatorname{area}(\operatorname{hull}(C \cup\{s\}))-\operatorname{area}(\operatorname{hull}(C))
$$

- Uses the geometry of the instances

■ Same complexity as DSATUR and barely slower

- 97 seconds for 74166 segments and 488 colors

- Uses DSatur ordering to color segments

■ Does not assign the first valid color
■ Instead, colors asegment s with the valid color C that minimizes

$$
\operatorname{area}(\operatorname{hull}(C \cup\{s\}))-\operatorname{area}(\operatorname{hull}(C))
$$

- Uses the geometry of the instances

■ Same complexity as DSATUR and barely slower

- 97 seconds for 74166 segments and 488 colors

- Uses DSatur ordering to color segments

■ Does not assign the first valid color

- Instead, colors asegment s with the valid color C that minimizes area(hull($C \cup\{s\})$) - area(hull $(C))$
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- 97 seconds for 74166 segments and 488 colors

- Uses DSatur ordering to color segments

Initial

■ Does not assign the first valid color

- Instead, colors asegment s with the valid color C that minimizes

$$
\operatorname{area}(\operatorname{hull}(C \cup\{s\}))-\operatorname{area}(\operatorname{hull}(C))
$$

- Uses the geometry of the instances

■ Same complexity as DSATUR and barely slower

- 97 seconds for 74166 segments and 488 colors

■ Uses DSatur ordering to color segments
■ Does not assign the first valid color
■ Instead, colors asegment s with the valid color C that minimizes

$$
\operatorname{area}(\operatorname{hull}(C \cup\{s\}))-\operatorname{area}(\operatorname{hull}(C))
$$

- Uses the geometry of the instances

■ Same complexity as DSATUR and barely slower

- 97 seconds for 74166 segments and 488 colors

■ Uses DSatur ordering to color segments
■ Does not assign the first valid color
■ Instead, colors asegment s with the valid color C that minimizes

$$
\operatorname{area}(\operatorname{hull}(C \cup\{s\}))-\operatorname{area}(\operatorname{hull}(C))
$$

- Uses the geometry of the instances

■ Same complexity as DSATUR and barely slower

- 97 seconds for 74166 segments and 488 colors

- Uses DSatur ordering to color segments

■ Does not assign the first valid color

- Instead, colors asegment s with the valid color C that minimizes

$$
\operatorname{area}(\operatorname{hull}(C \cup\{s\}))-\operatorname{area}(\operatorname{hull}(C))
$$

- Uses the geometry of the instances

■ Same complexity as DSATUR and barely slower

- 97 seconds for 74166 segments and 488 colors

Squeaky Wheel Paradigm

Squeaky Wheel: [JoDa98]

- Solve the problem using a certain order
- Find elements that were not solved well
- Move these elements earlier in the ordering
- In the end, return the best solution found (not the last)
- One way to do apply it to coloring: Move all elements with last color to the beginning of the list and repeat: Never increases the number of colors used
- We did something different though

"The squeaky wheel gets the grease."

Bad (the name of the heuristic)

Bad:

- Good and Bad are two sets of segments always ordered by angle
- Initially, all segments are Good

■ Greedy color Bad and then Good

- Move segments with last color to Bad and repeat
- Better than different starting random angles
- Needs several (~ 50) repetitions

■ Number of colors may increase because Bad is sorted

Conflict Optimizer [CFGGLL]

- Goal: modify a given coloring to reduce the number of colors from k to $k-1$
- Partial coloring: a valid coloring of a subset of the segments

Algorithm:

- Uncolor all segments of color c
- While there is an uncolored segment s
- Color s minimizing the "number" of conflicts
- Uncolor the conflicting segments

Conflict Optimizer [CFGGLL]

- Goal: modify a given coloring to reduce the number of colors from k to $k-1$
- Partial coloring: a valid coloring of a subset of the segments

Algorithm:

- Uncolor all segments of color c
- While there is an uncolored segment s
- Color s minimizing the "number" of conflicts
- Uncolor the conflicting segments

Conflict Optimizer [CFGGLL]

- Goal: modify a given coloring to reduce the number of colors from k to $k-1$
- Partial coloring: a valid coloring of a subset of the segments

Algorithm:

- Uncolor all segments of color c
- While there is an uncolored segment s
- Color s minimizing the "number" of conflicts
- Uncolor the conflicting segments

Conflict Optimizer [CFGGLL]

- Goal: modify a given coloring to reduce the number of colors from k to $k-1$
- Partial coloring: a valid coloring of a subset of the segments

Algorithm:

- Uncolor all segments of color c
- While there is an uncolored segment s
- Color s minimizing the "number" of conflicts
- Uncolor the conflicting segments

Conflict Optimizer Details

Initial

- Uncolored segments are in a queue

■ Let $q(s)$ be the number of times a segment s is uncolored

- weight $(s)=1+q(s)^{p}$, where $p=1.2$ is the default
- Minimize sum of weights of conflicting segments

Parameter analysis for p on an instance with 13806 segments

Conflict Optimizer Improvements

1 Apply Gaussian noise of variance $\sigma=.15$ to weight (s)
2 Find a large clique and set the weight of its segments to ∞
3 Iteratively remove segments of degree at most $k-2$ and color them later
4 Perform a bounded depth first search when coloring

Parameter analysis for σ on an instance with 13806 segments

Introduction Competition Problems	instance	density	Greedy	Angle	Bad	DSatur	DSHull	Best	Clique
Instances	rsqrpecn8051	41\%	342	205	203	213	201	175	173
Stareay	vispecn13806	19\%	427	308	300	289	283	218	177
Greedy	rsqrp14364	50\%	294	139	139	165	157	136	134
Angle Dsatur	vispecn19370	13\%	370	285	278	265	248	192	169
dsaur	visp26405	7\%	154	101	97	94	92	81	78
Squeaky Wheel Bad	visp31334	5\%	152	90	88	99	98	81	77
Optimizer	visp38574	14\%	287	148	146	168	168	133	118
${ }_{\text {confict }}^{\text {Cotals }}$	sqrpecn45700	47\%	952	504	500	562	522	462	460
Imporenents	reecn51526	24\%	642	361	359	388	360	310	308
Results	vispecn58391	12\%	789	607	594	499	494	367	305
Colores	vispecn65831	12\%	916	647	637	578	564	439	357
Cliques	sqrp72075	47\%	609	280	280	363	337	269	264

Scores

- 225 instances
- Each instance gets a score between 0 and 1, total score is the sum

■ Starting from a score of 1 , we lose 5% of the score for each 1% more colors compared to the best submitted solution
■ We achieved a perfect 225 score

How much CPU core time (per instance) we need to win?

Cliques

Initial

Greedy
Angle
DSatur
DSatHull

- We also worked on finding large cliques
- Useful as lower bounds and to improve algorithms by fixing the colors of the clique segments
- Used mixed integer programming, simulated annealing, branch and bound...

Clique with 177 segments out of 13806

Bibliography

[Mit76] Mitchem, John. On various algorithms for estimating the chromatic number of a graph. The Computer Journal, 19.2, 182-183, 1976.
[Bré79] Brélaz, Daniel. New methods to color the vertices of a graph. Communications of the ACM, 22.4, 251-256, 1979.
[JoDa98] Joslin, David E., and David P. Clements. Squeaky Wheel Optimization. AAAI/IAAI, 1998.
[CFGGLL] Shadoks Approach to Low-Makespan Coordinated Motion Planning Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, and Luc Libralesso; CG:SHOP 2021 special issue of ACM Journal of Experimental Algorithmics, to appear.

Thank You!

Introduction

Initial

Greedy

Art by Mário Silésio

