Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatur DSatur DSattrull Squeaky Wheel Bad

Optimizer Conflict Details Improvements

Results Colors Scores Cliques Bibliography Thanks

Shadoks Approach to Minimum Partition into Plane Subgraphs

Loïc Crombez – LIMOS, Université Clermont Auvergne
 Guilherme D. da Fonseca – LIS, Aix-Marseille Université
 Yan Gerard – LIMOS, Université Clermont Auvergne
 Aldo Gonzalez-Lorenzo – LIS, Aix-Marseille Université

CG:SHOP 2022

CG:SHOP Competition

Introduction

- Competition Problems
- Reduction
- Instances
- Strategy
- Initial Greedy Angle DSatur
- DSatHull Squeaky Wheel
- Bad
- Optimizer Conflict Detaile Improvements
- Results Colors Scores Cliques Bibliography
- Thanks

- Part of SoCG (International Symposium on Computational Geometry)
- 4th year, started in 2018
- Hard geometric optimization problems
- Different problem each year
- ~ 200 instances given
- ~ 3 months to compute solutions
- Send our solutions (not the code)
- Score based on the guality of the solutions
- Top teams invited to publish in SoCG proceedings and ACM Journal of Experimental Algorithmics
- This talk is about the 2022 competition, but let's look at previous years...

Introduction Competition Problems Reduction

- Instances Strategy
- Initial
- Greedy
- DSatur
- DSatHull
- Squeaky Wheel Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

Minimum (or Maximum) Area Polygon:

- \blacksquare Input: A set of points $S \subset \mathbb{R}^2$
- Goal: Minimize (or maximize) the area
- Related to Euclidean TSP
- Two categories: minimization, maximization
- We got 2nd place
- Techniques: greedy and local search

Introduction Competition Problems

Reduction Instances

- Strategy
- Initial
- Greedy
- Angle DSatur
- DSatur DSatHull Squeaky Wheel
- Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

Minimum Convex Partition:

- Input: A set of points $S \subset \mathbb{R}^2$
- Output: A simple partition of the convex hull of S into convex regions with vertex set S
- Goal: Minimize the number of regions
- We got 4th place
- Used Mixed Integer Programming

11 convex regions

Introduction Competition Problems

Reduction

- Instances Strategy
- Initial
- Greedy
- Angle
- DSatur
- DSatHull Squeaky Wheel Bad
- Optimizer Conflict Details
- Results Colors Scores
- Cliques Bibliography Thanks

Coordinated Motion Planning:

- Input: Sets $S, T \subset \mathbb{Z}^2$ of start and target locations for n robots and possibly a set of obstacles
- Output: A sequence of movements for all robots from start to target avoiding collisions
- Goal: Minimize the total time (makespan) or the total number of movements (energy)
- 1st place in makespan category, 3rd place in energy category
- Used storage network and conflict optimizer

Target:

Introduction Competition Problems Reduction

- Instances
- Strategy
- Initial Greedy
- Angle
- DSatur DSatHull Squeaky Wheel
- Bad Optimizer Conflict
- Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

Partition Into Plane Graphs:

- Input: A graph G embedded in the plane with straight edges
- Output: A partition of G into plane graphs
- Goal: Minimize the number of partitions (colors)
- We won 1st place
- Best solution among all teams to every instance

Reduction to Vertex Coloring

Competition Problems Reduction Instances Strategy Initial Greedy

Introduction

- Angle DSatur DSatHull Squeaky Wheel Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Each segment becomes a vertex
- Two segments that "cross" define an edge

Instances

- Introduction Competition Problems Reduction Instances Strategy
- Greedy Angle DSatur DSatHull Squeaky Wheel Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- 225 instances
- From 2518 to 74166 segments
- Based on random points or polygons
 - \blacksquare Random points: density $\sim 40\%$
 - \blacksquare Polygons: density $\sim 15\%$
- Number of colors from 38 to 650
- Impossible to see the colorings

Random points instance: 4641 segments

Strategy

Introduction Competition Problems Reduction Instances Strategy

Initial Greedy Angle DSatur DSatHull Squeaky Wheel Bad

Optimizer Conflict Details Improvements

Results Colors Scores Cliques Bibliography Thanks

- Find initial solutions:
 - Greedy
 - DSATUR
 - Convex hull area
 - Squeaky wheel
- Improve existing solutions
 - Conflict optimizer (technique from previous year)

Polygon instance: 5013 segments

Introduction Competition Problems Reduction Instances Strategy

Initial

- Greedy Angle
- DSatur DSatHull Squeaky Wheel
- Squeaky Wh Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- For each segment *s*:
 - $\operatorname{color}[s] \leftarrow \operatorname{first} \operatorname{valid} \operatorname{color}$

- Order of the n segments is very important Optimal order always exists!
- May not be optimal even for 2 colors!

Introduction Competition Problems Reduction Instances Strategy

Initial

- Greedy Angle DSatur
- DSatHull Squeaky Wheel
- Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- For each segment *s*:
 - $\operatorname{color}[s] \leftarrow \operatorname{first} \operatorname{valid} \operatorname{color}$

- Order of the n segments is very important Optimal order always exists!
- May not be optimal even for 2 colors!

Introduction Competition Problems Reduction Instances Strategy

Initial

- Greedy Angle
- DSatur DSatHull Squeaky Wheel
- Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- For each segment *s*:
 - $\operatorname{color}[s] \leftarrow \operatorname{first} \operatorname{valid} \operatorname{color}$

- Order of the n segments is very important Optimal order always exists!
- May not be optimal even for 2 colors!

Introduction Competition Problems Reduction Instances Strategy

Initial

- Greedy Angle
- DSatur DSatHull Squeaky Wheel
- Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- For each segment *s*:
 - $\operatorname{color}[s] \leftarrow \operatorname{first} \operatorname{valid} \operatorname{color}$

- Order of the n segments is very important Optimal order always exists!
- May not be optimal even for 2 colors!

Introduction Competition Problems Reduction Instances Strategy

Initial

- Greedy Angle
- DSatur DSatHull Squeaky Wheel
- Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- For each segment *s*:
 - $\operatorname{color}[s] \leftarrow \operatorname{first} \operatorname{valid} \operatorname{color}$

- Order of the n segments is very important Optimal order always exists!
- May not be optimal even for 2 colors!

Angle

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy
- Angle DSatur DSatHull Squeaky Wheel Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Sorting by high to low degree is common Slow since all pairs of segments are tested
- Sorting by angle works well for the challenge Complexity still $O(n^2)$, but fast in practice
- 5.5 seconds for 74166 segments and 537 colors
- Since it is fast, we can run many times, for example with random starting angles
- 10 attempts take 55 seconds: 502 colors

3 colors produced by angle

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatu DSatu DSatu DSatu Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
 - Number of different colors crossed
 - Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O(n^2k)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatu DSatu DSatu DSatu Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
 - Number of different colors crossed
 - Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O(n^2k)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatu DSatu DSatu DSatu Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
 - Number of different colors crossed
 - Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O(n^2k)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatu DSatu DSatu DSatu Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
 - Number of different colors crossed
 - Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O(n^2k)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatu DSatu DSatu DSatu Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
 - Number of different colors crossed
 - Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O(n^2k)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatu DSatu DSatu DSatu Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
 - Number of different colors crossed
 - Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O(n^2k)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatu DSatu DSatu DSatu Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
 - Number of different colors crossed
 - Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O(n^2k)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatu DSatu DSatu DSatu Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Greedy coloring with a dynamic choice of which segment to color next
- Color the segment that maximizes:
 - Number of different colors crossed
 - Break ties by number of crossings
- Optimal for bipartite, cycles, and wheels
- Complexity increases to $O(n^2k)$ for k colors
- 90 seconds for 74166 segments and also got 502 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatur DSatur DSatur
- Squeaky Wheel Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors assignment s with the valid color C that minimizes $area(hull(C \cup \{s\})) area(hull(C))$
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- 97 seconds for 74166 segments and 488 colors

- Introduction Competition Problems Paduction Instances Strategy Initial Greedy Angle DSatur DSatHull Squeaky Wheel
- Bad
- Optimizer Conflict Detaile Improvements
- Results Colors Scores Cliques Bibliography
- Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors asegment s with the valid color C that minimizes $\operatorname{area}(\operatorname{hull}(C \cup \{s\})) - \operatorname{area}(\operatorname{hull}(C))$
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- \blacksquare 97 seconds for 74166 segments and 488 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatur DSatur DSatur
- Squeaky Wheel Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors asegment s with the valid color C that minimizes area(hull(C ∪ {s})) area(hull(C))
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- 97 seconds for 74166 segments and 488 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatur DSatHull Squeaky Wheel
- Bad
- Optimizer Conflict Detaile Improvements
- Results Colors Scores Cliques Bibliography
- Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors asegment s with the valid color C that minimizes $\operatorname{area}(\operatorname{hull}(C \cup \{s\})) - \operatorname{area}(\operatorname{hull}(C))$
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- \blacksquare 97 seconds for 74166 segments and 488 colors

- Introduction Competition Problems Paduction Instances Strategy Initial Greedy Angle DSatur DSatHull Squeaky Wheel
- Bad
- Optimizer Conflict Detaile Improvements
- Results Colors Scores Cliques Bibliography
- Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors asegment s with the valid color C that minimizes $\operatorname{area}(\operatorname{hull}(C \cup \{s\})) - \operatorname{area}(\operatorname{hull}(C))$
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- \blacksquare 97 seconds for 74166 segments and 488 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatur DSatur DSatur
- Squeaky Wheel Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors asegment s with the valid color C that minimizes area(hull(C ∪ {s})) area(hull(C))
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- 97 seconds for 74166 segments and 488 colors

- Introduction
 Competition
 Problems
 Reduction
 Instances
 Strategy
 Initial
 Greedy
 Angle
 DSatur
 DSatur
 DSatual
 Converted
 DSatur
 Converted
 Converted
 DSatur
 Converted
 Converte
- Squeaky Wheel Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors asegment s with the valid color C that minimizes area(hull(C ∪ {s})) area(hull(C))
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- 97 seconds for 74166 segments and 488 colors

- Introduction
 Competition
 Problems
 Reduction
 Instances
 Strategy
 Initial
 Greedy
 Angle
 DSatur
 DSatur
 DSatur
- Squeaky Wheel Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors asegment s with the valid color C that minimizes area(hull(C ∪ {s})) area(hull(C))
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- 97 seconds for 74166 segments and 488 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatur DSatur DSatur
- Squeaky Wh Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors asegment s with the valid color C that minimizes area(hull(C ∪ {s})) area(hull(C))
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- 97 seconds for 74166 segments and 488 colors

- Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatur DSatur DSatur
- Squeaky Wh Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors asegment s with the valid color C that minimizes area(hull(C ∪ {s})) area(hull(C))
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- 97 seconds for 74166 segments and 488 colors

- Introduction
 Competition
 Problems
 Reduction
 Instances
 Strategy
 Initial
 Greedy
 Angle
 DSatur
 DSatur
 DSatur
- Squeaky Wheel Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors asegment s with the valid color C that minimizes area(hull(C ∪ {s})) area(hull(C))
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- 97 seconds for 74166 segments and 488 colors

- Introduction
 Competition
 Problems
 Reduction
 Instances
 Strategy
 Initial
 Greedy
 Angle
 DSatur
 DSatur
 DSatur
- Squeaky Wheel Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

- Uses DSatur ordering to color segments
- Does not assign the first valid color
- Instead, colors asegment s with the valid color C that minimizes area(hull(C ∪ {s})) area(hull(C))
- Uses the geometry of the instances
- Same complexity as DSATUR and barely slower
- 97 seconds for 74166 segments and 488 colors

Squeaky Wheel Paradigm

Introduction Competition Problems Reduction Instances Strategy Initial

- Greedy Angle DSatur
- DSatHull Squeaky Wheel
- Bad
- Optimizer Conflict Details
- Improvements Results Colors
- Scores Cliques Bibliography
- Thanks

Squeaky Wheel: [JoDa98]

- Solve the problem using a certain order
- Find elements that were not solved well
- Move these elements earlier in the ordering
- In the end, return the best solution found (not the last)
- One way to do apply it to coloring: Move all elements with last color to the beginning of the list and repeat: Never increases the number of colors used
- We did something different though

"The squeaky wheel gets the grease."

Bad (the name of the heuristic)

Introduction Competition Problems Reduction Instances Strategy Initial

- Greedy Angle DSatur DSatHull Squeaky Wheel
- Bad Bad
- Optimizer Conflict Details
- Results Colors Scores Cliques Bibliography Thanks

Bad:

- *Good* and *Bad* are two sets of segments always ordered by angle
 - Initially, all segments are *Good*
 - \blacksquare Greedy color Bad and then Good
 - \blacksquare Move segments with last color to Bad and repeat
 - Better than different starting random angles
 - Needs several (~ 50) repetitions
 - Number of colors may increase because *Bad* is sorted

- Introduction Competition Problems Reduction Instances Strategy
- Initial Greedy Angle DSatur DSatHull Squeaky Wheel Bad

Optimizer

Conflict Details Improvements

Results Colors Scores Cliques Bibliography Thanks

- Goal: modify a given coloring to reduce the number of colors from *k* to *k* − 1
- Partial coloring: a valid coloring of a subset of the segments

- \blacksquare Uncolor all segments of color c
- \blacksquare While there is an uncolored segment s
- \blacksquare Color s minimizing the "number" of conflicts
- Uncolor the conflicting segments

- Introduction Competition Problems Reduction Instances Strategy
- Initial Greedy Angle DSatur DSatHull Squeaky Wheel Bad

Optimizer

- Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Goal: modify a given coloring to reduce the number of colors from *k* to *k* − 1
- Partial coloring: a valid coloring of a subset of the segments

- \blacksquare Uncolor all segments of color c
- \blacksquare While there is an uncolored segment s
- \blacksquare Color s minimizing the "number" of conflicts
- Uncolor the conflicting segments

- Introduction Competition Problems Reduction Instances Strategy
- Initial Greedy Angle DSatur DSatHull Squeaky Wheel Bad

Optimizer

- Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- Goal: modify a given coloring to reduce the number of colors from *k* to *k* − 1
- Partial coloring: a valid coloring of a subset of the segments

- \blacksquare Uncolor all segments of color c
- \blacksquare While there is an uncolored segment s
- \blacksquare Color s minimizing the "number" of conflicts
- Uncolor the conflicting segments

- Introduction Competition Problems Reduction Instances Strategy
- Initial Greedy Angle DSatur DSatHull Squeaky Wheel Bad

Optimizer

Conflict Details Improvements

Results Colors Scores Cliques Bibliography Thanks

- Goal: modify a given coloring to reduce the number of colors from *k* to *k* − 1
- Partial coloring: a valid coloring of a subset of the segments

- \blacksquare Uncolor all segments of color c
- \blacksquare While there is an uncolored segment s
- \blacksquare Color s minimizing the "number" of conflicts
- Uncolor the conflicting segments

Conflict Optimizer Details

- Introduction Competition Problems Reduction Instances Strategy
- Initial Greedy Angle DSatur DSatHull Squeaky Wheel Bad
- Optimizer Conflict Details Improvements Results
- Colors Scores Cliques Bibliography
- Thanks

- Uncolored segments are in a queue
- \blacksquare Let q(s) be the number of times a segment s is uncolored
- $weight(s) = 1 + q(s)^p$, where p = 1.2 is the default
- Minimize sum of weights of conflicting segments

Conflict Optimizer Improvements

- **1** Apply Gaussian noise of variance $\sigma = .15$ to weight(s)
- 2 Find a large clique and set the weight of its segments to ∞
- 3 Iteratively remove segments of degree at most k-2 and color them later
- 4 Perform a bounded depth first search when coloring

Parameter analysis for σ on an instance with 13806 segments

Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatur DSatHull Squeaky Wheel

Introduction

Optimizer Conflict Details Improvements

Bad

Results Colors Scores Cliques Bibliography Thanks

Some Numbers of Colors

Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle

DSatur
DSatHull
Squeaky Whe
Bad
Optimizer
Conflict
Detaile
Details

Improvements Results

Colors Scores Cliques Bibliography Thanks

instance	density	Greedy	Angle	Bad	DSatur	DSHull	Best	Clique
rsqrpecn8051	41%	342	205	203	213	201	175	173
vispecn13806	19%	427	308	300	289	283	218	177
rsqrp14364	50%	294	139	139	165	157	136	134
vispecn19370	13%	370	285	278	265	248	192	169
visp26405	7%	154	101	97	94	92	81	78
visp31334	5%	152	90	88	99	98	81	77
visp38574	14%	287	148	146	168	168	133	118
sqrpecn45700	47%	952	504	500	562	522	462	460
reecn51526	24%	642	361	359	388	360	310	308
vispecn58391	12%	789	607	594	499	494	367	305
vispecn65831	12%	916	647	637	578	564	439	357
sqrp72075	47%	609	280	280	363	337	269	264

Scores

- Introduction Competition Problems Reduction Instances Strategy
- Initial Greedy Angle DSatur DSatHull Squeaky Wheel Bad
- Optimizer Conflict Details Improvements Results Colors
- Scores Cliques Bibliography Thanks

■ 225 instances

- \blacksquare Each instance gets a score between 0 and 1, total score is the sum
- \blacksquare Starting from a score of 1, we lose 5% of the score for each 1% more colors compared to the best submitted solution
- \blacksquare We achieved a perfect $225~{\rm score}$

Cliques

- Introduction Competition Problems Reduction Instances Strategy
- Initial Greedy Angle DSatur DSatHull Squeaky Wheel Bad
- Optimizer Conflict Details Improvements
- Results Colors Scores Cliques Bibliography Thanks

- We also worked on finding large cliques
- Useful as lower bounds and to improve algorithms by fixing the colors of the clique segments
- Used mixed integer programming, simulated annealing, branch and bound...

Clique with $177 \ {\rm segments} \ {\rm out} \ {\rm of} \ 13806$

Bibliography

Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatur

DSatHull Squeaky Wheel Bad

Optimizer Conflict Details Improvements Results

Colors Scores Cliques

Bibliography

Thanks

[Mit76] Mitchem, John. On various algorithms for estimating the chromatic number of a graph. *The Computer Journal*, 19.2, 182–183, 1976.

[Bré79] Brélaz, Daniel. New methods to color the vertices of a graph. *Communications of the ACM*, 22.4, 251–256, 1979.

[JoDa98] Joslin, David E., and David P. Clements. Squeaky Wheel Optimization. AAAI/IAAI, 1998.

[CFGGLL] Shadoks Approach to Low-Makespan Coordinated Motion Planning Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, and Luc Libralesso; CG:SHOP 2021 special issue of ACM Journal of Experimental Algorithmics, to appear.

Thank You!

Introduction Competition Problems Reduction Instances Strategy Initial Greedy Angle DSatur

DSatHull Squeaky Wheel Bad

Optimizer Conflict Details

Results Colors Scores Cliques Bibliography

Thanks

Art by Mário Silésio