
Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Shadoks Approach to
Minimum Partition into Plane Subgraphs

Löıc Crombez – LIMOS, Université Clermont Auvergne

Guilherme D. da Fonseca – LIS, Aix-Marseille Université

Yan Gerard – LIMOS, Université Clermont Auvergne

Aldo Gonzalez-Lorenzo – LIS, Aix-Marseille Université

CG:SHOP 2022

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

CG:SHOP Competition

Part of SoCG (International Symposium on Computational Geometry)
4th year, started in 2018
Hard geometric optimization problems
Different problem each year
∼ 200 instances given
∼ 3 months to compute solutions
Send our solutions (not the code)
Score based on the quality of the solutions
Top teams invited to publish in SoCG proceedings and
ACM Journal of Experimental Algorithmics
This talk is about the 2022 competition, but let’s look at previous years...

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

CG:SHOP 2019

Minimum (or Maximum) Area Polygon:

Input: A set of points S ⊂ R2

Output: A simple polygon with vertex
set S
Goal: Minimize (or maximize) the area

Related to Euclidean TSP
Two categories:
minimization, maximization
We got 2nd place
Techniques: greedy and local search

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

CG:SHOP 2020

Minimum Convex Partition:

Input: A set of points S ⊂ R2

Output: A simple partition of the convex
hull of S into convex regions with vertex
set S
Goal: Minimize the number of regions

We got 4th place
Used Mixed Integer Programming

11 convex regions

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

CG:SHOP 2021

Coordinated Motion Planning:

Input: Sets S, T ⊂ Z2 of start and target
locations for n robots and possibly a set of
obstacles
Output: A sequence of movements for all
robots from start to target avoiding collisions
Goal: Minimize the total time (makespan) or
the total number of movements (energy)

1st place in makespan category,
3rd place in energy category
Used storage network and conflict optimizer

Start:

Target:

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

CG:SHOP 2022

Partition Into Plane Graphs:

Input: A graph G embedded in the plane
with straight edges
Output: A partition of G into plane
graphs
Goal: Minimize the number of partitions
(colors)

We won 1st place
Best solution among all teams to every
instance

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Reduction to Vertex Coloring

Each segment becomes a vertex
Two segments that “cross” define an edge

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Instances

225 instances
From 2518 to 74166 segments
Based on random points or polygons

Random points: density ∼ 40%
Polygons: density ∼ 15%

Number of colors from 38 to 650
Impossible to see the colorings

Random points instance: 4641 segments

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Strategy

Find initial solutions:
Greedy
DSATUR
Convex hull area
Squeaky wheel

Improve existing solutions
Conflict optimizer
(technique from previous year)

Polygon instance: 5013 segments

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Greedy

Greedy coloring: [MIT76]

For each segment s:
color[s] ← first valid color

Order of the n segments is very important
Optimal order always exists!
May not be optimal even for 2 colors!

1

2

3

4

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Greedy

Greedy coloring: [MIT76]

For each segment s:
color[s] ← first valid color

Order of the n segments is very important
Optimal order always exists!
May not be optimal even for 2 colors!

1

2

3

4

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Greedy

Greedy coloring: [MIT76]

For each segment s:
color[s] ← first valid color

Order of the n segments is very important
Optimal order always exists!
May not be optimal even for 2 colors!

1

2

3

4

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Greedy

Greedy coloring: [MIT76]

For each segment s:
color[s] ← first valid color

Order of the n segments is very important
Optimal order always exists!
May not be optimal even for 2 colors!

1

2

3

4

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Greedy

Greedy coloring: [MIT76]

For each segment s:
color[s] ← first valid color

Order of the n segments is very important
Optimal order always exists!
May not be optimal even for 2 colors!

1

2

3

4

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Angle

Sorting by high to low degree is common
Slow since all pairs of segments are tested
Sorting by angle works well for the challenge
Complexity still O(n2), but fast in practice
5.5 seconds for 74166 segments and 537
colors
Since it is fast, we can run many times,
for example with random starting angles
10 attempts take 55 seconds: 502 colors

3 colors produced by angle

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatur [Bré79]

Greedy coloring with a dynamic choice of
which segment to color next
Color the segment that maximizes:

Number of different colors crossed
Break ties by number of crossings

Optimal for bipartite, cycles, and wheels
Complexity increases to O(n2k) for k colors
90 seconds for 74166 segments and also got
502 colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatur [Bré79]

Greedy coloring with a dynamic choice of
which segment to color next
Color the segment that maximizes:

Number of different colors crossed
Break ties by number of crossings

Optimal for bipartite, cycles, and wheels
Complexity increases to O(n2k) for k colors
90 seconds for 74166 segments and also got
502 colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatur [Bré79]

Greedy coloring with a dynamic choice of
which segment to color next
Color the segment that maximizes:

Number of different colors crossed
Break ties by number of crossings

Optimal for bipartite, cycles, and wheels
Complexity increases to O(n2k) for k colors
90 seconds for 74166 segments and also got
502 colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatur [Bré79]

Greedy coloring with a dynamic choice of
which segment to color next
Color the segment that maximizes:

Number of different colors crossed
Break ties by number of crossings

Optimal for bipartite, cycles, and wheels
Complexity increases to O(n2k) for k colors
90 seconds for 74166 segments and also got
502 colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatur [Bré79]

Greedy coloring with a dynamic choice of
which segment to color next
Color the segment that maximizes:

Number of different colors crossed
Break ties by number of crossings

Optimal for bipartite, cycles, and wheels
Complexity increases to O(n2k) for k colors
90 seconds for 74166 segments and also got
502 colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatur [Bré79]

Greedy coloring with a dynamic choice of
which segment to color next
Color the segment that maximizes:

Number of different colors crossed
Break ties by number of crossings

Optimal for bipartite, cycles, and wheels
Complexity increases to O(n2k) for k colors
90 seconds for 74166 segments and also got
502 colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatur [Bré79]

Greedy coloring with a dynamic choice of
which segment to color next
Color the segment that maximizes:

Number of different colors crossed
Break ties by number of crossings

Optimal for bipartite, cycles, and wheels
Complexity increases to O(n2k) for k colors
90 seconds for 74166 segments and also got
502 colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatur [Bré79]

Greedy coloring with a dynamic choice of
which segment to color next
Color the segment that maximizes:

Number of different colors crossed
Break ties by number of crossings

Optimal for bipartite, cycles, and wheels
Complexity increases to O(n2k) for k colors
90 seconds for 74166 segments and also got
502 colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

DSatHull

Uses DSatur ordering to color segments
Does not assign the first valid color
Instead, colors asegment s with the valid
color C that minimizes
area(hull(C ∪ {s}))− area(hull(C))
Uses the geometry of the instances
Same complexity as DSATUR and barely
slower
97 seconds for 74166 segments and 488
colors

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Squeaky Wheel Paradigm

Squeaky Wheel: [JoDa98]

Solve the problem using a certain order
Find elements that were not solved well
Move these elements earlier in the ordering
In the end, return the best solution found
(not the last)

One way to do apply it to coloring:
Move all elements with last color to the
beginning of the list and repeat:
Never increases the number of colors used
We did something different though

“The squeaky wheel gets
the grease.”

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Bad (the name of the heuristic)

Bad:

Good and Bad are two sets of segments always ordered by angle
Initially, all segments are Good
Greedy color Bad and then Good
Move segments with last color to Bad and repeat

Better than different starting random angles
Needs several (∼ 50) repetitions
Number of colors may increase because Bad is sorted

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Conflict Optimizer [CFGGLL]

Goal: modify a given coloring to reduce the
number of colors from k to k − 1
Partial coloring: a valid coloring of a subset
of the segments

Algorithm:

Uncolor all segments of color c
While there is an uncolored segment s
Color s minimizing the “number” of conflicts
Uncolor the conflicting segments

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Conflict Optimizer [CFGGLL]

Goal: modify a given coloring to reduce the
number of colors from k to k − 1
Partial coloring: a valid coloring of a subset
of the segments

Algorithm:

Uncolor all segments of color c
While there is an uncolored segment s
Color s minimizing the “number” of conflicts
Uncolor the conflicting segments

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Conflict Optimizer [CFGGLL]

Goal: modify a given coloring to reduce the
number of colors from k to k − 1
Partial coloring: a valid coloring of a subset
of the segments

Algorithm:

Uncolor all segments of color c
While there is an uncolored segment s
Color s minimizing the “number” of conflicts
Uncolor the conflicting segments

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Conflict Optimizer [CFGGLL]

Goal: modify a given coloring to reduce the
number of colors from k to k − 1
Partial coloring: a valid coloring of a subset
of the segments

Algorithm:

Uncolor all segments of color c
While there is an uncolored segment s
Color s minimizing the “number” of conflicts
Uncolor the conflicting segments

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Conflict Optimizer Details
Uncolored segments are in a queue
Let q(s) be the number of times a segment s is uncolored
weight(s) = 1 + q(s)p, where p = 1.2 is the default
Minimize sum of weights of conflicting segments

 220

 230

 240

 0 1 2 3 4 5

N
u
m

b
e
r

o
f

co
lo

rs

Running time (CPU hours)

p=0.5 p=1.0 p=1.5 p=2.0 p=3.0 p=5.0

Parameter analysis for p on an instance with 13806 segments

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Conflict Optimizer Improvements
1 Apply Gaussian noise of variance σ = .15 to weight(s)
2 Find a large clique and set the weight of its segments to ∞
3 Iteratively remove segments of degree at most k − 2 and color them later
4 Perform a bounded depth first search when coloring

 220

 230

 240

 0 1 2 3 4 5

N
u
m

b
e
r

o
f

co
lo

rs

Running time (CPU hours)

σ=0.00 σ=0.05 σ=0.10 σ=0.15 σ=0.20

Parameter analysis for σ on an instance with 13806 segments

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Some Numbers of Colors

instance density Greedy Angle Bad DSatur DSHull Best Clique
rsqrpecn8051 41% 342 205 203 213 201 175 173
vispecn13806 19% 427 308 300 289 283 218 177
rsqrp14364 50% 294 139 139 165 157 136 134
vispecn19370 13% 370 285 278 265 248 192 169
visp26405 7% 154 101 97 94 92 81 78
visp31334 5% 152 90 88 99 98 81 77
visp38574 14% 287 148 146 168 168 133 118
sqrpecn45700 47% 952 504 500 562 522 462 460
reecn51526 24% 642 361 359 388 360 310 308
vispecn58391 12% 789 607 594 499 494 367 305
vispecn65831 12% 916 647 637 578 564 439 357
sqrp72075 47% 609 280 280 363 337 269 264

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Scores
225 instances
Each instance gets a score between 0 and 1, total score is the sum
Starting from a score of 1, we lose 5% of the score for each 1% more colors
compared to the best submitted solution
We achieved a perfect 225 score

 180

 190

 200

 210

 220

 0 6 12 18 24 30 36 42 48 54 60 66 72

S
co

re

Running time (CPU hours)

easy, 1.2,0.15 2nd place 3rd place 4th place

How much CPU core time (per instance) we need to win?

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Cliques

We also worked on finding large
cliques
Useful as lower bounds and to
improve algorithms by fixing the
colors of the clique segments
Used mixed integer programming,
simulated annealing, branch and
bound...

177

Clique with 177 segments out of 13806

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Bibliography

[Mit76] Mitchem, John. On various algorithms for estimating the chromatic
number of a graph. The Computer Journal, 19.2, 182–183, 1976.

[Bré79] Brélaz, Daniel. New methods to color the vertices of a graph.
Communications of the ACM, 22.4, 251–256, 1979.

[JoDa98] Joslin, David E., and David P. Clements. Squeaky Wheel Optimization.
AAAI/IAAI, 1998.

[CFGGLL] Shadoks Approach to Low-Makespan Coordinated Motion Planning Löıc
Crombez, Guilherme D. da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo,
Pascal Lafourcade, and Luc Libralesso; CG:SHOP 2021 special issue of
ACM Journal of Experimental Algorithmics, to appear.

Introduction
Competition

Problems

Reduction

Instances

Strategy

Initial
Greedy

Angle

DSatur

DSatHull

Squeaky Wheel

Bad

Optimizer
Conflict

Details

Improvements

Results
Colors

Scores

Cliques

Bibliography

Thanks

Thank You!

Art by Mário Silésio

	Introduction
	Competition
	Problems
	Reduction
	Instances
	Strategy

	Initial
	Greedy
	Angle
	DSatur
	DSatHull
	Squeaky Wheel
	Bad

	Optimizer
	Conflict
	Details
	Improvements

	Results
	Colors
	Scores
	Cliques
	Bibliography
	Thanks

