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7/86 Motivation: Untangling TSP Tours

2d Euclidean TSP (NP-hard):
Input: A set of n points called cities.

Output: The shortest tour
(polygon whose vertices are the cities).

Heuristics generate tours with crossings.
A tour with crossings can be shortened using a flip:

choose two crossing segments and remove them,
choose two non-crossing segments and insert them,
repeat until there are no crossings.

a city
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Multigraphs Matchings Bipartite Cycles Trees
Matchings (Tours)
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An infinite flip sequence?

No.

Measuring progress with a potential,
i.e., an integer function which is:

bounded
decreasing at each step.

Untangle sequence: flip sequence ending
with no crossing.
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16.09 km
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15.93 km

15.72 km
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14.38 km
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Imagine 2 perfect players performing Removal/Insertion/N∅ choices flip by flip:
the adversary maximizing the number of flips (choosing the n segments to untangle),
the oracle minimizing the number of flips.
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dRd Multigraph

point set property insertion property

number of flips
in the game oracle choice

d (n)

number of segments

d Generald
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Imagine 2 perfect players performing Removal/Insertion/N∅ choices flip by flip:
the adversary maximizing the number of flips (choosing the n segments to untangle),
the oracle minimizing the number of flips.
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14/86 The Unknown d: Formal Definition

Imagine 2 perfect players performing Removal/Insertion/N∅ choices flip by flip:
the adversary maximizing the number of flips (choosing the n segments to untangle),
the oracle minimizing the number of flips.

Π : conjunction of the point set,
insertion, and degree properties.

S : the n segments to untangle.
r : a removal strategy.
i : an insertion strategy.
k : the number of flips to untangle

S with the strategies r, i.

d∅
Π(n) = max

S
max
r

max
i

k(S, r, i)

dR
Π(n) = max

S
min
r

max
i

k(S, r, i)

dI
Π(n) = max

S
max
r

min
i

k(S, r, i)

(defined if insertion property is empty)

dRI
Π (n) = max

S
min
r

min
i

k(S, r, i)

(defined if insertion property is empty)
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17/86 Folklore: Convex n2 Upper Bound

Theorem (3.2.2)

d∅
Convex Multigraph(n) ≤

(
n

2

)
≼ n2



Untangling Segments in
the Plane

Introduction

Literature
Folklore

1980

2007, 2009

2016

2019

Contribution

Conclusion

18/86 Proving d∅
Convex(n) ≤

(
n
2

)
: Intuitive

A crossing: an intersecting pair of segments with no endpoint in the
intersection.
χcrossings(S): number of crossings in the multiset of segments S.
χcrossings ≤

(
n
2

)
χcrossings decreases at each flip:
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20/86 1980: General n3 Upper Bound

[Untangling a Traveling Salesman Tour in the Plane –
Jan Van Leeuwen, Anneke A. Schoone]

P : the point set.

Theorem (3.1.3)

d∅
Multigraph(n) ≤

1

2
n

(
|P |
2

)
≼ n |P |2 ≼ n3
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21/86 Proof of d∅
Multigraph(n) ≤ 1

2n
(|P |

2

)
: from Segments to Lines

Λℓ: number of segments crossed by the line ℓ

A flip decreases Λℓ by 0,

2, or 1.

L: the
(|P |

2

)
lines through two points of P .

ΛL =
∑

ℓ∈L Λℓ

At most n crossings per line =⇒ ΛL ≤ n
(|P |

2

)
.

ΛL decreases by at least 2 at each flip.
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23/86 2007, 2009: Exact Value of dR
Convex Cycle(n)

[The Number of Flips Required to Obtain Non-crossing Convex Cycles –
Yoshiaki Oda, Mamoru Watanabe]

[On the Maximum Switching Number to Obtain Non-crossing Convex Cycles –
Ro–Yu Wu, Jou–Ming Chang, Jia–Huei Lin]

Theorem (3.2.4; 3.2.7; 3.2.9)

n− 2 ≤ dR
Convex Cycle(n) for n ≥ 7

dR
Convex Cycle(n) ≤ 2n− 7 for n ≥ 7

dR
Convex Cycle(n) ≤ n− 2 for n ≥ 7
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25/86 2016: Insertion Power; Easy Lower Bounds

[Flip Distance to a Non-crossing Perfect Matching – Édouard Bonnet, Tillmann Miltzow]

Theorem (3.1.4; 3.2.1; 3.2.12; 3.2.12; 3.2.12; 3.2.12)

dI
Multigraph(n) ≤

n

2
(|P | − 2) ≼ n |P | ≼ n2

n2 ≼

(
n

2

)
≤ d∅

Convex Permutation Matching(n)

n ≼ n− 1 ≤ dRI
Convex Matching(n)

n ≼ n− 1 ≤ dR
Convex Bipartite Matching(n)

n ≼
n

2
− 1 ≤ dR

Convex Cycle(n) for even n

n ≼
n− 1

2
≤ dR

Convex Tree(n) for odd n
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27/86 2019: Various Upper Bounds

[Flip Distance to some Plane Configurations –
Ahmad Biniaz, Anil Maheshwari, Michiel Smid]

P : the point set.
σ(P ): the spread of P ,
i.e., the ratio between
the distance of farthest
and the closest pair of
points.
√
n ≼ σ(P )

Theorem (3.1.5; 3.2.2; 3.2.10; 3.2.11; 3.2.13; 3.3.1)

dI
Multigraph(n) ≼ nσ(P )

d∅
Convex Multigraph(n) ≤

(
n

2

)
≼ n2

dR
Convex Bipartite Matching(n) ≤ 2n− 3 ≼ n

dR
Convex Tree(n) ≼ n log n

dRI
Convex Multigraph(n) ≤ n− 1 ≼ n

dR
Redonaline Matching(n) ≤ n(n− 1) ≼ n2
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2 Lower Bounds
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29/86 Contribution Papers

[1]: Complexity Results on Untangling Red-Blue Matchings –
Arun Kumar Das, Sandip Das, Guilherme D. da Fonseca, Yan Gerard, Bastien Rivier

(LATIN 2022 & Computational Geometry 2022).

[2]: On the Longest Flip Sequence to Untangle Segments in the Plane –
Guilherme D. da Fonseca, Yan Gerard, Bastien Rivier

(WALCOM 2023).

[3]: Short Flip Sequences to Untangle Segments in the Plane –
Guilherme D. da Fonseca, Yan Gerard, Bastien Rivier

(WALCOM 2024).
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31/86 Intractability of the Shortest Untangle Sequence

Problem (1)

Let α ≥ 1 be a constant.
Input: S, a set of segments with rational coordinates forming a bipartite matching.
Output: An untangle sequence starting at S of length at most α times that of the
shortest untangle sequence of S.

Theorem (8.0.1 [1])

Problem 1 is NP-hard for all α ≥ 1.
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32/86 Proof of Intractability: Reduce Rectilinear Planar Monotone 3-SAT

x1 ∨ x2 ∨ x3

x3 ∨ x5 ∨ x6

x1 x2 x3 x4 x5 x6

x2 ∨ x3 ∨ x4

x3 ∨ x4 ∨ x5
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35/86 Algorithm; Improved Cubic Upper Bound

Theorem (5.8.1 [1]; 4.4.1 [1])

dR
Redonaline Matching(n) ≤

(
n

2

)
≼ n2

d∅
Redonaline Matching(n) ≤

(
n

2

)
n+ 4

6
≼ n3
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36/86 Proof of dR
Redonaline Matching(n) ≤

(
n
2

)
: Removal Strategy

Algorithm: Recursively flip

s1, the segment with crossings and
with the topmost blue endpoint,

s2, the segment crossing s1
with the topmost blue endpoint.

The
(
n
2

)
pairs of segments are in one of the following states.

X H T

Does the number of H-pairs always increase?
No, in general.
Yes, in the algorithm.
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37/86 Proof of dR
Redonaline Matching(n) ≤

(
n
2

)
: Case Analysis

The number of H-pairs does not increase in 2 cases
which are avoided by the algorithm:

s

s1

s2
s′2

s′1

s
s′2

s′1

s2

s1

s1, s2: X ↠ s′1, s
′
2: H

s, s1: H → s, s′1 : T
s, s2: T → s, s′2 : T

s1, s2: X ↠ s′1, s
′
2: H

s, s1: X → s, s′1 : X
s, s2: H → s, s′2 : T
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38/86 Proof of d∅
Redonaline Matching(n) ≤

(
n
2

)
n+4
6 : Potential

r1 r2 r3 r4 r5 r6

k-relevant pairs: pairs i, j with i ̸= j and
1 ≤ i ≤ k ≤ j ≤ n.

k-observed crossings: pairs of
segments whose projection cross.
Crossing k-relevant pairs =⇒
k-observed crossing.
Φk: Number of k-relevant pairs
forming k-observed crossings.

Φk ≤ k(n− k + 1)− 1

Φk decreases at each flip of a
k-relevant pair, i.e., at each
swap of an inversion in w.∑n

k=1Φk is bounded and
decreases by at least 2 at each
flip.
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40/86 Convex Bounds

C: the point set in convex position.

Theorem (5.2.1 [3]; 5.3.1; 6.1.1 [3])

dR
Convex Multigraph(n) ≼ n log |C| ≼ n log n

dR
Convex Tree(n) ≤ 3n− 8 ≼ n for n ≥ 3

dI
Convex Multigraph(n) ≼ n log |C| ≼ n log n
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42/86 From Convex n2 to General n3 Upper Bound

P = C ∪ T : the point set.
C is in convex position.
t: sum of the degrees of the points in T .

Theorem (4.3.1 [2])

d∅
Multigraph(n, t) ≼ tn2
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43/86 Proof of d∅
Multigraph(n, t) ≼ tn2: a Mixed Potential

Φ =

≼n2

︷ ︸︸ ︷
χcrossings︸ ︷︷ ︸

may not decrease!

+

≼n2t

︷︸︸︷
ΛL′︸︷︷︸

compensate χcrossings?

≼ n2t

L′:

|

lines through at least one non-convex point.

| ≼ nt
∪

|

lines through two consecutive convex points.| ≼ n

Case 1. If χcrossings decreases, then so does Φ
(because ΛL′ does not increase) ✓

Case 2. If not:
Case 2.1. If p or t is non-convex: ✓
Case 2.2. If, say, r is non-convex: ✓
Case 2.3. The remaining p, q, s, t are convex:

✓

p

t

s
r
q
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44/86 Adding Non-Convex Points One by One, with Removal Choice

P = C ∪ T : the point set.
C is in convex position.
t: sum of the degrees of the points in T .

Theorem (5.4.2 [3]; 5.5.2 [3]; 5.6.1 [3]; 5.7.1 [3])

dR
|T|=1 Multigraph(n, t) ≼ n log |C|+ tn ≼ n log n+ tn

dR
Inout Multigraph(n, t) ≼ t2n+ n log n

dR
Inin Multigraph(n, t) ≼ tn+ n log n

dR
Outout Multigraph(n, t) ≼ 2tn log n
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45/86 Near Convex with Insertion Choice

P = C ∪ T : the point set.
C is in convex position.
t: sum of the degrees of the points in T .

Theorem (6.2.1 [3]; 7.1.1 [3]; 7.2.3 [3])

dI
Separated Multigraph(n, t) ≼ t |P | log |C|+ n log |C| ≼ tn log n

dRI
Separated Multigraph(n, t) ≼ n+ t |P | ≼ tn

dRI
Allout Matching(n, t) ≼ t3n
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47/86 The Same Flip Used Multiple Times in a Sequence



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Red-on-a-Line

Convex

Near Convex

No Multiplicity

Lower Bounds

Reductions

Conclusion

48/86 Counting Flips without Multiplicity

Theorem (4.5.1 [2])

In the Multigraph version, any untangle sequence of n segments has O(n8/3)
distinct flips, i.e. : {

d∅
Multigraph(n)

}
distinct

≼ n8/3.
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49/86 Proof of
{
d∅
Multigraph(n)

}
distinct

≼ n8/3: Balancing Argument

There are O(n
3

k ) flips decreasing ΛL by at least k.
There are O(n2k2) flips decreasing ΛL by less than k:
we enumerate them by sweeping a line.
We choose k = n1/3.

p1

p4
q1

q2

qk

q−1

q−2
q−k

qk−1

q−k+1

...

...

/∈ Q

/∈ Q

/∈ Q /∈ Q
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52/86 No Choice Lower Bound: Butterfly

Theorem (4.2.1 [1])

n2 ≼
3

2

(
n

2

)
− n

4
≤ d∅

Redonaline Matching(n) for even n
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53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 0

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 1

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 2

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 3

Example of an untangle sequence of n = 6
segments using more than
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2
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No shortcut.
Half the pairs of segments are flipped twice,
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4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 4

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 5

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 6

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 7

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 8

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 9

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 10

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 11

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 12

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 13

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 14

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 15

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 16

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 17

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 18

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 19

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 20

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Butterfly

Fence

Reductions

Conclusion

53/86 Proof of 3
2

(
n
2

)
− n

4 ≤ d∅
Redonaline Matching(n): Butterfly

Step 21

Example of an untangle sequence of n = 6
segments using more than

(
n
2

)
= 15 flips.

No shortcut.
Half the pairs of segments are flipped twice,
i.e., X ↠ H → T → X ↠ H.
Bubble sort on the 3 segments from the 3
leftmost red points, respectively rightmost.
6 H-pairs turn into T-pairs, i.e., 6 H → T.
2 H → T and 2 T → X.
4 T → X.
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55/86 Removal Choice Lower Bound: Fence

Theorem (5.1.1 [1])

n ≼
3

2
n− 2 ≤ dR

Convex Bipartite Matching(n) for even n
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2n− 2 ≤ dR

Convex Bipartite Matching(n): Fence

Any untangle sequence of a fence

or
a derived fence

uses one flip per crossing.
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59/86 Trivial Reductions

Lemma (2.3.1 [2]; 2.3.2 [2]; 2.3.3 [2])

The following inequalities hold for any non-negative integer n, and for any two
properties Π, Π′ such that Π =⇒ Π′, and for any Choices ∈ {∅, R, I, RI}.

dRI
Π (n) ≤

{
dR
Π(n)

dI
Π(n)

}
≤ d∅

Π(n) (choice reductions)

dChoices
Π (n) ≤ dChoices

Π′ (n) (property reductions)

dRI
Π Matching(n) ≤ dR

Π Bipartite Matching(n)

dI
Π Matching(n) ≤ d∅

Π Bipartite Matching(n)
(transfer reductions)
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61/86 No Choice Reductions

Theorem (4.1.1 [2])

For all n and for Π being either the empty property or the Convex property:

d∅
Π Multigraph(n) = d∅

Π Matching(n),

2d∅
Π Matching(n) ≤ d∅

Π Bipartite Matching(2n) ≤ d∅
Π Matching(2n),

2d∅
Π Bipartite Matching(n) ≤ d∅

Π Cycle(3n) ≤ d∅
Π Matching(3n),

2d∅
Π Bipartite Matching(n) ≤ d∅

Π Tree(3n) ≤ d∅
Π Matching(3n).

Given a flip sequence of the left-hand-side of an inequality,
we build a flip sequence of the right-hand-side of the inequality.
Immediate for black ≤.
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Multigraph(n) ≤ d∅

Matching(n)



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Reductions

Trivial

No Choice

Conclusion

62/86 Proof of d∅
Multigraph(n) ≤ d∅

Matching(n)



Untangling Segments in
the Plane

Introduction

Literature

Contribution
Intractability

Upper Bounds

Lower Bounds

Reductions

Trivial

No Choice

Conclusion

62/86 Proof of d∅
Convex Multigraph(n) ≤ d∅

Convex Matching(n)
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62/86 Proof of 2d∅
Matching(n) ≤ d∅

Bipartite Matching(2n)
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Matching(n) ≤ d∅

Bipartite Matching(2n)
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Cycle(3n)
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62/86 Proof of 2d∅
Bipartite Matching(n) ≤ d∅

Tree(3n)
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66/86 Asymptotic Bounds for Multigraphs (Part 1)

General n ≼ dRI ≼ n2 n ≼ dI ≼ n2

C ∪ T n ≼ dRI ≼ n2 n ≼ dI ≼ n2

Allout n ≼ dRI ≼ n2 n ≼ dI ≼ n2

Separated n ≼ dRI ≼ tn n ≼ dI ≼ tn logn

Outout n ≼ dRI ≼ tn n ≼ dI ≼ tn log n

Inout n ≼ dRI ≼ t2n n ≼ dI ≼ n2

Inin n ≼ dRI ≼ tn n ≼ dI ≼ n2

|T| = 1 n ≼ dRI ≼ tn n ≼ dI ≼ n2

Convex n ≼ dRI ≼ n n ≼ dI ≼ n logn
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67/86 Asymptotic Bounds for Multigraphs (Part 2)

General n ≼ dR ≼ n3 n2 ≼ d∅ ≼ n3

C ∪ T n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Allout n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Separated n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Outout n ≼ dR ≼ 2tn logn n2 ≼ d∅ ≼ tn2

Inout n ≼ dR ≼ t2n+ n logn n2 ≼ d∅ ≼ tn2

Inin n ≼ dR ≼ tn+ n logn n2 ≼ d∅ ≼ tn2

|T| = 1 n ≼ dR ≼ tn+ n logn n2 ≼ d∅ ≼ tn2

Convex n ≼ dR ≼ n logn n2 ≼ d∅ ≼ n2
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69/86 Asymptotic Bounds for Matchings (Part 1)

General n ≼ dRI ≼ n2 n ≼ dI ≼ n2

C ∪ T n ≼ dRI ≼ n2 n ≼ dI ≼ n2

Allout n ≼ dRI ≼ t3n n ≼ dI ≼ n2

Separated n ≼ dRI ≼ tn n ≼ dI ≼ tn log n

Outout n ≼ dRI ≼ n n ≼ dI ≼ n log n

Inout n ≼ dRI ≼ n n ≼ dI ≼ n2

Inin n ≼ dRI ≼ n n ≼ dI ≼ n2

|T| = 1 n ≼ dRI ≼ n n ≼ dI ≼ n2

Convex n ≼ dRI ≼ n n ≼ dI ≼ n log n
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70/86 Asymptotic Bounds for Matchings (Part 2)

General n ≼ dR ≼ n3 n2 ≼ d∅ ≼ n3

C ∪ T n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Allout n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Separated n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Outout n ≼ dR ≼ n log n n2 ≼ d∅ ≼ tn2

Inout n ≼ dR ≼ n log n n2 ≼ d∅ ≼ tn2

Inin n ≼ dR ≼ n log n n2 ≼ d∅ ≼ tn2

|T| = 1 n ≼ dR ≼ n log n n2 ≼ d∅ ≼ tn2

Convex n ≼ dR ≼ n log n n2 ≼ d∅ ≼ n2
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72/86 Asymptotic Bounds for Bipartite Matchings

General n ≼ dR ≼ n3 n2 ≼ d∅ ≼ n3

Redonaline n ≼ dR ≼ n2 n2 ≼ d∅ ≼ n3

C ∪ T n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Allout n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Separated n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Outout n ≼ dR ≼ n n2 ≼ d∅ ≼ tn2

Inout n ≼ dR ≼ n n2 ≼ d∅ ≼ tn2

Inin n ≼ dR ≼ n n2 ≼ d∅ ≼ tn2

|T| = 1 n ≼ dR ≼ n n2 ≼ d∅ ≼ tn2

Convex n ≼ dR ≼ n n2 ≼ d∅ ≼ n2

Permutation n ≼ dR ≼ n n2 ≼ d∅ ≼ n2
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74/86 Asymptotic Bounds for Cycles

General n ≼ dR ≼ n3 n2 ≼ d∅ ≼ n3

C ∪ T n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Allout n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Separated n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Outout n ≼ dR ≼ n n2 ≼ d∅ ≼ tn2

Inout n ≼ dR ≼ n n2 ≼ d∅ ≼ tn2

Inin n ≼ dR ≼ n n2 ≼ d∅ ≼ tn2

|T| = 1 n ≼ dR ≼ n n2 ≼ d∅ ≼ tn2

Convex n ≼ dR ≼ n n2 ≼ d∅ ≼ n2
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76/86 Asymptotic Bounds for Trees

General n ≼ dR ≼ n3 n2 ≼ d∅ ≼ n3

C ∪ T n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Allout n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Separated n ≼ dR ≼ tn2 n2 ≼ d∅ ≼ tn2

Outout n ≼ dR ≼ 2tn n2 ≼ d∅ ≼ tn2

Inout n ≼ dR ≼ t2n n2 ≼ d∅ ≼ tn2

Inin n ≼ dR ≼ tn n2 ≼ d∅ ≼ tn2

|T| = 1 n ≼ dR ≼ tn n2 ≼ d∅ ≼ tn2

Convex n ≼ dR ≼ n n2 ≼ d∅ ≼ n2
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78/86 Big Conjectures: Tight Convex Bounds?

n2 ≼ d∅
Multigraph ≼ n2 ≼ n3

n ≼ dR
Multigraph ≼ n or n log n ≼ n3

n ≼ dI
Multigraph ≼ n or n log n ≼ n2

n ≼ dRI
Multigraph ≼ n ≼ n2
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79/86 Similar NP -Hard Problems?

We know NP-hardness for:
The shortest untangle sequence in the Bipartite Matching version.

We conjecture NP-hardness for:
The shortest untangle sequence in all other versions.
The longest untangle sequence in all versions.

We do not know NP-hardness for:
The shortest/longest untangle sequence in any version for Convex point sets.
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80/86 Near-Convex: Smooth Transitions without Point Set Restrictions?

Smooth transitions between Convex and General point sets?
No restriction on the number/position of non-convex points?



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

81/86 Miscellaneous Questions

Which bound is tight?

n ≼ dR
Convex Multigraph(n) ≼ n log n

n ≼ dI
Convex Multigraph(n) ≼ n log n

Why a bound specific to Matching?
A sub-quadratic upper bound on the reuse of a given flip?
Removal choice to control flip reuse? (→ sub-cubic upper bound on
dR
Multigraph)

Is the fence lower bound tight?
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85/86 Swapping Flips via State Tracking: dR
Bipartite Matching ≼ n2?

A labeled bipartite matching = a permutation.
A flip = a special transposition.
Example of a flip sequence:

(1 2)(3 4)(2 3)

Swapping two transpositions:

(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)
(ab)(bc) = (ca)(ab) = (bc)(ca) (3)

Is it possible to swap and cancel flips?
Yes, in our experiments on the butterfly.
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b2

b1

b3

b4



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

85/86 Swapping Flips via State Tracking: dR
Bipartite Matching ≼ n2?

A labeled bipartite matching = a permutation.
A flip = a special transposition.
Example of a flip sequence:

(1 2)(3 4)(2 3)

Swapping two transpositions:

(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)
(ab)(bc) = (ca)(ab) = (bc)(ca) (3)

Is it possible to swap and cancel flips?
Yes, in our experiments on the butterfly.

r1

r2

r3

r4

b2

b1

b3

b4



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

85/86 Swapping Flips via State Tracking: dR
Bipartite Matching ≼ n2?

A labeled bipartite matching = a permutation.
A flip = a special transposition.
Example of a flip sequence:

(1 2)(3 4)(2 3)

Swapping two transpositions:

(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)
(ab)(bc) = (ca)(ab) = (bc)(ca) (3)

Is it possible to swap and cancel flips?
Yes, in our experiments on the butterfly.

r1

r2

r3

r4

b2

b1

b3

b4



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

85/86 Swapping Flips via State Tracking: dR
Bipartite Matching ≼ n2?

A labeled bipartite matching = a permutation.
A flip = a special transposition.
Example of a flip sequence:

(1 2)(3 4)(2 3)

Swapping two transpositions:

(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)
(ab)(bc) = (ca)(ab) = (bc)(ca) (3)

Is it possible to swap and cancel flips?
Yes, in our experiments on the butterfly.

r1

r2

r3

r4

b2

b1

b3

b4



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

85/86 Swapping Flips via State Tracking: dR
Bipartite Matching ≼ n2?

A labeled bipartite matching = a permutation.
A flip = a special transposition.
Example of a flip sequence:

(1 2)(3 4)(2 3)

Swapping two transpositions:

(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)
(ab)(bc) = (ca)(ab) = (bc)(ca) (3)

Is it possible to swap and cancel flips?
Yes, in our experiments on the butterfly.

r1

r2

r3

r4

b2

b1

b3

b4



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

85/86 Swapping Flips via State Tracking: dR
Bipartite Matching ≼ n2?

A labeled bipartite matching = a permutation.
A flip = a special transposition.
Example of a flip sequence:

(1 2)(3 4)(2 3)

Swapping two transpositions:

(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)
(ab)(bc) = (ca)(ab) = (bc)(ca) (3)

Is it possible to swap and cancel flips?
Yes, in our experiments on the butterfly.

r1

r2

r3

r4

b2

b1

b3

b4



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

85/86 Swapping Flips via State Tracking: dR
Bipartite Matching ≼ n2?

A labeled bipartite matching = a permutation.
A flip = a special transposition.
Example of a flip sequence:

(1 2)(3 4)(2 3)

Swapping two transpositions:

(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)
(ab)(bc) = (ca)(ab) = (bc)(ca) (3)

Is it possible to swap and cancel flips?
Yes, in our experiments on the butterfly.

r1

r2

r3

r4

b2

b1

b3

b4



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

85/86 Swapping Flips via State Tracking: dR
Bipartite Matching ≼ n2?

A labeled bipartite matching = a permutation.
A flip = a special transposition.
Example of a flip sequence:

(1 2)(3 4)(2 3)

Swapping two transpositions:

(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)
(ab)(bc) = (ca)(ab) = (bc)(ca) (3)

Is it possible to swap and cancel flips?
Yes, in our experiments on the butterfly.

r1

r2

r3

r4

b2

b1

b3

b4



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

85/86 Swapping Flips via State Tracking: dR
Bipartite Matching ≼ n2?

A labeled bipartite matching = a permutation.
A flip = a special transposition.
Example of a flip sequence:

(1 2)(3 4)(2 3)

Swapping two transpositions:

(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)
(ab)(bc) = (ca)(ab) = (bc)(ca) (3)

Is it possible to swap and cancel flips?
Yes, in our experiments on the butterfly.

r1

r2

r3

r4

b2

b1

b3

b4



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

85/86 Swapping Flips via State Tracking: dR
Bipartite Matching ≼ n2?

A labeled bipartite matching = a permutation.
A flip = a special transposition.
Example of a flip sequence:

(1 2)(3 4)(2 3)

Swapping two transpositions:

(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)
(ab)(bc) = (ca)(ab) = (bc)(ca) (3)

Is it possible to swap and cancel flips?
Yes, in our experiments on the butterfly.

r1

r2

r3

r4

b2

b1

b3

b4



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86



Untangling Segments in
the Plane

Introduction

Literature

Contribution

Conclusion
Tables

Open Problems

My Favorite Ideas

86/86


	Introduction
	Motivation: Untangling TSP Tours
	Flip Versions: from Tours to Segments
	Untangle sequences: the Long Ones and the Short Ones
	The Unknown: the Number of Flips

	Literature Review
	Folklore
	1980
	2007, 2009
	2016
	2019

	Contribution
	1 Intractability
	14 Upper Bounds
	2 Lower Bounds
	Reductions

	Conclusion
	Summary Tables
	Open Problems
	My Favorite Ideas


