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[The Number of Flips Required to Obtain Non-crossing Convex Cycles —

Yoshiaki Oda, Mamoru Watanabe]

[On the Maximum Switching Number to Obtain Non-crossing Convex Cycles —

Ro—Yu Wu, Jou-Ming Chang, Jia—Huei Lin]

Theorem (3.2.4; 3.2.7; 3.2.9)

n—2<d}

Convex Cycle

(n)<2n—17"forn>7

® IR
.. dConvex Cycle

o.. d

R
Convex Cycle

(n) °.. ..o forn > 7

(n)<n-—2forn>7
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n
.° :.: dl\I’Iultigraph(n) 5(‘P’ - 2) ’P| < n2

n d@ .0-0-O0-O-
n" < Convex Permutation Matching (n) Jp——

Shae
n<n-— 1 < dConvex Matchlng( ) .. ..
®--o
nn-— 1 < dConvex Bipartite Matchlng(n) .. ..
n ®--o
n < <5~ 1<dd ox cycie(n) @, ® for evenn

n—1
2

®-o
n < < dConvex Tree (n) .. .. for odd n
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Let a > 1 be a constant.

Input: S, a set of segments with rational coordinates forming a bipartite matching.
Output: An untangle sequence starting at S of length at most « times that of the
shortest untangle sequence of S.
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Problem 1 is N'P-hard for all o > 1.
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Similar N P-Hard Problems?

We know NP-hardness for:

m The shortest untangle sequence in the Bipartite Matching version.

We conjecture N’P-hardness for:

m The shortest untangle sequence in all other versions.

m The longest untangle sequence in all versions.

We do not know NP-hardness for:

m The shortest/longest untangle sequence in any version for Convex point sets.



Near-Convex: Smooth Transitions without Point Set Restrictions?
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m Smooth transitions between Convex and General point sets?

m No restriction on the number/position of non-convex points?
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Miscellaneous Questions

m Which bound is tight?

n < d?

n=<d

onvex Multigraph

I
Convex Multigraph

(n) <X nlogn

(n) X nlogn
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Miscellaneous Questions

m Which bound is tight?

R
n < dConvex Multigraph

I
n < dConvex Multigraph

m Why a bound specific to Matching?

(n) <X nlogn

(n) X nlogn
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Miscellaneous Questions

m Which bound is tight?

R
n = dConvex Multigraph(n) <N logn

I
n < dConvex Multigraph(n) sn logn

m Why a bound specific to Matching?

m A sub-quadratic upper bound on the reuse of a given flip?
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Miscellaneous Questions

m Which bound is tight?

R
n = dConvex Multigraph(n) <N logn

I
n < dConvex Multigraph(n) sn logn

m Why a bound specific to Matching?

m A sub-quadratic upper bound on the reuse of a given flip?

m Removal choice to control flip reuse? (— sub-cubic upper bound on
dt )

Multigraph
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Miscellaneous Questions

m Which bound is tight?

R
n = dConvex Multigraph(n) <N logn

7 < donyex waltigrapn (1) < nlogn
m Why a bound specific to Matching?
m A sub-quadratic upper bound on the reuse of a given flip?
m Removal choice to control flip reuse? (— sub-cubic upper bound on
dR

Multigraph)
m s the fence lower bound tight?
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Swapping Flips via State Tracking: dt

Bipartite Matching

m A labeled bipartite matching = a permutation.

<

n27?
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Swapping Flips via State Tracking: dt

Bipartite Matching

m A labeled bipartite matching = a permutation.
m A flip = a special transposition.

<

n27?
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Swapping Flips via State Tracking: dgipartite Matching

m A labeled bipartite matching = a permutation.
m A flip = a special transposition.

m Example of a flip sequence:

(12)(34)(23)

< n??

ba
T2
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Swapping Flips via State Tracking: dt

Bipartite Matching

m A labeled bipartite matching = a permutation.
m A flip = a special transposition.

m Example of a flip sequence:

(12)(34)(23)

4

n27?




Swapping Flips via State Tracking: dg; . tite uatching n??

Introduction m A labeled bipartite matching = a permutation.

Literature m A flip = a special transposition.

Contribution

_ m Example of a flip sequence:
Conclusion
Table by T4

(12)(3 4)(2 ) w T
ba
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Swapping Flips via State Tracking: dgipartite Matching

m A labeled bipartite matching = a permutation.
m A flip = a special transposition.

m Example of a flip sequence:

(12)(34)(23)

< n??
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Swapping Flips via State Tracking: dt

Bipartite Matching

m A labeled bipartite matching = a permutation.
m A flip = a special transposition.

m Example of a flip sequence:

(12)(34)(23)

< n??



Swapping Flips via State Tracking: dg; . tite uatching n??

Introduction m A labeled bipartite matching = a permutation.

Literature m A flip = a special transposition.

Contribution

m Example of a flip sequence:

Conclusion

Tables bl
Open Prl:leml (1 2)(3 4)(2 3) [
‘avorite Ideas b2
m Swapping two transpositions: 1 3
1
(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)




Swapping Flips via State Tracking: dg; . tite uatching n??

A labeled bipartite matching = a permutation.
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A flip = a special transposition.

Example of a flip sequence:

(12)(34)(23)

m Swapping two transpositions:
(ab)(ab) = Id (1) "
(ab)(cd) = (cd)(ab) (2)
(ab)(be) = (ca)(ab) = (bc)(ca) (3)

Is it possible to swap and cancel flips?
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Bipartite Matching

Swapping Flips via State Tracking: d

m A labeled bipartite matching = a permutation.
m A flip = a special transposition.

m Example of a flip sequence:
(12)(3 4)(23)

m Swapping two transpositions:

(ab)(ab) = Id (1)
(ab)(cd) = (cd)(ab) (2)
(ab)(be) = (ca)(ab) = (be)(ca) (3)

m Is it possible to swap and cancel flips?

m Yes, in our experiments on the butterfly.

< n??
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