Untangling Segments in the Plane

Bastien Rivier
Université Clermont Auvergne, EDSPI, and LIMOS
With support from
French ANR PRC Grant ADDS (ANR-19-CE48-0005)
Aix-Marseille Université and LIS

Arun Kumar Das - Indian Statistical Institute, Kolkata

Sandip Das - Indian Statistical Institute, Kolkata

Guilherme Dias da Fonseca - Aix-Marseille Université and LIS

Yan Gerard - Université Clermont Auvergne and LIMOS
Guilherme Dias da Fonseca - Aix-Marseille Université Advisor
Yan Gerard - Université Clermont Auvergne Advisor
Wolfgang Mulzer - Freie Universität Berlin Reporter
Carlos Seara - Universidad Politécnica de Catalunya Reporter
Fatiha Bendali - Université Clermont Auvergne Examiner
Éric Colin de Verdière - Université Gustave Eiffel Examiner
Vincent Despré - Université de Lorraine Examiner
Fabien Feschet - Université Clermont Auvergne Examiner

Outline

Introduction

Literature
Contribution Conclusion

1 Introduction

2 Literature Review

3 Contribution

4 Conclusion

Outline

Introduction Motivation Flip Versions Untangle Unknown

Literature

Conclusion

1 Introduction

- Motivation: Untangling TSP Tours
- Flip Versions: from Tours to Segments
- Untangle sequences: the Long Ones and the Short Ones
- The Unknown: the Number of Flips

2 Literature Review

3 Contribution

4 Conclusion

Outline

Introduction

Motivation

Flip Versions Untangle Unknown

Literature

Contribution

Conclusion

1 Introduction

- Motivation: Untangling TSP Tours
- Flip Versions: from Tours to Segments
- Untangle sequences: the Long Ones and the Short Ones
- The Unknown: the Number of Flips

2 Literature Review

3 Contribution

4 Conclusion

Motivation: Untangling TSP Tours

- 2d Euclidean TSP ($\mathcal{N} \mathcal{P}$-hard):

Input: A set of n points called cities.
Output: The shortest tour
(polygon whose vertices are the cities).

- Heuristics generate tours with crossings.
- A tour with crossings can be shortened using a flip

Motivation: Untangling TSP Tours

Introduction

Motivation

 Flip Versions Untangle Unknown
Literature

Contribution

Conclusion

- 2d Euclidean TSP ($\mathcal{N P}$-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).

- Heuristics generate tours with crossings.
- A tour with crossings can be shortened using a flip:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them, - repeat until there are no crossings.

Motivation: Untangling TSP Tours

Introduction

 Motivation Flip Versions Untangle Unknown- 2d Euclidean TSP ($\mathcal{N P}$-hard):

Input: A set of n points called cities.
Output: The shortest tour
(polygon whose vertices are the cities).

- Heuristics generate tours with crossings.
- A tour with crossings can be shortened using a flip:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,
- repeat until there are no crossings.

Motivation: Untangling TSP Tours

Introduction

 Motivation Flip Versions Untangle Unknown- 2d Euclidean TSP ($\mathcal{N P}$-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).

- Heuristics generate tours with crossings.
- A tour with crossings can be shortened using a flip:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,

Motivation: Untangling TSP Tours

Introduction

Motivation

- 2d Euclidean TSP ($\mathcal{N P}$-hard):

Input: A set of n points called cities.
Output: The shortest tour
(polygon whose vertices are the cities).

- Heuristics generate tours with crossings.
- A tour with crossings can be shortened using a flip:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,

[^0]
Motivation: Untangling TSP Tours

Introduction

 Motivation Flip Versions Untangle Unknown- 2d Euclidean TSP ($\mathcal{N P}$-hard):

Input: A set of n points called cities.
Output: The shortest tour
(polygon whose vertices are the cities).

- Heuristics generate tours with crossings.
- A tour with crossings can be shortened using a flip:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,
- repeat until there are no crossings.

Motivation: Untangling TSP Tours

- 2d Euclidean TSP ($\mathcal{N P}$-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).

- Heuristics generate tours with crossings.
- A tour with crossings can be shortened using a flip:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,
- repeat until there are no crossings.

Motivation: Untangling TSP Tours

- 2d Euclidean TSP (NP-hard):

Input: A set of n points called cities.
Output: The shortest tour
(polygon whose vertices are the cities).

- Heuristics generate tours with crossings.
- A tour with crossings can be shortened using a flip:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,

- repeat until there are no crossings.

Outline

Introduction

1 Introduction

- Motivation: Untangling TSP Tours
- Flip Versions: from Tours to Segments
- Untangle sequences: the Long Ones and the Short Ones
- The Unknown: the Number of Flips

2 Literature Review

3 Contribution

4 Conclusion

Flip Versions: from Tours to Segments

Introduction

Unknown
Literature
Contribution
Conclusion

Outline

Introduction

 Motivation1 Introduction

- Motivation: Untangling TSP Tours
- Flip Versions: from Tours to Segments
- Untangle sequences: the Long Ones and the Short Ones
- The Unknown: the Number of Flips

2 Literature Review

3 Contribution

4 Conclusion

An infinite flip sequence?

Introduction

Motivation

- An infinite flip sequence?
- Measuring progress with a potential,
i.e., an integer function which is:
- bounded
- decreasing at each step
- Untangle sequence: flip sequence ending
with no crossing.

Introduction

Literature

Contribution
Conclusion

Introduction

Literature

Contribution
Conclusion

Introduction

Long and Short Untangle Sequences

- The removal choice may impact the number of flips.

Long and Short Untangle Sequences

- The removal choice may impact the number of flips.

Introduction

- The insertion choice may impact the number of flips.

Long and Short Untangle Sequences

- The removal choice may impact the number of flips.

Introduction

- The insertion choice may impact the number of flips

Long and Short Untangle Sequences

Introduction

 Motivation Flip Versions Untangle UnknownLiterature
Contribution
Conclusion

- The removal choice may impact the number of flips. \rightarrow removal strategy
- The insertion choice may impact the number of flips.

Long and Short Untangle Sequences

Introduction

 Motivation- The removal choice may impact the number of flips. \rightarrow removal strategy
- The insertion choice may impact the number of flips.

Long and Short Untangle Sequences

Introduction

 Motivation Flip Versions Untangle Unknown- The removal choice may impact the number of flips. \rightarrow removal strategy
- The insertion choice may impact the number of flips.

Long and Short Untangle Sequences

Introduction

 Motivation Flip Versions Untangle Unknown- The removal choice may impact the number of flips. \rightarrow removal strategy
- The insertion choice may impact the number of flips.

Long and Short Untangle Sequences

Introduction

Motivation Flip Versions Untangle Unknown

Literature

Contribution Conclusion

- The removal choice may impact the number of flips. \rightarrow removal strategy

■ The insertion choice may impact the number of flips. \rightarrow insertion strategy

Outline

Introduction

Motivation
Flip Versions Untangle Unknown

1 Introduction

- Motivation: Untangling TSP Tours
- Flip Versions: from Tours to Segments
- Untangle sequences: the Long Ones and the Short Ones
- The Unknown: the Number of Flips

2 Literature Review

3 Contribution

4 Conclusion

Imagine 2 perfect players performing Removal/Insertion/N \emptyset choices flip by flip: - the adversary maximizing the number of flips (choosing the n segments to untangle), - the oracle minimizing the number of flips.

The Unknown d

Imagine 2 perfect players performing Removal/Insertion/NØ choices flip by flip: - the adversary maximizing the number of flips (choosing the n segments to untangle),

The Unknown d

Imagine 2 perfect players performing Removal/Insertion/NØ choices flip by flip: ■ the adversary maximizing the number of flips (choosing the n segments to untangle),

The Unknown d

Imagine 2 perfect players performing Removal/Insertion/NØ choices flip by flip: - the adversary maximizing the number of flips (choosing the n segments to untangle),

The Unknown d

Imagine 2 perfect players performing Removal/Insertion/NØ choices flip by flip: - the adversary maximizing the number of flips (choosing the n segments to untangle),

The Unknown d

Imagine 2 perfect players performing Removal/Insertion/NØ choices flip by flip: - the adversary maximizing the number of flips (choosing the n segments to untangle),

The Unknown d

Imagine 2 perfect players performing Removal/Insertion/NØ choices flip by flip: - the adversary maximizing the number of flips (choosing the n segments to untangle),

The Unknown d

Imagine 2 perfect players performing Removal/Insertion/NØ choices flip by flip: - the adversary maximizing the number of flips (choosing the n segments to untangle),

- the oracle minimizing the number of flips.

The Unknown d

Imagine 2 perfect players performing Removal/Insertion/NØ choices flip by flip: - the adversary maximizing the number of flips (choosing the n segments to untangle),

The Unknown d

Imagine 2 perfect players performing Removal/Insertion/NØ choices flip by flip: - the adversary maximizing the number of flips (choosing the n segments to untangle),

The Unknown d

Imagine 2 perfect players performing Removal/Insertion/NØ choices flip by flip: - the adversary maximizing the number of flips (choosing the n segments to untangle),

The Unknown d

Imagine 2 perfect players performing Removal/Insertion/NØ choices flip by flip: - the adversary maximizing the number of flips (choosing the n segments to untangle),

The Unknown d: Formal Definition

Introduction

 Motivation Flip Versions Untangle UnknownImagine 2 perfect players performing Removal/Insertion/N \emptyset choices flip by flip: ■ the adversary maximizing the number of flips (choosing the n segments to untangle), - the oracle minimizing the number of flips.
Π : conjunction of the point set, insertion, and degree properties.
S : the n segments to untangle.
r: a removal strategy.
i : an insertion strategy.
k : the number of flips to untangle S with the strategies r, i.

$$
\begin{aligned}
& \mathbf{d}_{\boldsymbol{\Pi}}^{\emptyset}(n)=\max _{S} \max _{\mathrm{r}} \max _{\mathrm{i}} k(S, \mathrm{r}, \mathrm{i}) \\
& \mathbf{d}_{\boldsymbol{\Pi}}^{\mathrm{R}}(n)=\max _{S} \min _{\mathrm{r}} \max _{\mathrm{i}} k(S, \mathrm{r}, \mathrm{i}) \\
& \mathbf{d}_{\Pi}^{\mathrm{I}}(n)=\max _{S} \max _{\mathrm{r}} \min _{\mathrm{i}} k(S, \mathrm{r}, \mathrm{i})
\end{aligned}
$$

(defined if insertion property is empty)

$$
\mathbf{d}_{\Pi}^{\mathrm{RI}}(n)=\max _{S} \min _{\mathrm{r}} \min _{\mathrm{i}} k(S, \mathrm{r}, \mathrm{i})
$$

(defined if insertion property is empty)

Outline

Contribution

Conclusion

1 Introduction

2 Literature Review
■ Folklore

- 1980

■ 2007, 2009
■ 2016

- 2019

3 Contribution

4 Conclusion

Introduction

Literature
Folklore

Conclusion

1 Introduction

2 Literature Review
■ Folklore

- 1980

■ 2007, 2009
■ 2016

- 2019

3 Contribution

4 Conclusion

Theorem (3.2.2)

Contribution Conclusion
$\because \mathbf{d}_{\text {Convex Multigraph }}^{\emptyset}(n) \leq\binom{ n}{2} \preccurlyeq n^{2}$

- A crossing: an intersecting pair of segments with no endpoint in the intersection.
- $\chi_{\text {crossings }}(S)$: number of crossings in the multiset of segments S.
- $\chi_{\text {crossings }} \leq\binom{ n}{2}$
- $\chi_{\text {crossings }}$ decreases at each flip:
- A crossing: an intersecting pair of segments with no endpoint in the intersection.
- $\chi_{\text {crossings }}(S)$: number of crossings in the multiset of segments S.
- $\chi_{\text {crossings }} \leq\binom{ n}{2}$
- $\chi_{\text {crossings }}$ decreases at each flip:
- A crossing: an intersecting pair of segments with no endpoint in the intersection.
- $\chi_{\text {crossings }}(S)$: number of crossings in the multiset of segments S.
- $\chi_{\text {crossings }} \leq\binom{ n}{2}$
- $\chi_{\text {crossings }}$ decreases at each flip:

- A crossing: an intersecting pair of segments with no endpoint in the intersection.
- $\chi_{\text {crossings }}(S)$: number of crossings in the multiset of segments S.
- $\chi_{\text {crossings }} \leq\binom{ n}{2}$
- $\chi_{\text {crossings }}$ decreases at each flip:

- A crossing: an intersecting pair of segments with no endpoint in the intersection.
- $\chi_{\text {crossings }}(S)$: number of crossings in the multiset of segments S.
- $\chi_{\text {crossings }} \leq\binom{ n}{2}$
- $\chi_{\text {crossings }}$ decreases at each flip:

Outline

Introduction

Literature

Conclusion

1 Introduction

2 Literature Review

- Folklore

■ 1980

- 2007, 2009
- 2016

■ 2019

3 Contribution

4 Conclusion

1980: General n^{3} Upper Bound

[Untangling a Traveling Salesman Tour in the Plane -

Jan Van Leeuwen, Anneke A. Schoone]

Theorem (3.1.3)

- P : the point set.
$\because \because \because \cdot \mathbf{d}_{\text {Multigraph }}^{\emptyset}(n) \leq \frac{1}{2} n\binom{|P|}{2} \preccurlyeq n|P|^{2} \preccurlyeq n^{3}$

21/86
 Proof of $\mathbf{d}_{\text {Mult tigraph }}^{\emptyset}(n) \leq \frac{1}{2} n\binom{P \mid}{ 2}$: from Segments to Lines

Introduction

Literature

Folklore
1980
2007, 2009
2016
2019

Contribution

Conclusion

- Λ_{ℓ} : number of segments crossed by the line ℓ
- A flip decreases Λ_{ℓ} by 0 ,
- L : the $\binom{|P|}{2}$ lines through two points of P.
$-\Lambda_{L}=\sum_{\ell \in L} \Lambda$
- At most n crossings per line $\Longrightarrow \Lambda_{L} \leq n\binom{|P|}{2}$
- Λ_{I} decreases by at least 2 at each flin

Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n) \leq \frac{1}{2} n\binom{P \mid}{ 2}$: from Segments to Lines

Introduction

Literature

Conclusion

- Λ_{ℓ} : number of segments crossed by the line ℓ
- A flip decreases Λ_{ℓ} by 0 ,
- L : the $\binom{|P|}{2}$ lines through two points of P

- At most n crossings per line $\Longrightarrow \Lambda_{L} \leq n\binom{|P|}{2}$
- Λ_{I} decreases by at least 2 at each flin

Introduction

Literature

- Λ_{ℓ} : number of segments crossed by the line ℓ
- A flip decreases Λ_{ℓ} by 0 ,
- L: the $\binom{P}{2}$ lines through two points of P
- $\Lambda_{L}=\sum_{\ell \in L} \Lambda_{\ell}$
- At most n crossings per line $\Rightarrow \Lambda_{L} \leq n\binom{P}{2}$
- Λ_{L} decreases by at least 2 at each flip
- Λ_{ℓ} : number of segments crossed by the line ℓ
- A flip decreases Λ_{ℓ} by 0,2 ,
- L: the $\binom{P}{2}$ lines through two points of P.
- $\Lambda_{L}=\sum_{\ell \in L} \Lambda_{\ell}$
- At most n crossings per line $\Rightarrow \Lambda_{L} \leq n\binom{P}{2}$
- Λ_{L} decreases by at least 2 at each flip
- Λ_{ℓ} : number of segments crossed by the line ℓ
- A flip decreases Λ_{ℓ} by 0,2 , or 1 .
- L: the $\binom{|P|}{2}$ lines through two points of P.
- $\Lambda_{L}=\sum_{\ell \in L} \Lambda_{\ell}$
- At most n crossings per line $\Rightarrow \Lambda_{L} \leq n\binom{P}{2}$
- Λ_{L} decreases by at least 2 at each flip
- Λ_{ℓ} : number of segments crossed by the line ℓ
- A flip decreases Λ_{ℓ} by 0,2 , or 1 .
- L : the $\binom{|P|}{2}$ lines through two points of P.

- At most n crossings per line
- Λ_{I} decreases by at least 2 at each flip

Introduction

Literature

- Λ_{ℓ} : number of segments crossed by the line ℓ
- A flip decreases Λ_{ℓ} by 0,2 , or 1 .

■ L : the $\binom{|P|}{2}$ lines through two points of $P \stackrel{\square}{*}$

- $\Lambda_{L}=\sum_{\ell \in L} \Lambda_{\ell}$
- At most n crossings per line $\Longrightarrow \Lambda_{L} \leq n\binom{|P|}{2}$
- Λ_{L} decreases by at least 2 at each flip

Introduction

Literature

- Λ_{ℓ} : number of segments crossed by the line ℓ
- A flip decreases Λ_{ℓ} by 0,2 , or 1 .
- L : the $\binom{|P|}{2}$ lines through two points of $P \stackrel{*}{*}$
- $\Lambda_{L}=\sum_{\ell \in L} \Lambda_{\ell}$
- At most n crossings per line $\Longrightarrow \Lambda_{L} \leq n\binom{|P|}{2}$.
- Λ_{L} decreases by at least 2 at each flip

Introduction

Literature

- Λ_{ℓ} : number of segments crossed by the line ℓ
- A flip decreases Λ_{ℓ} by 0,2 , or 1 .
- L : the $\binom{|P|}{2}$ lines through two points of P.
- $\Lambda_{L}=\sum_{\ell \in L} \Lambda_{\ell}$
- At most n crossings per line $\Longrightarrow \Lambda_{L} \leq n\binom{|P|}{2}$.
- Λ_{L} decreases by at least 2 at each flip.

Outline

Introduction

Literature
Folklore

Contribution

Conclusion

1 Introduction

2 Literature Review

- Folklore
- 1980

■ 2007, 2009

- 2016
- 2019

3 Contribution

4 Conclusion

2007, 2009: Exact Value of $\mathbf{d}_{\text {Convex Cycle }}^{\mathrm{R}}(n)$

[The Number of Flips Required to Obtain Non-crossing Convex Cycles -
Yoshiaki Oda, Mamoru Watanabe]
[On the Maximum Switching Number to Obtain Non-crossing Convex Cycles -Ro-Yu Wu, Jou-Ming Chang, Jia-Huei Lin]

Theorem (3.2.4; 3.2.7; 3.2.9)

$$
\begin{aligned}
& n-2 \leq \mathbf{d}_{\text {Convex Cycle }}^{\mathrm{R}}(n) \\
& \text { d for } n \geq 7 \\
& \text { Convex Cycle }(n) \leq 2 n-7 \text { for } n \geq 7 \\
& \mathbf{d}_{\text {Convex Cycle }}^{\mathrm{R}}(n) \leq n-2 \text { for } n \geq 7
\end{aligned}
$$

Outline

Introduction

Literature
Folklore

Conclusion

1 Introduction

2 Literature Review

- Folklore
- 1980

■ 2007, 2009

- 2016
- 2019

3 Contribution

4 Conclusion

2016: Insertion Power; Easy Lower Bounds

[Flip Distance to a Non-crossing Perfect Matching - Édouard Bonnet, Tillmann Miltzow]

Introduction

Literature

 FolkloreTheorem (3.1.4; 3.2.1; 3.2.12; 3.2.12; 3.2.12; 3.2.12)

$$
\begin{aligned}
& \bullet \because: \mathbf{d}_{\text {Multigraph }}^{\mathrm{I}}(n) \leq \frac{n}{2}(|P|-2) \preccurlyeq n|P| \preccurlyeq n^{2} \\
& n^{2} \preccurlyeq\binom{n}{2} \leq \mathbf{d}_{\text {Convex Permutation Matching }}^{\emptyset}(n) \\
& n \preccurlyeq n-1 \leq \mathbf{d}_{\text {Convex Matching }}^{\mathrm{RI}}(n) \\
& n \preccurlyeq n-1 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n) \\
& n \frac{n}{2}-1 \leq \mathbf{d}_{\text {Convex Cycle }}^{\mathrm{R}}(n) \bullet \text { for even } n \\
& n \frac{n-1}{2} \leq \mathbf{d}_{\text {Convex Tree }}^{\mathrm{R}}(n) \bullet \text { for odd } n
\end{aligned}
$$

Introduction

Literature

Folklore

1 Introduction

2 Literature Review

- Folklore
- 1980

■ 2007, 2009

- 2016
- 2019

3 Contribution

4 Conclusion

2019: Various Upper Bounds

[Flip Distance to some Plane Configurations -

Ahmad Biniaz, Anil Maheshwari, Michiel Smid]

Theorem (3.1.5; 3.2.2; 3.2.10; 3.2.11; 3.2.13; 3.3.1)

- P : the point set.
- $\sigma(P)$: the spread of P, i.e., the ratio between the distance of farthest and the closest pair of points.
- $\sqrt{n} \preccurlyeq \sigma(P)$
$\because \because \because \mathbf{d}_{\text {Multigraph }}^{\mathrm{I}}(n) \preccurlyeq n \sigma(P)$
$\because \mathbf{d}_{\text {Convex Multigraph }}^{\emptyset}(n) \leq\binom{ n}{2} \preccurlyeq n^{2}$
$\because \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n) \leq 2 n-3 \preccurlyeq n$

$$
\because \cdot \mathbf{d}_{\text {Convex Tree }}^{\mathrm{R}}(n) \preccurlyeq n \log n
$$

$$
\because \mathbf{d}_{\text {Convex Multigraph }}^{\mathrm{RI}}(n) \leq n-1 \preccurlyeq n
$$

$$
\circ^{\circ} \mathbf{d}_{\text {Redonaline Matching }}^{\mathrm{R}}(n) \leq n(n-1) \preccurlyeq n^{2}
$$

Outline

Introduction

Literature

Conclusion

1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- 2 Lower Bounds
- Reductions

4 Conclusion

Contribution Papers

Introduction

Literature
[1]: Complexity Results on Untangling Red-Blue Matchings -
Arun Kumar Das, Sandip Das, Guilherme D. da Fonseca, Yan Gerard, Bastien Rivier (LATIN 2022 \& Computational Geometry 2022).
[2]: On the Longest Flip Sequence to Untangle Segments in the Plane Guilherme D. da Fonseca, Yan Gerard, Bastien Rivier (WALCOM 2023).
[3]: Short Flip Sequences to Untangle Segments in the Plane -
Guilherme D. da Fonseca, Yan Gerard, Bastien Rivier (WALCOM 2024).

Outline

Introduction

Literature

Conclusion

1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- 2 Lower Bounds
- Reductions

4 Conclusion

Problem (1)
Let $\alpha \geq 1$ be a constant.
Input: S, a set of segments with rational coordinates forming a bipartite matching. Output: An untangle sequence starting at S of length at most α times that of the shortest untangle sequence of S.

Theorem (8.0.1 [1])
Problem 1 is $\mathcal{N P}$-hard for all $\alpha \geq 1$.

Proof of Intractability: Reduce Rectilinear Planar Monotone 3-SAT

Introduction

Literature

Proof of Intractability: Reduce Rectilinear Planar Monotone 3-SAT

Introduction

Literature

Outline

```
Introduction 1. Introduction
Literature
Contribution
Intractability
Upper Bounds
Red-on-a-Line
Convex
Near Convex
No Multiplicity
Lower Bounds
Reductions
Conclusion
```


1 Introduction

```
2 Literature Review
3 Contribution
- 1 Intractability
- 14 Upper Bounds
- Red-on-a-Line
- Convex
- Near Convex
- Counting Flips without Multiplicity
- 2 Lower Bounds
- Reductions
```


Outline

Introduction

Literature
Contribution

Intractability

Upper Bounds
Red-on-a-Line
Convex
Near Convex
No Multiplicity
Lower Bounds Reductions

Conclusion

1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- Red-on-a-Line
- Convex
- Near Convex
- Counting Flips without Multiplicity
- 2 Lower Bounds
- Reductions

Introduction

Literature

Contribution

 Intractability
Upper Bounds

Theorem (5.8.1 [1]; 4.4.1 [1])

$$
\begin{aligned}
& \quad \stackrel{\circ}{\circ} \mathbf{d}_{\text {Redonaline Matching }}^{\mathrm{R}}(n) \leq\binom{ n}{2} \preccurlyeq n^{2} \\
& \circ^{\circ} \mathbf{d}_{\text {Redonaline Matching }}^{\emptyset}(n) \leq\binom{ n}{2} \frac{n+4}{6} \preccurlyeq n^{3}
\end{aligned}
$$

Proof of $\mathbf{d}_{\text {Redonaline Matching }}^{\mathrm{R}}(n) \leq\binom{ n}{2}$: Removal Strategy

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.

Proof of $\mathbf{d}_{\text {Redonaline Matching }}^{\mathrm{R}}(n) \leq\binom{ n}{2}$: Removal Strategy

Introduction

No Multiplicity Lower Bounds Reductions Conclusion

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.

Algorithm: Recursively flip

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.

Proof of $\mathbf{d}_{\text {Redonaline Matching }}^{\mathrm{R}}(n) \leq\binom{ n}{2}$: Removal Strategy

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.

Proof of $\mathbf{d}_{\text {Redonaline Matching }}^{\mathrm{R}}(n) \leq\binom{ n}{2}$: Removal Strategy

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.

Proof of $\mathbf{d}_{\text {Redonaline Matching }}^{\mathrm{R}}(n) \leq\binom{ n}{2}$: Removal Strategy

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,

■ s_{2}, the segment crossing s_{1} with the topmost blue endpoint.

- The $\binom{n}{2}$ pairs of segments are in one of the following states.

- Does the number of \mathbf{H}-pairs always increase?

Proof of $\mathbf{d}_{\text {Redonaline Matching }}^{\mathrm{R}}(n) \leq\binom{ n}{2}$: Removal Strategy

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.
- The $\binom{n}{2}$ pairs of segments are in one of the following states.

- Does the number of H -pairs always increase?

Proof of $\mathbf{d}_{\text {Redonaline Matching }}^{\mathrm{R}}(n) \leq\binom{ n}{2}$: Removal Strategy

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.
- The $\binom{n}{2}$ pairs of segments are in one of the following states.

■ Does the number of \mathbf{H}-pairs always increase?

Proof of $\mathbf{d}_{\text {Redonaline Matching }}^{\mathrm{R}}(n) \leq\binom{ n}{2}$: Removal Strategy

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.
- The $\binom{n}{2}$ pairs of segments are in one of the following states.

■ Does the number of \mathbf{H}-pairs always increase?

- No, in general.

Proof of $\mathbf{d}_{\text {Redonaline Matching }}^{\mathrm{R}}(n) \leq\binom{ n}{2}$: Removal Strategy

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

Algorithm: Recursively flip

- s_{1}, the segment with crossings and with the topmost blue endpoint,
- s_{2}, the segment crossing s_{1} with the topmost blue endpoint.
- The $\binom{n}{2}$ pairs of segments are in one of the following states.

■ Does the number of \mathbf{H}-pairs always increase?

- No, in general.
- Yes, in the algorithm.

The number of \mathbf{H}-pairs does not increase in 2 cases which are avoided by the algorithm:

Literature

Contribution

Proof of $\mathbf{d}_{\text {Redonal ine Matching }}^{\emptyset}(n) \leq\binom{ n}{2} \frac{n+4}{6}$: Potential

Introduction

Literature

Contribution

Intractability

Upper Bounds

Near Convex No Multiplicity Lower Bounds Reductions

Conclusion

- k-observed crossings: pairs of segments whose projection cross
- Crossing k-relevant pairs k-observed crossing
- Φ_{k} : Number of k-relevant pairs forming k-observed crossings.
$\Phi_{k} \leq k(n-k+1)-1$
- Φ_{k} decreases at each flip of a k-relevant pair, i.e., at each swap of an inversion in w.
- $\sum_{k-1}^{n} \Phi_{k}$ is bounded and decreases by at least 2 at each flip

Proof of $\mathbf{d}_{\text {Redonal ine Matching }}^{\emptyset}(n) \leq\binom{ n}{2} \frac{n+4}{6}$: Potential

Proof of $\mathbf{d}_{\text {Redonal ine Matching }}^{\emptyset}(n) \leq\binom{ n}{2} \frac{n+4}{6}$: Potential

Introduction

Literature

Contribution

Intractability

Upper Bounds

Near Convex No Multiplicity Lower Bounds Reductions

Conclusion

- k-observed crossings: pairs of segments whose projection cross
- Crossing k-relevant pairs k-observed crossing
- Φ_{k} : Number of k-relevant pairs forming k-observed crossings.
$\Phi_{k} \leq k(n-k+1)-1$
- Φ_{k} decreases at each flip of a k-relevant pair, i.e., at each swap of an inversion in w
- $\sum_{k=1}^{n} \Phi_{k}$ is bounded and decreases by at least 2 at each flip

Proof of $\mathbf{d}_{\text {Redonal ine Matching }}^{\emptyset}(n) \leq\binom{ n}{2} \frac{n+4}{6}$: Potential

Introduction

Literature

Contribution

Intractability

Upper Bounds

Near Convex No Multiplicity Lower Bounds Reductions

Conclusion

- k-observed crossings: pairs of segments whose projection cross
- Crossing k-relevant pairs k-observed crossing
- Φ_{k} : Number of k-relevant pairs forming k-observed crossings.
$\Phi_{k} \leq k(n-k+1)-1$
- Φ_{k} decreases at each flip of a k-relevant pair, i.e., at each swap of an inversion in w
= $\sum_{k=1}^{n} \Phi_{k}$ is bounded and decreases by at least 2 at each flip

Proof of $\mathbf{d}_{\text {Redonal ine Matching }}^{\emptyset}(n) \leq\binom{ n}{2} \frac{n+4}{6}$: Potential

Proof of $\mathbf{d}_{\text {Redonal ine Matching }}^{\emptyset}(n) \leq\binom{ n}{2} \frac{n+4}{6}$: Potential

Introduction

Literature

Contribution

Intractability

Upper Bounds

Near Convex No Multiplicity Lower Bounds Reductions

Conclusion

- k-observed crossings: pairs of segments whose projection cross
- Crossing k-relevant pairs k-observed crossing
- Φ_{k} : Number of k-relevant pairs forming k-observed crossings.

- Φ_{k} decreases at each flip of a k-relevant pair, i.e., at each swap of an inversion in w
- $\sum_{k=1}^{n} \Phi_{k}$ is bounded and decreases by at least 2 at each flip

Proof of $\mathbf{d}_{\text {Redonal ine Matching }}^{\emptyset}(n) \leq\binom{ n}{2} \frac{n+4}{6}$: Potential

Introduction

Literature

Contribution

Intractability

Upper Bounds

Near Convex No Multiplicity Lower Bounds Reductions

Conclusion

- k-observed crossings: pairs of segments whose projection cross
- Crossing k-relevant pairs k-observed crossing
- Φ_{k} : Number of k-relevant pairs forming k-observed crossings.

- Φ_{k} decreases at each flip of a k-relevant pair, i.e., at each swap of an inversion in w
- $\sum_{k=1}^{n} \Phi_{k}$ is bounded and decreases by at least 2 at each flip

Proof of $\mathbf{d}_{\text {Redonal ine Matching }}^{\emptyset}(n) \leq\binom{ n}{2} \frac{n+4}{6}$: Potential

Introduction

Literature

Contribution

Intractability

Upper Bounds Red-on-a-Line Convex
Near Convex No Multiplicity Lower Bounds Reductions

Conclusion

- k-observed crossings: pairs of segments whose projection cross
- Crossing k-relevant pairs k-observed crossing
- Φ_{k} : Number of k-relevant pairs forming k-observed crossings.
$\Phi_{k} \leq k(n-k+1)-1$
- Φ_{k} decreases at each flip of a k-relevant pair, i.e., at each swap of an inversion in w
$=\sum_{k=1}^{n} \Phi$, is bounded and decreases by at least 2 at each flip

Proof of $\mathbf{d}_{\text {Redonal ine Matching }}^{\emptyset}(n) \leq\binom{ n}{2} \frac{n+4}{6}$: Potential

Introduction

Literature

Contribution

Intractability
Upper Bounds Red-on-a-Line Convex
Near Convex No Multiplicity Lower Bounds Reductions

Conclusion

- k-observed crossings: pairs of segments whose projection cross
- Crossing k-relevant pairs k-observed crossing
- Φ_{k} : Number of k-relevant pairs forming k-observed crossings.
$\Phi_{k} \leq k(n-k+1)-1$
- Φ_{k} decreases at each flip of a k-relevant pair, i.e., at each swap of an inversion in w.
- $\sum_{k=1}^{n} \Phi_{k}$ is bounded and decreases by at least 2 at each flip

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex
No Multiplicity Lower Bounds Reductions

Conclusion

■ k-observed crossings: pairs of segments whose projection cross.

- Crossing k-relevant pairs \Longrightarrow k-observed crossing.
- Φ_{k} : Number of k-relevant pairs forming k-observed crossings.
$\Phi_{k} \leq k(n-k+1)-1$
- Φ_{k} decreases at each flip of a k-relevant pair, i.e., at each swap of an inversion in w.
- $\sum_{k=1}^{n} \Phi_{k}$ is bounded and decreases by at least 2 at each flip

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions Conclusion

- k-observed crossings: pairs of segments whose projection cross.
- Crossing k-relevant pairs \Longrightarrow k-observed crossing.
- Φ_{k} : Number of k-relevant pairs forming k-observed crossings.

$$
\Phi_{k} \leq k(n-k+1)-1
$$

- Φ_{k} decreases at each flip of a k-relevant pair, i.e., at each swap of an inversion in w
- $\sum_{k=1}^{n} \Phi_{k}$ is bounded and decreases by at least 2 at each flip

Literature

Contribution

 Intractability

■ k-relevant pairs: pairs i, j with $i \neq j$ and $1 \leq i \leq k \leq j \leq n$.

- k-observed crossings: pairs of segments whose projection cross.
- Crossing k-relevant pairs \Longrightarrow k-observed crossing.
- Φ_{k} : Number of k-relevant pairs forming k-observed crossings.

$$
\Phi_{k} \leq k(n-k+1)-1
$$

- Φ_{k} decreases at each flip of a k-relevant pair, i.e., at each swap of an inversion in w.
$\sum_{k=1}^{n} \Phi_{k}$ is bounded and
decreases by at least 2 at each
flip

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions

Conclusion

■ k-relevant pairs: pairs i, j with $i \neq j$ and $1 \leq i \leq k \leq j \leq n$.

- k-observed crossings: pairs of segments whose projection cross.
- Crossing k-relevant pairs \Longrightarrow k-observed crossing.
- Φ_{k} : Number of k-relevant pairs forming k-observed crossings.

$$
\Phi_{k} \leq k(n-k+1)-1
$$

- Φ_{k} decreases at each flip of a k-relevant pair, i.e., at each swap of an inversion in w.
- $\sum_{k=1}^{n} \Phi_{k}$ is bounded and decreases by at least 2 at each flip.

Outline

Introduction

Literature
Contribution Intractability Upper Bounds Red-on-a-Line Convex

1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- Red-on-a-Line
- Convex
- Near Convex
- Counting Flips without Multiplicity
- 2 Lower Bounds
- Reductions

Convex Bounds

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line Convex
Near Convex

No Multiplicity Lower Bounds Reductions

Conclusion

- C : the point set in convex position.

Theorem (5.2.1 [3]; 5.3.1; 6.1.1 [3])

$\because \mathbf{d}_{\text {Convex Multigraph }}^{\mathrm{R}}(n) \preccurlyeq n \log |C| \preccurlyeq n \log n$
$\cdots \mathbf{d}_{\text {Convex Tree }}^{\mathrm{R}}(n) \leq 3 n-8 \preccurlyeq n \quad$ for $n \geq 3$
$\because \mathbf{d}_{\text {Convex }}^{\mathrm{I}}$ Multigraph $(n) \preccurlyeq n \log |C| \preccurlyeq n \log n$

Outline

Introduction

Literature
Contribution Intractability Upper Bounds Red-on-a-Line Convex

1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- Red-on-a-Line
- Convex
- Near Convex
- Counting Flips without Multiplicity
- 2 Lower Bounds
- Reductions

From Convex n^{2} to General n^{3} Upper Bound

- $P=C \cup T$: the point set. $\quad \because \because \bullet$
- C is in convex position.

■ t : sum of the degrees of the points in T.
Theorem (4.3.1 [2])

$$
\because \because \mathbf{d}_{\text {Multigraph }}^{\emptyset}(n, t) \preccurlyeq t n^{2}
$$

Proof of $\mathbf{d}_{\text {Multigraph }}^{\natural}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

Proof of $\mathbf{d}_{\text {Multigraph }}^{\natural}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

Introduction

Literature

Contribution Intractability Upper Bounds Red-on-a-Line Convex

- L^{\prime} : lines through at least one non-convex point
 (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark

Proof of $\mathbf{d}_{\text {Multigraph }}^{\natural}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

Introduction

Literature

$$
\Phi=\underbrace{\overbrace{\chi_{\text {crossings }}}}_{\text {may not decrease }!}+\overbrace{\text { compensate } \chi_{\text {crossings }} ?}^{\overbrace{\Lambda_{L^{\prime}}}}
$$

- L': lines through at least one non-convex point
- Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark

Proof of $\mathbf{d}_{\text {Multigraph }}^{\natural}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

Introduction

Literature

Contribution Intractability Upper Bounds Red-on-a-Line Convex

- L^{\prime} : lines through at least one non-convex point
- Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark

Proof of $\mathbf{d}_{\text {Multigraph }}^{\natural}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

Introduction

Literature

Contribution Intractability Upper Bounds Red-on-a-Line Convex

- L^{\prime} : lines through at least one non-convex point
- Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark

Proof of $\mathbf{d}_{\text {Multigraph }}^{\natural}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

Introduction

Literature

Contribution Intractability Upper Bounds Red-on-a-Line Convex

- L^{\prime} : lines through at least one non-convex point
- Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark
- Case 2. If not

Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line Convex

■ $L^{\prime}: \mid$ lines through at least one non-convex point. $\mid \preccurlyeq n t$

- Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark

Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

- L^{\prime} : |lines through at least one non-convex point. $\mid \preccurlyeq n t$
- Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark
- Case 2. If not

Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

- L^{\prime} : |lines through at least one non-convex point. $\mid \preccurlyeq n t$

■ Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark

- Case 2. If not:

Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

- $L^{\prime}: \mid$ lines through at least one non-convex point. $\mid \preccurlyeq n t$
- Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark
- Case 2. If not:
- Case 2.1. If p or t is non-convex: \checkmark
- Case 2.2. It, say, r is non-convex: \checkmark
- Case 2.3. The remaining p, q, s, t are convex:

Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

- $L^{\prime}: \mid$ lines through at least one non-convex point. $\mid \preccurlyeq n t$
- Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark
- Case 2. If not:
- Case 2.1. If p or t is non-convex: \checkmark
- Case 2.2. If, say, r is non-convex: \checkmark
- Case 2.3. The remaining p, q, s, t are convex:

Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

- $L^{\prime}: \mid$ lines through at least one non-convex point. $\mid \preccurlyeq n t$
- Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark
- Case 2. If not:
- Case 2.1. If p or t is non-convex: \checkmark
- Case 2.2. If, say, r is non-convex: \checkmark

[^1]

Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex

■ $L^{\prime}: \mid$ lines through at least one non-convex point. $\mid \preccurlyeq n t$

- Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark
- Case 2. If not:
- Case 2.1. If p or t is non-convex: \checkmark
- Case 2.2. If, say, r is non-convex: \checkmark
- Case 2.3. The remaining p, q, s, t are convex:

Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex

■ $L^{\prime}: \mid$ lines through at least one non-convex point. $\mid \preccurlyeq n t$

- Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark
- Case 2. If not:
- Case 2.1. If p or t is non-convex: \checkmark
- Case 2.2. If, say, r is non-convex: \checkmark
- Case 2.3. The remaining p, q, s, t are convex:

Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions Conclusion

■ $L^{\prime}: \mid$ lines through at least one non-convex point. $\mid \preccurlyeq n t$ $\cup \mid$ lines through two consecutive convex points. $\mid \preccurlyeq n$

■ Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark

- Case 2. If not:
- Case 2.1. If p or t is non-convex: \checkmark
- Case 2.2. If, say, r is non-convex: \checkmark
- Case 2.3. The remaining p, q, s, t are convex:

Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n, t) \preccurlyeq t n^{2}$: a Mixed Potential

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexNear Convex No Multiplicity Lower Bounds Reductions Conclusion

■ $L^{\prime}: \mid$ lines through at least one non-convex point. $\mid \preccurlyeq n t$ $\cup \mid$ lines through two consecutive convex points. $\mid \preccurlyeq n$

■ Case 1. If $\chi_{\text {crossings }}$ decreases, then so does Φ (because $\Lambda_{L^{\prime}}$ does not increase) \checkmark

- Case 2. If not:
- Case 2.1. If p or t is non-convex: \checkmark
- Case 2.2. If, say, r is non-convex: \checkmark
- Case 2.3. The remaining p, q, s, t are convex: \checkmark

Adding Non-Convex Points One by One, with Removal Choice

■ $P=C \cup T$: the point set.

- C is in convex position.
- t : sum of the degrees of the points in T.

Theorem (5.4.2 [3]; 5.5.2 [3]; 5.6.1 [3]; 5.7.1 [3])
$\because \because \mathbf{d}_{|\mathrm{T}|=1 \text { Multigraph }}^{\mathrm{R}}(n, t) \preccurlyeq n \log |C|+t n \preccurlyeq n \log n+t n$
$\because \because \mathbf{d}_{\text {Inout Multigraph }}^{\mathrm{R}}(n, t) \preccurlyeq t^{2} n+n \log n$
$\because \because \mathbf{d}_{\text {Inin Multigraph }}^{\mathrm{R}}(n, t) \preccurlyeq t n+n \log n$
$\because \because \mathbf{d}_{\text {Outout Multigraph }}^{\mathrm{R}}(n, t) \preccurlyeq 2^{t} n \log n$

- $P=C \cup T$: the point set.
- C is in convex position.

■ t : sum of the degrees of the points in T.

Theorem (6.2.1 [3]; 7.1.1 [3]; 7.2.3 [3])

Outline

Introduction

Literature

Contribution

1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- Red-on-a-Line
- Convex
- Near Convex
- Counting Flips without Multiplicity
- 2 Lower Bounds
- Reductions

Counting Flips without Multiplicity

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line ConvexTheorem (4.5.1 [2])
In the Multigraph version, any untangle sequence of n segments has $O\left(n^{8 / 3}\right)$ distinct flips, i.e. :
$\because \because \because\left\{\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n)\right\}_{\text {distinct }} \preccurlyeq n^{8 / 3}$.

- There are $O\left(\frac{n^{3}}{k}\right)$ flips decreasing Λ_{L} by at least k.
- There are $O\left(n^{2} k^{2}\right)$ flips decreasing Λ_{L} by less than k

Contribution

- There are $O\left(\frac{n^{3}}{k}\right)$ flips decreasing Λ_{L} by at least k.
- There are $O\left(n^{2} k^{2}\right)$ flips decreasing Λ_{L} by less than k : we enumerate them by sweeping a line.

Contribution Intractability Upper Bounds Red-on-a-Line Convex

Introduction

Literature

Contribution

 Intractability Upper Bounds Red-on-a-Line Convex- There are $O\left(\frac{n^{3}}{k}\right)$ flips decreasing Λ_{L} by at least k.
- There are $O\left(n^{2} k^{2}\right)$ flips decreasing Λ_{L} by less than k : we enumerate them by sweeping a line.
■ We choose $k=n^{1 / 3}$.

Outline

Introduction

Literature

Contribution

1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- 2 Lower Bounds
- Butterfly
- Fence
- Reductions

4 Conclusion

Outline

Introduction

Literature

Contribution

Upper Bounds

1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- 2 Lower Bounds
- Butterfly
- Fence

■ Reductions

4 Conclusion

Introduction

Literature

Contribution

Theorem (4.2.1 [1])

$$
n^{2} \preccurlyeq \frac{3}{2}\binom{n}{2}-\frac{n}{4} \leq \mathbf{d}_{\text {Redonaline Matching }}^{\emptyset}(n) \text { 。ㅇ. } \quad \text { for even } n
$$

Introduction

Literature

Contribution

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points

■ $6 \mathbf{H}$-pairs turn into \mathbf{T}-pairs, i.e., $6 \mathrm{H} \rightarrow \mathrm{T}$

- 4 T \rightarrow X

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly Fence Reductions
Conclusion

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.

■ Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.

- Bubble sort on the 3 segments from the 3 leftmost red points.
n 6 H-pairs turn into T-pairs, i.e., $6 \mathrm{H} \rightarrow \mathrm{T}$
- $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$
- $4 \mathrm{~T} \rightarrow \mathbf{X}$

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly Fence Reductions
Conclusion

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.

■ Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.

- Bubble sort on the 3 segments from the 3 leftmost red points.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathrm{H} \rightarrow \mathrm{T}$
- $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$
- $4 \mathrm{~T} \rightarrow \mathbf{X}$

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly Fence Reductions
Conclusion

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.

■ Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.

- Bubble sort on the 3 segments from the 3 leftmost red points.
. 6 H-pairs turn into T-pairs, i.e., $6 \mathrm{H} \rightarrow \mathrm{T}$
- $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$
- $4 \mathrm{~T} \rightarrow \mathbf{X}$

Introduction

Literature

Contribution

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.

■ 6 H-pairs turn into T-pairs, i.e., $6 \mathrm{H} \rightarrow \mathrm{T}$

- $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$
- $4 \mathrm{~T} \rightarrow \mathbf{X}$

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.

■ 6 H-pairs turn into T-pairs, i.e., $6 \mathrm{H} \rightarrow \mathrm{T}$

- $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$
- $4 \mathrm{~T} \rightarrow \mathbf{X}$

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.

■ Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.

- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathrm{H} \rightarrow \mathrm{T}$
- $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$
- $4 \mathrm{~T} \rightarrow \mathbf{X}$

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly Fence Reductions
Conclusion

■ Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.

- No shortcut.

■ Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.

- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.
- $2 \mathrm{H} \rightarrow \mathrm{T}$ and $2 \mathrm{~T} \rightarrow \mathrm{X}$

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly Fence Reductions
Conclusion

■ Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.

- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.

■ $6 \mathbf{H}$-pairs turn into \mathbf{T}-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

- $2 \mathrm{H} \rightarrow \mathrm{T}$ and $2 \mathrm{~T} \rightarrow \mathrm{X}$

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly Fence Reductions
Conclusion

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.

■ $6 \mathbf{H}$-pairs turn into \mathbf{T}-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

- $2 \mathrm{H} \rightarrow \mathrm{T}$ and $2 \mathrm{~T} \rightarrow \mathrm{X}$

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly Fence Reductions
Conclusion

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.

■ $6 \mathbf{H}$-pairs turn into \mathbf{T}-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

- $2 \mathrm{H} \rightarrow \mathrm{T}$ and $2 \mathrm{~T} \rightarrow \mathrm{X}$

Literature

Contribution

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.

■ $6 \mathbf{H}$-pairs turn into \mathbf{T}-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

- $2 \mathrm{H} \rightarrow \mathrm{T}$ and $2 \mathrm{~T} \rightarrow \mathrm{X}$

Literature

Contribution

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.

■ Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.

- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

■ $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$.

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.

■ Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.

- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

■ $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$.

Literature

Contribution

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

■ $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$.

Literature

Contribution

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.

■ $6 \mathbf{H}$-pairs turn into \mathbf{T}-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.
■ $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$.

Literature

Contribution

■ Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.

- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.

■ 6 H-pairs turn into T-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.
■ $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$.

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly Fence Reductions
Conclusion

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.

■ Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.

- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

■ $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$.

- $4 \mathbf{T} \rightarrow \mathbf{X}$.

Literature

Contribution

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

■ $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$.

- $4 \mathbf{T} \rightarrow \mathbf{X}$.

Literature

Contribution

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

■ $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$.

- $4 \mathbf{T} \rightarrow \mathbf{X}$.

Literature

Contribution

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.

■ Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.

- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

■ $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$.

- $4 \mathbf{T} \rightarrow \mathbf{X}$.

Literature

Contribution

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

■ $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$.

- $4 \mathbf{T} \rightarrow \mathbf{X}$.

Literature

Contribution

- Example of an untangle sequence of $n=6$ segments using more than $\binom{n}{2}=15$ flips.
- No shortcut.
- Half the pairs of segments are flipped twice, i.e., $\mathbf{X} \rightarrow \mathbf{H} \rightarrow \mathbf{T} \rightarrow \mathbf{X} \rightarrow \mathbf{H}$.
- Bubble sort on the 3 segments from the 3 leftmost red points, respectively rightmost.
- 6 H-pairs turn into T-pairs, i.e., $6 \mathbf{H} \rightarrow \mathbf{T}$.

■ $2 \mathbf{H} \rightarrow \mathbf{T}$ and $2 \mathbf{T} \rightarrow \mathbf{X}$.

- $4 \mathbf{T} \rightarrow \mathbf{X}$.

Outline

Introduction

Literature
Contribution Intractability Upper Bounds Lower Bounds Butterfly

Fence

 Reductions1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- 2 Lower Bounds
- Butterfly
- Fence
- Reductions

4 Conclusion

$$
n \preccurlyeq \frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n) \circ \circ^{\circ} \quad \text { for even } n
$$

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

- Any untangle sequence of a fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

- Any untangle sequence of a fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly
Fence

 Reductions- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly
Fence

 Reductions- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly
Fence

 Reductions- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly
Fence

 Reductions- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly
Fence

 Reductions- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly
Fence

 Reductions- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly
Fence

 Reductions- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly
Fence

 Reductions- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly
Fence

 Reductions- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Proof of $\frac{3}{2} n-2 \leq \mathbf{d}_{\text {Convex Bipartite Matching }}^{\mathrm{R}}(n)$: Fence

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Butterfly Fence Reductions- Any untangle sequence of a fence or a derived fence uses one flip per crossing.

Outline

Introduction

Literature

Contribution

 Reductions
1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- 2 Lower Bounds
- Reductions
- Trivial Reductions
- No Choice Reductions

4 Conclusion

Outline

Introduction

Literature
Contribution Intractability Upper Bounds Lower Bounds Reductions Trivial No Choice

1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- 2 Lower Bounds
- Reductions
- Trivial Reductions
- No Choice Reductions

Trivial Reductions

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Reductions Trivial No ChoiceLemma (2.3.1 [2]; 2.3.2 [2]; 2.3.3 [2])
The following inequalities hold for any non-negative integer n, and for any two properties Π, Π^{\prime} such that $\Pi \Longrightarrow \Pi^{\prime}$, and for any Choices $\in\{\emptyset, R, I, R I\}$.

$$
\begin{aligned}
& \mathbf{d}_{\Pi}^{\mathrm{RI}}(n) \leq\left\{\begin{array}{l}
\mathbf{d}_{\Pi}^{\mathrm{R}}(n) \\
\mathbf{d}_{\Pi}^{\mathrm{I}}(n)
\end{array}\right\} \leq \mathbf{d}_{\Pi}^{\emptyset}(n) \quad \text { (choice reductions) } \\
& \mathbf{d}_{\Pi}^{\text {Choices }}(n) \leq \mathbf{d}_{\Pi^{\prime}}^{\text {Choices }}(n) \quad \text { (property reductions) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{d}_{\Pi \text { Matching }}^{\mathrm{RI}}(n) \leq \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\mathrm{R}}(n) \\
& \mathbf{d}_{\Pi \text { Matching }}^{\mathrm{T}}(n) \leq \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(n) \quad \text { (transfer reductions) }
\end{aligned}
$$

Outline

Introduction

Literature

Contribution

1 Introduction

2 Literature Review

3 Contribution

- 1 Intractability
- 14 Upper Bounds
- 2 Lower Bounds
- Reductions
- Trivial Reductions
- No Choice Reductions

4 Conclusion

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Reductions Trivial No Choice Conclusion
Theorem (4.1.1 [2])

For all n and for Π being either the empty property or the Convex property:

$$
\begin{aligned}
\mathbf{d}_{\Pi \text { Multigraph }}^{\emptyset}(n) & =\mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(n), \\
2 \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(2 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(2 n), \\
2 \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Cycle }}^{\emptyset}(3 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(3 n), \\
2 \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Tree }}^{\emptyset}(3 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(3 n) .
\end{aligned}
$$

- Given a flip sequence of the left-hand-side of an inequality, we build a flip sequence of the right-hand-side of the inequality. - Immediate for black \leq

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Reductions Trivial No Choice Conclusion
Theorem (4.1.1 [2])

For all n and for Π being either the empty property or the Convex property:

$$
\begin{aligned}
\mathbf{d}_{\Pi \text { Multigraph }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(n) \leq \mathbf{d}_{\Pi \text { Multigraph }}^{\emptyset}(n), \\
2 \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(2 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(2 n), \\
2 \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Cycle }}^{\emptyset}(3 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(3 n), \\
2 \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Tree }}^{\emptyset}(3 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(3 n) .
\end{aligned}
$$

- Given a flip sequence of the left-hand-side of an inequality, we build a flip sequence of the right-hand-side of the inequality. - Immediate for black \leq

Theorem (4.1.1 [2])

For all n and for Π being either the empty property or the Convex property:

$$
\begin{aligned}
\mathbf{d}_{\Pi \text { Multigraph }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(n) \leq \mathbf{d}_{\Pi \text { Multigraph }}^{\emptyset}(n) \\
2 \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(2 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(2 n), \\
2 \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Cycle }}^{\emptyset}(3 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(3 n), \\
2 \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Tree }}^{\emptyset}(3 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(3 n) .
\end{aligned}
$$

■ Given a flip sequence of the left-hand-side of an inequality, we build a flip sequence of the right-hand-side of the inequality.
. Immediate for black \leq

Theorem (4.1.1 [2])

For all n and for Π being either the empty property or the Convex property:

$$
\begin{aligned}
\mathbf{d}_{\Pi \text { Multigraph }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(n) \leq \mathbf{d}_{\Pi \text { Multigraph }}^{\emptyset}(n), \\
2 \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(2 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(2 n), \\
2 \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Cycle }}^{\emptyset}(3 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(3 n), \\
2 \mathbf{d}_{\Pi \text { Bipartite Matching }}^{\emptyset}(n) & \leq \mathbf{d}_{\Pi \text { Tree }}^{\emptyset}(3 n) \leq \mathbf{d}_{\Pi \text { Matching }}^{\emptyset}(3 n) .
\end{aligned}
$$

- Given a flip sequence of the left-hand-side of an inequality, we build a flip sequence of the right-hand-side of the inequality.
- Immediate for black \leq.

62/86
 Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n) \leq \mathbf{d}_{\text {Matching }}^{\emptyset}(n)$

Introduction

Literature

Contribution

intractability

Upper Bounds
Lower Bounds Reductions
Trivial No Choice

62/86
 Proof of $\mathbf{d}_{\text {Multigraph }}^{\emptyset}(n) \leq \mathbf{d}_{\text {Matching }}^{\emptyset}(n)$

Introduction

Literature

Contribution

Intractability
Upper Bounds
Lower Bounds Reductions

${ }_{62 / \text { /G6 }}^{\text {Con }} \quad$ Proof of $\mathbf{d}_{\text {Convex Multigraph }}^{\emptyset}(n) \leq \mathbf{d}_{\text {Convex Matching }}^{\emptyset}(n)$

Introduction

Literature

Contribution

Intractability
Upper Bounds
Lower Bounds Reductions
Trivial No Choice

Conclusion

Proof of $2 \mathbf{d}_{\text {Matching }}^{\emptyset}(n) \leq \mathbf{d}_{\text {Bipartite Matching }}^{\emptyset}(2 n)$

Introduction

Literature

Contribution

 Intractability Upper Bounds Lower Bounds Reductions Trivial No Choice

Introduction

Literature
Contribution Intractability Upper Bounds Lower Bounds Reductions
Trivial No Choice

Conclusion

Introduction

Literature

Contribution

 Intractability

Introduction

Literature

Contribution

 Intractability

Introduction

Literature

Contribution

 Intractability

Outline

Introduction

Literature
Contribution

1 Introduction

2 Literature Review

3 Contribution

4 Conclusion
■ Summary Tables
■ Open Problems

- My Favorite Ideas

Outline

Introduction

Literature
Contribution Conclusion Tables Multigraph Matching Bipartite Cycle

Tree
Open Problems My Favorite Ideas

1 Introduction

2 Literature Review

3 Contribution

4 Conclusion
■ Summary Tables

- Multigraph
- Matching
- Bipartite Matching
- Cycle
- Tree
- Open Problems
- My Favorite Ideas

Outline

Introduction

Literature
Contribution
Conclusion
Tables
Multigraph Matching Bipartite Cycle
Tree
Open Problems
My Favorite Ideas

1 Introduction

2 Literature Review

3 Contribution

4 Conclusion
■ Summary Tables

- Multigraph
- Matching
- Bipartite Matching
- Cycle
- Tree
- Open Problems

■ My Favorite Ideas

| Introduction |
| :--- | :--- | :--- | :--- | :--- |
| Literature |
| Contribution |

Introduction

Literature

Contribution

Conclusion

Tables

Multigraph

$$
\begin{aligned}
& n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq \boldsymbol{n}^{\mathbf{3}} \\
& n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq \boldsymbol{t n}^{\mathbf{2}} \\
& n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq t n^{2} \\
& n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq \boldsymbol{n}^{2}
\end{aligned}
$$

Outline

Introduction

Literature
Contribution
Conclusion Tables
Multigraph Matching Bipartite Cycle
Tree
Open Problems
My Favorite Ideas

1 Introduction

2 Literature Review

3 Contribution

4 Conclusion
■ Summary Tables

- Multigraph
- Matching
- Bipartite Matching
- Cycle
- Tree
- Open Problems

■ My Favorite Ideas
$\left.\begin{array}{lll|l|l}\text { Introduction } \\ \text { Literature }\end{array}\right)$

| Introduction |
| :--- | :--- | :--- | :--- | :--- |
| Literature |
| Contribution |

Outline

Introduction

Literature
Contribution
Conclusion Tables

Multigraph
Matching Bipartite Cycle Tree

1 Introduction

2 Literature Review

3 Contribution

4 Conclusion
■ Summary Tables

- Multigraph
- Matching
- Bipartite Matching
- Cycle
- Tree
- Open Problems
- My Favorite Ideas

Asymptotic Bounds for Bipartite Matchings

	$\because \quad$ General	$n \preccurlyeq \mathrm{~d}^{\mathrm{R}} \preccurlyeq n^{3}$	$n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq n^{3}$
Introduction Literature	$\circ \circ^{\circ} \text { Redonaline }$	$n \preccurlyeq \mathrm{~d}^{\mathrm{R}} \preccurlyeq \boldsymbol{n}^{\mathbf{2}}$	$n^{2} \preccurlyeq d^{\emptyset} \preccurlyeq n^{3}$
Contribution	$\because \quad \mathrm{C} \cup \mathrm{T}$	$n \preccurlyeq \mathrm{~d}^{\mathrm{R}} \preccurlyeq t n^{2}$	$n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq t n^{2}$
Conclusion Tables Multigraph Matching	Allout	$n \preccurlyeq \mathrm{~d}^{\mathrm{R}} \preccurlyeq t n^{2}$	$n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq t n^{2}$
BipartiteCycleTreeOpen ProblemsMy Favorite Ideas	- Separated	$n \preccurlyeq \mathrm{~d}^{\mathrm{R}} \preccurlyeq t n^{2}$	$n^{2} \preccurlyeq \mathbf{d}^{\emptyset} \preccurlyeq t n^{2}$
	Outout	$n \preccurlyeq \mathrm{~d}^{\mathrm{R}} \preccurlyeq n$	$n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq t n^{2}$
	Inout Inin	$n \preccurlyeq \mathrm{~d}^{\mathrm{R}} \preccurlyeq n$	$\begin{aligned} & n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq t n^{2} \\ & n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq t n^{2} \end{aligned}$
	$\|T\|=1$	$n \preccurlyeq \mathrm{~d}^{\mathrm{R}} \preccurlyeq n$	$n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq t n^{2}$
	Convex	$\boldsymbol{n} \preccurlyeq \mathrm{d}^{\mathrm{R}} \preccurlyeq \boldsymbol{n}$	$n^{2} \preccurlyeq \mathrm{~d}^{\emptyset} \preccurlyeq n^{2}$
	Permutation	$\boldsymbol{n} \preccurlyeq \mathrm{d}^{\mathrm{R}} \preccurlyeq n$	$\boldsymbol{n}^{\mathbf{2}} \preccurlyeq \mathrm{d}^{\emptyset} \preccurlyeq n^{2}$

Outline

Introduction

Literature
Contribution
Conclusion Tables

Multigraph Matching Bipartite Cycle

1 Introduction

2 Literature Review

3 Contribution

4 Conclusion
■ Summary Tables

- Multigraph
- Matching
- Bipartite Matching
- Cycle
- Tree
- Open Problems
- My Favorite Ideas
$\left.\begin{array}{lll|l|l}\text { Introduction } \\ \text { Literature }\end{array}\right)$

Outline

Introduction

Literature

Contribution Conclusion

Tables

Multigraph
Matching
Bipartite
Cycle
Tree

2 Literature Review

3 Contribution

4 Conclusion
■ Summary Tables

- Multigraph
- Matching
- Bipartite Matching
- Cycle
- Tree
- Open Problems
- My Favorite Ideas
$\left.\begin{array}{lll|l|l}\text { Introduction } \\ \text { Literature }\end{array}\right)$

Outline

Introduction

Literature
Contribution Conclusion Tables Open Problems My Favorite Ideas

1 Introduction

2 Literature Review

3 Contribution

4 Conclusion
■ Summary Tables
■ Open Problems

- My Favorite Ideas

$$
\begin{gathered}
n^{2} \preccurlyeq \mathbf{d}_{\text {Multigraph }}^{\emptyset} \preccurlyeq n^{2} \preccurlyeq n^{3} \\
n \preccurlyeq \mathbf{d}_{\text {Multigraph }}^{\mathrm{R}} \preccurlyeq n \text { or } n \log n \preccurlyeq n^{3} \\
n \preccurlyeq \mathbf{d}_{\text {Multigraph }}^{\mathrm{I}} \preccurlyeq n \text { or } n \log n \preccurlyeq n^{2} \\
\\
n \preccurlyeq \mathbf{d}_{\text {Multigraph }}^{\mathrm{RI}} \preccurlyeq n \preccurlyeq n^{2}
\end{gathered}
$$

Introduction

We know $\mathcal{N} \mathcal{P}$-hardness for:

- The shortest untangle sequence in the Bipartite Matching version.

We conjecture $\mathcal{N} \mathcal{P}$-hardness for:

- The shortest untangle sequence in all other versions.
- The longest untangle sequence in all versions.

We do not know $\mathcal{N} \mathcal{P}$-hardness for:
■ The shortest/longest untangle sequence in any version for Convex point sets.

■ Smooth transitions between Convex and General point sets?

- No restriction on the number/position of non-convex points?

Introduction

Literature

Contribution

■ Which bound is tight?

```
            n\preccurlyeq d}\mp@subsup{\mathbf{d}}{\mathrm{ Convex Multigraph }}{\textrm{R}}(n)\preccurlyeqn\operatorname{log}
                n\preccurlyeq d}\mp@subsup{\mathbf{d}}{\mathrm{ Convex Multigraph }}{I}(n)\preccurlyeqn\operatorname{log}
- Why a bound specific to Matching?
- A sub-quadratic upper bound on the reuse of a given flip?
- Removal choice to control flip reuse? ( \(\rightarrow\) sub-cubic upper bound on \(\mathrm{d}_{\text {Muitigraph }}^{\mathrm{R}}\) )
■ Is the fence lower bound tight?
```


Introduction

Literature

Contribution

■ Which bound is tight?

$$
\begin{aligned}
& n \preccurlyeq \mathbf{d}_{\text {Convex Multigraph }}^{\mathrm{R}}(n) \preccurlyeq n \log n \\
& n \preccurlyeq \mathbf{d}_{\text {Convex Multigraph }}^{\mathrm{I}}(n) \preccurlyeq n \log n
\end{aligned}
$$

■ Why a bound specific to Matching?

- A sub-quadratic upper bound on the reuse of a given flip?
- Removal choice to control flip reuse? (\rightarrow sub-cubic upper bound on $\mathrm{d}_{\text {Multigraph }}^{\mathrm{R}}$)
- Is the fence lower bound tight?

Introduction

Literature

Contribution

■ Which bound is tight?

$$
\begin{aligned}
& n \preccurlyeq \mathbf{d}_{\text {Convex Multigraph }}^{\mathrm{R}}(n) \preccurlyeq n \log n \\
& n \preccurlyeq \mathbf{d}_{\text {Convex Multigraph }}^{\mathrm{I}}(n) \preccurlyeq n \log n
\end{aligned}
$$

■ Why a bound specific to Matching?

- A sub-quadratic upper bound on the reuse of a given flip?
- Removal choice to control flip reuse? (\rightarrow sub-cubic upper bound on $\mathrm{d}_{\text {Multigraph }}^{\mathrm{R}}$)
- Is the fence lower bound tight?

Introduction

Literature
Contribution

■ Which bound is tight?

$$
\begin{aligned}
& n \preccurlyeq \mathbf{d}_{\text {Convex Multigraph }}^{\mathrm{R}}(n) \preccurlyeq n \log n \\
& n \preccurlyeq \mathbf{d}_{\text {Convex Multigraph }}^{\mathrm{I}}(n) \preccurlyeq n \log n
\end{aligned}
$$

■ Why a bound specific to Matching?

- A sub-quadratic upper bound on the reuse of a given flip?
- Removal choice to control flip reuse? (\rightarrow sub-cubic upper bound on $\mathbf{d}_{\text {Multigraph }}^{\mathrm{R}}$)
- Is the fence lower bound tight?

Introduction

Literature
Contribution

■ Which bound is tight?

$$
\begin{aligned}
& n \preccurlyeq \mathbf{d}_{\text {Convex Multigraph }}^{\mathrm{R}}(n) \preccurlyeq n \log n \\
& n \preccurlyeq \mathbf{d}_{\text {Convex Multigraph }}^{\mathrm{I}}(n) \preccurlyeq n \log n
\end{aligned}
$$

■ Why a bound specific to Matching?

- A sub-quadratic upper bound on the reuse of a given flip?
- Removal choice to control flip reuse? (\rightarrow sub-cubic upper bound on $\mathbf{d}_{\text {Multigraph }}^{\mathrm{R}}$)
■ Is the fence lower bound tight?

Outline

Introduction

Literature
Contribution
Conclusion
Tables
Open Problems My Favorite Ideas

1 Introduction

2 Literature Review

3 Contribution

4 Conclusion
■ Summary Tables

- Open Problems

■ My Favorite Ideas

Introduction

Literature

Contribution

Introduction

Literature

Contribution

Conclusion

Tables
Open Problems My Favorite Ideas

```
Introduction
Literature
Contribution
Conclusion
Tables
Open Problems
My Favorite Ideas
```


Introduction

Literature

Contribution

Literature
Contribution
Conclusion Tables
Open Problems My Favorite Ideas

\rightarrow

Swapping Flips via State Tracking: $\mathbf{d}_{\text {Bipartite Matching }}^{\mathrm{R}} \preccurlyeq n^{2}$?

Introduction

Literature

Contribution

 Conclusion Tables- A labeled bipartite matching $=$ a permutation.
- A flip = a special transposition
- Example of a flip sequence:
- Swapping two transpositions:
$(a b)(a b)=1 d$
$(a b)(c d)=(c d)(a b)$

$(a b)(b c)=(c a)(a b)=(b c)(c a)$
- Is it possible to swap and cancel flips?
- Yes, in our experiments on the butterfly.

Swapping Flips via State Tracking: $\mathbf{d}_{\text {Bipartite Matching }}^{\mathrm{R}} \preccurlyeq n^{2}$?

Introduction

Literature

Contribution

Conclusion

 Tables- A labeled bipartite matching $=$ a permutation.
- A flip $=$ a special transposition.
- Example of a flip sequence:
- Swapping two transpositions:
$(a b)(a b)=1 d$
$(a b)(c d)=(c d)(a b)$
$(a b)(b c)=(c a)(a b)=(b c)(c a)$

- Is it possible to swap and cancel flips?
- Yes, in our experiments on the butterfly.

Swapping Flips via State Tracking: $\mathbf{d}_{\text {Bipartite Matching }}^{\mathrm{R}} \preccurlyeq n^{2}$?

Introduction

Literature

Contribution

Conclusion

 Tables- A labeled bipartite matching $=$ a permutation.
- A flip = a special transposition.
- Example of a flip sequence:

$$
(12)(34)(23)
$$

■ Swapping two transpositions:
$(a b)(b c)=(c a)(a b)=(b c)(c a)$

- Is it possible to swap and cancel flips?
- Yes, in our experiments on the butterfly.

Swapping Flips via State Tracking: $\mathbf{d}_{\text {Bipartite Matching }}^{\mathrm{R}} \preccurlyeq n^{2}$?

Introduction

Literature

Contribution

Conclusion

 Tables- A labeled bipartite matching $=$ a permutation.
- A flip $=$ a special transposition.
- Example of a flip sequence:

$$
(12)(34)(23)
$$

■ Swapping two transpositions:
$(a b)(b c)=(c a)(a b)=(b c)(c a)$

- Is it possible to swap and cancel flips?
- Yes, in our experiments on the butterfly

Swapping Flips via State Tracking: $\mathbf{d}_{\text {Bipartite Matching }}^{\mathrm{R}} \preccurlyeq n^{2}$?

Introduction

Literature

Contribution

- A labeled bipartite matching $=$ a permutation.
- A flip = a special transposition.
- Example of a flip sequence:

$$
(12)(34)(23)
$$

- Swapping two transpositions:

- Is it possible to swap and cancel flips?
- Yes, in our experiments on the butterfly.

Swapping Flips via State Tracking: $\mathbf{d}_{\text {Bipartite Matching }}^{\mathrm{R}} \preccurlyeq n^{2}$?

Introduction

Literature

Contribution

Conclusion

 Tables- A labeled bipartite matching $=$ a permutation.
- A flip $=$ a special transposition.
- Example of a flip sequence:

$$
(12)(34)(23)
$$

- Swapping two transpositions:

- Is it possible to swap and cancel flips?
- Yes, in our experiments on the butterfly

Swapping Flips via State Tracking: $\mathbf{d}_{\text {Bipartite Matching }}^{\mathrm{R}} \preccurlyeq n^{2}$?

Introduction

Literature

Contribution

Conclusion

 Tables- A labeled bipartite matching $=$ a permutation.
- A flip = a special transposition.
- Example of a flip sequence:

$$
(12)(34)(23)
$$

- Swapping two transpositions:

- Is it possible to swap and cancel flips?
- Yes, in our experiments on the butterfly.

Introduction

Literature

Contribution

Conclusion

 Tables- A labeled bipartite matching $=$ a permutation.
- A flip = a special transposition.
- Example of a flip sequence:

$$
(12)(34)(23)
$$

- Swapping two transpositions:

$$
\begin{align*}
(a b)(a b) & =\mathrm{Id} \tag{1}\\
(a b)(c d) & =(c d)(a b) \tag{2}\\
(a b)(b c) & =(c a)(a b)=(b c)(c a)
\end{align*}
$$

- Is it possible to swap and cancel flips?
- Yes, in our experiments on the butterfly.

Introduction

Literature

Contribution

Conclusion

- A labeled bipartite matching $=$ a permutation.
- A flip = a special transposition.
- Example of a flip sequence:

$$
(12)(34)(23)
$$

- Swapping two transpositions:

$$
\begin{align*}
(a b)(a b) & =\mathrm{Id} \tag{1}\\
(a b)(c d) & =(c d)(a b) \tag{2}\\
(a b)(b c) & =(c a)(a b)=(b c)(c a)
\end{align*}
$$

- Is it possible to swap and cancel flips?
- A labeled bipartite matching $=$ a permutation.
- A flip = a special transposition.
- Example of a flip sequence:

$$
(12)(34)(23)
$$

- Swapping two transpositions:

$$
\begin{align*}
(a b)(a b) & =\mathrm{Id} \tag{1}\\
(a b)(c d) & =(c d)(a b) \tag{2}\\
(a b)(b c) & =(c a)(a b)=(b c)(c a)
\end{align*}
$$

- Is it possible to swap and cancel flips?
- Yes, in our experiments on the butterfly.

Literature

Contribution
Conclusion
Tables
Open Problems My Favorite Ideas

Literature

Contribution
Conclusion
Tables

Open Problems

 My Favorite Ideas

Literature

Contribution
Conclusion
Tables

Open Problems

 My Favorite Ideas

Literature

Contribution

Conclusion
Tables

Open Problems

 My Favorite Ideas

Literature

Contribution

Conclusion
Tables
Open Problems My Favorite Ideas

Introduction

Literature

Contribution
Conclusion
Tables
Open Problems My Favorite Ideas

Introduction

Literature

Contribution
Conclusion
Tables
Open Problems My Favorite Ideas

Introduction

Literature

Contribution
Conclusion
Tables
Open Problems My Favorite Ideas

Introduction

Literature

Contribution
Conclusion
Tables
Open Problems My Favorite Ideas

Introduction

Literature

Contribution
Conclusion
Tables
Open Problems My Favorite Ideas

Introduction

Literature

Contribution

Conclusion
Tables
Open Problems My Favorite Ideas

Introduction

Literature

Contribution

Conclusion
Tables
Open Problems My Favorite Ideas

Introduction

Literature

Contribution

Conclusion
Tables
Open Problems My Favorite Ideas

Introduction

Literature

Contribution

Conclusion
Tables
Open Problems My Favorite Ideas

Introduction

Literature

Introduction

Literature

Contribution

Conclusion
Tables
Open Problems My Favorite Ideas

[^0]: - repeat until there are no crossings.

[^1]: - Case 2.3. The remaining p, q, s, t are convex:

