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Unit Disk Graphs

Unit disk graph: Intersection graph of unit-disks in the plane

Applications in wireless networks

Neither planar nor perfect:
Ki and Ci are UDGs for all i

Recognition: NP-Hard, ∃R-complete
Doubly exponential algorithm exists

Vertex coordinates (disk centers) are real numbers
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Approximation Algorithms

Two types of algorithms:

Geometric: vertex coordinates
Edge pq if ‖pq‖ ≤ 2
Graph-based: adjacency information only

PTASs for several problems:
(even without geometry)

Minimum Dominating Set
Maximum (Weight) Independent Set
Minimum (Weight) Vertex Cover
...

PTASs have high complexity:
O(n10) to 4-approximate the minimum dominating set
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Near-Linear-Time Approximation

Our goal:

What approximation factor can we achieve in near-linear time?

For geometric algorithms: O(n logO(1) n) = Õ(n) time

For graph algorithms: O((n+m) logO(1) n) = Õ(n+m) time

n: number of vertices

m: number of edges
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Two Optimization Problems

Independent Set: Subset of points
with minimum distance > 2

Maximum Independent Set (MIS):
Maximize cardinality

Dominating Set: Subset of points D
such that all input points are within
distance at most 2 from a point in D

Minimum Dominating Set (MDS):
Minimize cardinality
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Greedy Algorithms

M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25(2):59–68, 1995.
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Maximal Independent Set

Maximal independent set gives a 5-approximation to both:

Maximum independent set
Minimum dominating set

Can be computed in O(n+m) time

I ← ∅
For each v ∈ V (G):
I ← I ∪ {v}
Remove v and its neighbors from G
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Geometric Version

Takes O(n) time using O(1)-time hashing

Hash points into grid

Cells of diameter 2

Algorithm:

I ← ∅
For each v ∈ V (G):
I ← I ∪ {v}
Empty v’s cell
Remove v’s neighbors from cells nearby

Each point is examined at most 25 times
(cells nearby)
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Approximation for Maximum Independent Set

2

Unit disk graph: no induced K1,6

I∗: optimal solution

I: algorithm solution (maximal independent set)

For each vertex v added to I
at most 5 neighbors of v in I∗ are removed

Conclusion: |I∗| ≤ 5|I|
5-approximation
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Improvement for Maximum Independent Set

2

Sort vertices from left to right

Run the same algorithm

Right neighbors form 3 cliques

3-approximation for MIS

O(n log n) time to sort

Much slower without geometry
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Approximation for Minimum Dominating Set

Unit disk graph: no induced K1,6

D∗: optimal solution

D: algorithm solution (maximal independent set)

Each vertex v in D has at most 5 neighbors in D∗

Conclusion: |D| ≤ 5|D∗|
5-approximation

Sorting won’t help!

2



Introduction

Greedy

Local Search

Strip
Decomposition

Shifting
Coresets

Conclusion

Local Search

Guilherme D. da Fonseca, Celina M.H. de Figueiredo, Vińıcius G. Pereira de Sá, and
Raphael C.S. Machado. Efficient sub-5 approximations for minimum dominating
sets in unit disk graphs. Theoretical Computer Science, 540–541:70–81, 2014.
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Local Search

L0

L1

Build a suboptimal solution S

Find two small sets L0, L1

Say |L0|, |L1| < k

Make S ← (S \ L0) ∪ L1

Verify that S is feasible

Maximization: use |L0| < |L1|
Minimization: use |L0| > |L1|
Repeat until no further improvement possible
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Local Search for Minimum Dominating Set

Irreducible corona:

Reducible corona:

D: independent dominating set

C ⊂ D is a corona centered at vertex c if:

|C| = 5
C is an independent set
c is adjacent to all c

C, c is reducible if D \ C ∪ {c} is a dominating set

Theorem

If D has no reducible corona, then D is a
44/9-approximation to the minimun dominating set.

Such D can be computed in O(n+m) time without
geometry or O(n log n) time with geometry
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Lower Bound of 4.8 (against 4.89 UB)

OPT = 5
|D| = 5 · 4 + 4 = 24
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Proof Technique

Several geometric results needed:

Lemma 1 (Pál 1921): If a set of points P has diameter 1, then P can be
enclosed by a circle of radius 1/

√
3.

Lemma 2 (Fodor 2007): The radius of the smallest circle enclosing 13 points
with mutual distance ≥ 1 is (1 +

√
5)/2.

Lemma 3 (Fejes Tóth 1953): Every packing of two or more congruent disks in
a convex region has density at most π/

√
12.

Lemma 4: The closed neighborhood of a clique in a unit disk graph contains
at most 12 independent vertices.

Lemma 5: The closed d-neighborhood of a vertex in a unit disk graph contains
at most π(2d+ 1)2/

√
12 independent vertices, for integer d ≥ 1.
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Strip Decomposition

Gautam K. Das, Guilherme D. da Fonseca, and Ramesh K. Jallu. Efficient
Independent Set Approximation in Unit Disk Graphs. Discrete Applied

Mathematics, to appear.
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Independent Set with Strips (Quadratic)

2

Break the problem into horizontal strips of height 2

Solve MIS for each strip exactly

Return maximum among all even or odd strips

Good: 2-approximation even for weighted version

Bad: Don’t know how to solve MIS exactly for each
strip in Õ(n) time (but O(n2 log n) is possible)
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Independent Set with Strips (Linear)

√
3

2

Use strips of height at most
√
3

Resulting graphs are co-comparability

Solve each strip exactly

Separation 2 between strips

Multiple shifts need to be considered

Approximation factor: 1 + 2√
3
+ ε < 2.16
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Exact MIS Inside a Strip

Height of the strip:
√
3

Dynamic programming

v1, . . . , vn: vertices sorted by x coordinate

For k from 1 to n:
f(k) = maximum independent set of v1, . . . , vk

Recurrence (cocomparability graph):
f(k) = 1 +maxi<k and ‖vivk‖>2 f(i)

Query uses semi-dynamic data structure:
O(log2 n) time per query

MIS can be solved in O(n log2 n) time

Extends to weighted version (extra O(log n) factor)
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Shifting Coresets

Guilherme D. da Fonseca, Vińıcius G. Pereira de Sá, and Celina M.H.
de Figueiredo. Shifting Coresets: Obtaining Linear-Time Approximations for Unit
Disk Graphs and Other Geometric Intersection Graphs. International Journal on

Computational Geometry and Applications, 27(4):255–276, 2017.
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Shifting Coresets

(1) (2) (3) (4)

(1) Break the original problem into subproblems of O(1) diameter (shifting
strategy)

(2) Build a coreset with O(1) points for each subproblem, which gives an
α-approximation to the subproblem

(3) Solve the coreset optimally

(4) Combine the solutions into an (α+ ε)-approximation
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Breaking IS into Subproblems

Break Independent Set instance into O(1)-diameter
subproblems (shifting strategy):

Set k to smallest integer with
(

k
k−2

)2
≥ 1 + ε

4

Use grids of size 2k

Create k2 shifted grids with even origins

Contract grid cells by 1 in all directions

Each contracted cell is a subproblem
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Analysis of Shifting Strategy

Contracted cells are distance 2 apart:
union preserves independence

4-approximation in yellow area

Yellow area gets much bigger than white area as
k →∞
Expected number of OPT points in white area is
small

Maximum is larger than expectation
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Constant-Diameter Coreset for MIS

Coreset: Subset with O(1) points that approximates the
original solution

Algorithm:

Create grid with cells of diameter 0.29 < (2−
√
2)/2

Select a point of maximum weight inside each cell
(coreset)
Find the optimal independent set among the selected
points

We need to prove it gives a 4-approximation!
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Proof of 4-Approximation of MIS

Consider the optimal independent set

Moving points by at most 0.29, we obtain a planar graph

Planar graphs are 4-colorable

The color of maximum weight is a 4-approximation
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Lower Bound of 3.25
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4

1
4

P1: Set of points from the figure

P2: Multiply coordinates from P1 by (1 + ε) and
weights by (1− ε)
P1 ∪ P2 gives a lowerbound of 3.25

P2 is independent
MWIS: P2, with w(P2) ≈ 3.25
Coreset: P1

P1 has MWIS with weight 1
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Minimum Dominating Set Algorithm

Break the problem into subproblems of O(1)
diameter using the shifting strategy

Cells need to be expanded rather than contracted

We’ll present only the coreset
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Constant-Diameter Coreset for MDS

Algorithm:

Create grid with cells of diameter 0.24
Select the points of min and max x and y coordinates
Find the optimal dominating set using the coreset points,
but dominating every point

We need to prove it’s a 4-approximation!
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Proof of 4-Approximation of MDS

Either point p from OPT is in the coreset (great!)

Or there are points q1, q2 near p with angle ≥ 90◦

We dominate all points dominated by p using at most 4 points q1, q2, q3, q4

p
q1

q2
p

q1
q2

q3 q4

q3

q4
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Lower Bound of 4

4-approximation

Optimal solution

Remaining disks
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Conclusion

Greedy:

5-approximation to IS and DS in linear time with or without geometry

3-approximation to IS in O(n log n) time with geometry

Local search:

44/9-approximation to DS in O(n+m) time without geometry

44/9-approximation to DS in O(n log n) time with geometry

Strip decomposition:

2.16-approximation to IS in O(n log2 n) time with geometry

Generalizes to weighted version in O(n log3 n) time

Shifting coresets:

(4 + ε)-approximation to IS and DS in O(n) time with geometry

Generalizes to weighted version for IS
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Open Problems

Other techniques that yield near-linear-time appproximation algorithms?

Can we prove inaproximability in near-linear-time?

Can we improve the analysis of existing algorithms?

Can we do better than 3-approximation for the chromatic number (greedy)?

Maximum independent set without geometry better than greedy?

Minimum weight dominating set?

Intersection of other shapes: general disks, pseudo-disks, line segments,
axis-aligned rectangles...
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Thank you!

Photo by Gilbert Garcin
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