
Linear-Time Approximation Algorithms

for Unit Disk Graphs

Guilherme D. da Fonseca
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Abstract

Numerous approximation algorithms for unit disk graphs have been proposed in
the literature, exhibiting sharp trade-offs between running times and approximation
ratios. We propose a method to obtain linear-time approximation algorithms for
unit disk graph problems. Our method yields linear-time (4 + ε)-approximations to
the maximum-weight independent set and the minimum dominating set, as well as a
linear-time approximation scheme for the minimum vertex cover, improving upon all
known linear- or near-linear-time algorithms for these problems.

1 Introduction

A unit disk graph is the intersection graph of unit disks in the plane. Unit disk graphs are
often represented using the coordinates of the disk centers instead of explicit adjacency
information. In this geometric setting, two vertices are adjacent if the corresponding points
(the disk centers) are within Euclidean distance at most 2 from one another.

Owing to their applicability in wireless networks [10, 13], numerous approximation
algorithms for unit disk graphs have been proposed in the literature. Such approxima-
tions are either graph-based algorithms, when they receive as input solely the adjacency
representation of the graph, or geometric algorithms, when the input consists of a geo-
metric representation of the graph. While the edges of a graph G(V,E), with n = |V |
and m = |E|, can be obtained from the vertices’ coordinates in O(n+m) time under the
real-RAM model with floor function and constant-time hashing [3], obtaining a geometric
representation of a given unit disk graph is NP-hard [4]. We note that, when the goal is to
design O(n)-time algorithms, the geometric representation is required, since the number
m of edges in a unit disk graph can be as high as Θ(n2).

The shifting strategy gave rise to geometric PTASs for several problems for unit disk
graphs [5, 8]. Essentially, the shifting strategy reduces the original problem to a set of
subproblems of constant diameter. Such reduction takes O(n) time and yields a (1 + ε)-
approximation to the original problem, given the exact solutions to the subproblems.
However, the running times of the PTASs are polynomials of high degree because each
subproblem is solved exactly by exploiting the fact that the point set has constant di-
ameter. For example, we can show by packing arguments that a set of diameter d has a
dominating set with c = O(d2) vertices, and, consequently, exhaustive enumeration finds
the minimum dominating set in roughly O(nc) time. Graph-based PTASs for these prob-
lems are also known [13]. While they do not use the shifting strategy, their running times
are even higher than those of their geometric counterparts.

1



The minimum dominating set problem (MDSP) admits some PTASs [8, 13], the fastest
of which is geometric and provides a (1 + ε)-approximation in nO(1/ε2) time and a 4-
approximation in roughly O(n10) time. Such high running times have motivated the study
of faster constant-factor approximation algorithms. Examples of graph-based algorithms
include a 44/9-approximation that runs in O(n+m) time and a 43/9-approximation that
runs in O(n2m) time [6]. Among the geometric algorithms, we cite the original 5-approx-
imation, which can be implemented in O(n) time if the floor function and constant-time
hashing are available [10]; a 44/9-approximation that uses local improvements and runs
in O(n log n) time [6]; a 4-approximation that uses grids and runs in O(n8 log n) time [7];
and a recent 4-approximation that uses hexagonal grids and runs in O(n6 log n) time [9].

The maximum-weight independent set problem (MWISP) also admits some PTASs,

the fastest of which attains a (1+ε)-approximation in O(n4d2/ε
√
3e) time, which gives O(n4)

time for a 4-approximation [8, 11, 13]. A 5-approximation can be obtained in O(n log n)
time by a greedy approach that considers the vertices in decreasing order of weights.
However, no linear-time constant-approximation algorithm is known for this problem. In
contrast, for the unweighted version, a simple greedy approach gives a 5-approximation in
O(n) time, while a greedy approach that considers the vertices from left to right gives a
3-approximation in O(n log n) time [10].

The minimum vertex cover problem (MVCP) admits a geometric PTAS [8], which
attains a (1+ε)-approximation in nO(1/ε) time, but no graph-based PTAS is known. Also,
a 1.5-approximation algorithm is presented in [10]. Its time complexity is dominated by
that of the Nemhauser-Trotter decomposition [12], which can be implemented in O(m

√
n)

time.

Our results. We introduce a novel method to obtain linear-time approximation algo-
rithms for problems on unit disk graphs and other geometric intersection graphs (Sec-
tion 2). By using our method, we obtain linear-time (4 + ε)-approximation algorithms for
the MWISP (Section 3) and the MDSP (Section 4). For the MVCP, an indirect applica-
tion of our method yields a linear-time (1 + ε)-approximation (Section 5). The proposed
algorithms improve upon all known linear-time (or close to linear-time) approximations
for these problems. Although our algorithms share the same basic idea, their analyses
differ significantly. For example, the MWISP analysis applies the Four-Color Theorem for
planar graphs [2], while the MDSP analysis applies packing arguments. We conclude with
lower bounds to the approximation ratios of our algorithms and open problems (Section 6).

2 Our Method

The shifting strategy is the main idea behind the existing geometric PTASs for problems
on unit disk graphs such as the minimum dominating set, maximum independent set,
minimum vertex cover, and minimum connected dominating set problems [5, 8]. Generally,
the shifting strategy reduces the original problem with n points to a set of subproblems
whose inputs have constant diameter and the sum of the input sizes isO(n). Such reduction
is based on partitioning the points according to a number of iteratively shifted grids and
takes O(n) time (by using the floor function and constant-time hashing). Exploiting the
inputs’ constant diameter, each subproblem is solved exactly in polynomial time. The
solutions to the subproblems are then combined appropriately (normally in O(n) time) to
yield feasible solutions to the original problem, the best of which is returned. The high
complexities of these geometric PTASs are due to the exact algorithms that are employed
to solve each subproblem.
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We propose a method that is based on the shifting strategy. It presents, however, a
crucial difference. Rather than obtaining exact, costly solutions for the subproblems, we
solve each subproblem approximately. To do that, we employ the coresets paradigm [1],
where only a subset with a constant number of input points is considered.

For a problem whose input is a set P of n points, our method can be briefly described
as follows:

1. Apply the shifting strategy to construct a set of r subproblems with inputs P1, . . . , Pr

such that
∑r

i=1 |Pi| = O(n) and diam(Pi) = O(1) for all i.

2. For each subproblem instance Pi, obtain a coreset Qi ⊆ Pi with |Qi| = O(1), such
that the optimal solution for instance Qi is an α-approximation to the optimal
solution for instance Pi.

3. Solve the problem exactly for each Qi.

4. Combine the solutions into an (α+ ε)-approximation for the original problem.

Coresets for different problems must be devised appropriately. For the MWISP, we
create a grid with cells of diameter 0.29 and consider only one point of maximum weight
inside each cell. For the MDSP, we create a grid with cells of diameter 0.24 and consider
only the (at most four) points, inside each cell, with minimum or maximum coordinate
in either dimension (breaking ties arbitrarily). Finally, we solve the MVCP by breaking
each subproblem into two cases. In the first one, the number of input points is already
bounded by a constant. In the second one, we use the same coreset as in the MWISP.

We assume a real-RAM computation model with floor function and constant-time
hashing (as in [3]), so we can partition the input points into grid cells efficiently, yielding
an overall O(n) running time for our method. Without these operations, the running time
of our algorithms becomes O(n log n).

3 Maximum-Weight Independent Set

In this section, we show how to obtain a linear-time (4+ε)-approximation to the MWISP.
We start by presenting a 4-approximation for point sets of constant diameter, and then
we use the shifting strategy to obtain the desired (4 + ε)-approximation.

Given a point p and a set S of points, let w(p) denote the weight of p, and let w(S) =∑
p∈S w(p). We say two or more points are independent if their minimum distance is

strictly greater than 2.

Theorem 1. Given a set P of n points with real weights as input, with diam(P ) = O(1),
the MWISP can be 4-approximated in O(n) time in the real-RAM.

Proof. Our algorithm proceeds as follows. First, we find the points of P with minimum or
maximum coordinates in either dimension. That defines a bounding box of constant size
for P . Within this bounding box, we create a grid with cells of diameter γ = 0.29 (any
value γ < (2−

√
2)/2 suffices). Note that the number of grid cells is constant, and therefore

the points of P can be partitioned among the grid cells in O(n) time (even without using
the floor function or hashing). Then, we build the subset Q ⊆ P as follows. For each
non-empty grid cell C, we add to Q a point of maximum weight in P ∩ C. Afterwards,
we determine the maximum-weight independent set I∗ of Q. Since |Q| = O(1), this can
be done in constant time. We return the solution I∗.
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Figure 1: Grid rooted at (2, 4) with k = 5 and the contraction of a cell

Next, we show that I∗ is indeed a 4-approximation. We argue that, given an inde-
pendent set I ⊆ P , there is an independent set I ′ ⊆ Q with 4 w(I ′) ≥ w(I). Given a
point p ∈ P , let q(p) denote the point from Q that is contained in the same grid cell as
p. Consider the set S = {q(p) : p ∈ I}. Note that w(q(p)) ≥ w(p) and w(S) ≥ w(I). The
set S may not be independent, but since I is independent, the minimum distance in S is
at least 2 − 2γ = 1.42 >

√
2. We claim that the unit disk graph formed by S is a planar

graph. To prove the claim, we show that a planar drawing can be obtained by connecting
the points of S within distance at most 2 by straight line segments. Given a pair of points
p1, p2 with distance ‖p1p2‖ ≤ 2, the Pythagorean Theorem shows that a unit disk centered
within distance greater than

√
2 from both p1 and p2 cannot intersect the segment p1p2.

By the Four-Color Theorem [2], we can partition S into four independent sets S1, . . . , S4.
The set I ′ of maximum weight among S1, . . . , S4 must have weight at least w(I)/4.

Since I∗ is the maximum-weight independent set of Q, we have that I∗ is a 4-approx-
imation for the MWISP.

The following theorem uses the shifting strategy to obtain a (4 + ε)-approximation for
point sets of arbitrary diameter. The proof uses the ideas from [8], presented in a different
manner and including details about an efficient implementation of the strategy.

Theorem 2. Given a set P of n points in the plane as input, the MWISP can be (4 +
ε)-approximated in O(n) time on a real-RAM with constant-time hashing and the floor
function. Without these operations, it can be done in O(n log n) time.

Proof. Let k be the smallest integer such that(
k

k − 2

)2

≥ 1 +
ε

4
. (1)

Throughout this proof, we consider grids with square cells of side 2k. We say a grid is
rooted at a point (x, y) if there is a grid cell with corner at (x, y). Given a cell C, the square
region C− ⊂ C, called the contraction of C, is formed by removing from C the points
within distance at most 2 from the boundary of C. Figure 1 illustrates these concepts.

The algorithm proceeds as follows. For i, j from 0 to k−1, we create a grid with cells of
side 2k rooted at (2i, 2j). For each cell C in the grid, we run the MWISP 4-approximation
algorithm from Theorem 1 with point set P ∩C−, obtaining a solution Ii,j(C). Then, the
independent set Ii,j is constructed as the union of the independent sets Ii,j(C) for all grid
cells C. We return the maximum-weight set Ii,j that is found, call it I∗.

To implement the algorithm efficiently, we create a subgrid of subcells of side 2, as-
signing each point to the subcell that contains it. In order to partition the n points into
subcells, we use the floor function and constant-time hashing, taking O(n) time. If these
operations are not available, we determine the connected components of the graph (using
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the Delaunay triangulation, for example) and for each component we partition the points
into subcells by sorting them by x coordinate, separating them into columns, and then
sorting the points inside each column by y coordinate. The non-empty subcells are stored
in a balanced binary search tree. This process takes O(n log n) time due to sorting, Delau-
nay triangulation, and binary search tree operations. Given the partitioning of the point
set into subcells, each input to the MWISP algorithm can be constructed as the union of
a constant number of subcells. Finally, the total size of the constant-diameter MWISP in-
stances is O(n), since each point from the original point sets appears in a constant number
of such instances.

To prove that the returned solution I∗ is indeed a (4 + ε)-approximation, we use a
probabilistic argument. Let i, j be picked uniformly at random from 0, . . . , k − 1 and let
OPT denote the optimal solution. For every cell C, we have

w(Ii,j(C)) ≥ w(OPT ∩ C−)

4
.

Consequently, by summing over all grid cells,

w(Ii,j) =
∑
C

w(Ii,j(C)) ≥ 1

4

∑
C

w(OPT ∩ C−).

We now bound E[w(Ii,j)]. Let ρ(p) denote the probability that a given point p is
contained in some contracted cell. Since w(p) does not depend on the choice of i, j, we
can write

4 E[w(Ii,j)] ≥ E

[∑
C

w
(
OPT ∩ C−

)]
=

∑
p∈OPT

ρ(p)w(p).

Note that, for all p ∈ P , ρ(p) corresponds to the ratio between the areas of C− and C,
namely

ρ(p) =
area(C−)

area(C)
=

(
k − 2

k

)2

.

Therefore, by using inequality (1), we obtain

E[w(Ii,j)] ≥
1

4

(
k − 2

k

)2 ∑
p∈OPT

w(p) ≥ 1

4

(
4

4 + ε

)
w(OPT ) =

1

4 + ε
w(OPT ).

Since I∗ has maximum weight among the independent sets Ii,j , it follows that w(I∗)
is at least as large as their average weight. Therefore, I∗ satisfies

w(I∗) ≥ E[w(Ii,j)] ≥
1

4 + ε
w(OPT ),

closing the proof.

4 Minimum Dominating Set

In this section, we show how to obtain a linear-time (4 + ε)-approximation to the MDSP
(in fact, a generalization of it). We start by presenting a 4-approximation for point sets
of constant diameter, and then we use the shifting strategy to obtain the desired (4 + ε)-
approximation. We say that a point p dominates a point q if ‖pq‖ ≤ 2. Given two sets of
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Figure 2: Proof of Lemma 3

points D and P ′, we say that D is a P ′-dominating set if every point in P ′ is dominated
by some point in D.

We now define a more general version of the MDSP, which we refer to as the minimum
partial dominating set problem (MPDSP). Such a generalization is necessary to properly
apply the shifting strategy. In the MPDSP, we are given a set P of n points and also a
subset P ′ ⊆ P . The goal is to find the smallest P ′-dominating subset D ⊆ P .

In order to analyze our algorithm, we prove a geometric lemma that shows that the
set-theoretic difference between a unit circle and two unit disks that are sufficiently close
to it and form a sufficiently big angle consists of one or two “small” arcs. Given a point
p, let ©p denote the unit disk centered at p, and ∂©p denote its boundary circle.

Lemma 3. Given δ > 0 and three points p, q1, q2 ∈ R2 with (i) ‖pq1‖ ≤ δ, (ii) ‖pq2‖ ≤ δ,
and (iii) the smallest angle ∠q1pq2 is greater than or equal to π/2, we have that:

(1) the portion T = (∂©p) \ (©q1 ∪©q2) of the boundary ∂©p consists of one or two
circular arcs;

(2) if T consists of one circular arc, then the arc length is less than or equal to π/2 +
2 arcsin(δ/2); and

(3) if T consists of two circular arcs, then each arc length is less than 2 arcsin δ.

Proof. Statement (1) is clearly true. We start by proving statement (2). The arc length
‖T‖ is maximized as the angle ∠q1pq2 decreases while the distances ‖pq1‖, ‖pq2‖ are kept
constant, therefore it suffices to consider the case when ∠q1pq2 = π/2. The arc T centered
at p can be decomposed into three arcs by rays in directions q1p and q2p, as shown in
Figure 2(a). The central arc measures π/2, while each of the other two arcs measures
arcsin(δ/2), proving statement (2).

Next, we prove statement (3). Let T1, T2 denote the two arcs that form T with
‖T1‖ ≥ ‖T2‖. The arc length ‖T1‖ is maximized in the limit when ‖T2‖ = 0, as shown in
Figure 2(b). The rays connecting q1 and q2 to the two extremes of T1 are parallel, and
therefore ‖T1‖ < 2 arcsin δ.

We are now able to prove the following theorem, which presents our 4-approximation
algorithm for point sets of constant diameter.

Theorem 4. Given two sets of points P and P ′ as input, with P ′ ⊆ P , |P | = n, and
diam(P ) = O(1), the MPDSP can be 4-approximated in O(n) time in the real-RAM.
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Proof. First, we determine a bounding box of constant size for P , as we did in the algorithm
for the MWISP. Within this bounding box, we create a grid with cells of diameter γ = 0.24.
Note that the number of grid cells is constant, and therefore the points of P can be
partitioned among the grid cells in O(n) time (even without using the floor function or
hashing). Then, we build the subset Q ⊆ P as follows. For each non-empty grid cell, we
add to Q the (at most four) extreme points inside the cell, i.e., those presenting minimum
or maximum coordinate in either dimension. Ties are broken arbitrarily. Since there is a
constant number of grid cells and we include in Q at most four points per cell, we have
|Q| = O(1). Afterwards, we determine the smallest P ′-dominating subset D∗ ⊆ Q. To do
that, we examine the subsets of Q, from smallest to largest, verifying if all points of P ′

are dominated, until we find the dominating set D∗, which is returned as the approximate
solution. Since Q has a constant number of points, this procedure takes O(n) time.

Now we show that the returned solution D∗ is indeed a 4-approximation. We argue
that, given a P ′-dominating set D ⊆ P , there is a P ′-dominating set D′ ⊆ Q with
|D′| ≤ 4 |D|. To build the set D′ from D, we proceed as follows. For each point p ∈ D, if
p ∈ Q, we add p to D′. Otherwise, since the set Q contains points of extreme coordinates in
both x and y axes, in the cell of p, there are two points q1, q2 ∈ Q such that (i) ‖pq1‖ ≤ γ,
(ii) ‖pq2‖ ≤ γ, and (iii) the smallest angle ∠q1pq2 is at least π/2. We add these two points
q1, q2 to D′.

By Lemma 3, the portion T = (∂©p) \ (©q1 ∪ ©q2) of ∂©p consists of one or two
circular arcs. We first consider the case where T consists of one circular arc. Let R be the
set of points from P ′ which are dominated by p, but not by q1 or q2. If R is empty, then no
extra point needs to be added to D′. Otherwise, the line ` which contains p and bisects T
separates R into two (possibly empty) sets R1, R2. If R1 6= ∅, let p3 be an arbitrary point
of R1. Since Q contains a point in the same cell as p3, there is a point q3 with ‖p3q3‖ ≤ γ.
We add the point q3 to D′. Analogously, if R2 6= ∅, let p4 be an arbitrary point of R2 and
let q4 ∈ Q be a point with ‖p4q4‖ ≤ γ. We add the point q4 to D′.

We now show that the four points q1, q2, q3, q4 ∈ Q dominate all points dominated by
p. Consider a point v that is dominated by p but not by q1 or q2. The point v must be
inside the circular crown sector depicted in Figure 3(a) and described as follows. Because
v is dominated by p, we have ‖pv‖ ≤ 2. By Lemma 3, the arc length ‖T‖ < 1.82. Also,
‖pv‖ > 1, because otherwise the unit circles centered at p and v would intersect forming
an arc of length at least 2π/3, which is greater than ‖T‖, in which case v is dominated
by q1 or q2. Finally, since v is closer to p than it is to q1 or q2, it follows that v must
be between the lines that connect p to the endpoints of T . This circular crown sector is
bisected by the line `. Using the law of cosines, we calculate the diameter of each circular
crown sector as d =

√
8− 8 cos(‖T‖/2) < 1.76. Therefore, for any point v inside the

circular crown sector, the point q3 (or q4, analogously) that is within distance at most γ
from a point inside the same sector dominates v, as ‖vq3‖ ≤ d+ γ < 2.

Finally, if T consists of two circular arcs T1, T2 centered in p, then we start by adding
those same points q1, q2 to D′, as if T consisted of only one arc. Then, if necessary, we
add new points q3, q4 to D′ as follows. The points that are dominated by p but not by
q1 or q2 must be within distance 1 of either T1 or T2. Let p3, p4 be arbitrary points that
are within distance 1 of T1 or T2, respectively, but are not dominated by q1 or q2. If such
points p3, p4 exist, then there are two points q3, q4 in Q that are within distance at most γ
from respectively p3, p4. By Lemma 3, the largest arc among T1, T2 measures at most 0.49.
The proof that all points dominated by p are dominated by q1, q2, q3, or q4 is analogous
to the case where T consists of a single arc, using the circular crown sector illustrated in
Figure 3(b).
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Figure 3: Proof of Theorem 4

Since D∗ is minimum among all subsets of Q that are P ′-dominating sets, D∗ is a
4-approximation for the MPDSP.

The following theorem uses the shifting strategy [8] to obtain a (4 + ε)-approximation
for point sets of arbitrary diameter.

Theorem 5. Given two sets of points P and P ′ as input, with P ′ ⊆ P and |P | = n,
the MPDSP can be (4 + ε)-approximated in O(n) time on a real-RAM with constant-time
hashing and the floor function. Without these operations, it can be done in O(n log n)
time.

Proof. Let k be the smallest integer such that(
k + 2

k

)2

≤ 1 +
ε

4
. (2)

Throughout this proof, we consider grids with square cells of side 2k. We say a grid is
rooted at a point (x, y) if there is a grid cell with corner at (x, y). Given a cell C, the
square region C+, called the expansion of C, is formed by C and all points within L∞
distance at most 2 from C. Figure 4 illustrates these concepts.

The algorithm proceeds as follows. For i, j from 0 to k − 1, we create a grid with
cells of side 2k rooted at (2i, 2j) and, for each cell C in the grid, we use Theorem 4 to
4-approximate the MPDSP with point sets P ∩ C+, P ′ ∩ C, obtaining a solution Di,j(C).
The dominating set Di,j is constructed as the union of the dominating sets Di,j(C) for all
grid cells C. We return the smallest dominating set Di,j that is found, call it D∗.

To prove that the returned solution is indeed a (4 + ε)-approximation, we use a prob-
abilistic argument. Let i, j be picked uniformly at random from 0, . . . , k− 1 and let OPT
denote the optimal solution. For every cell C, we have

|Di,j(C)| ≤ 4
∣∣OPT ∩ C+

∣∣ .

2 12 22 32

14

4

C2k

C+

2k + 4

Figure 4: Grid rooted at (2, 4) with k = 5 and the expansion of a cell
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Consequently, by summing over all grid cells,

|Di,j | =
∑
C

|Di,j(C)| ≤ 4
∑
C

∣∣OPT ∩ C+
∣∣ .

We now bound E[|Di,j |]. To do that, we define C+(p) as the collection of all cell
expansions containing a point p, so we can write

E[|Di,j |]
4

≤ E

[∑
C

∣∣OPT ∩ C+
∣∣] = E

 ∑
p∈OPT

|C+(p)|

 =
∑

p∈OPT

E
[
|C+(p)|

]
by the linearity of expectation. Note that the expected size of C+(p), for all p ∈ P ,
corresponds to the ratio between the areas of C+ and C, namely

E
[
|C+(p)|

]
=

area(C+)

area(C)
=

(
k + 2

k

)2

.

Therefore, by using inequality (2), we obtain

E[|Di,j |] ≤ 4

(
k + 2

k

)2

|OPT | ≤ 4
(

1 +
ε

4

)
|OPT | = (4 + ε) |OPT |.

Since the smallest among the dominating sets Di,j has no more than their average number
of elements, the set D∗ returned by the algorithm satisfies

|D∗| ≤ E[|Di,j |] ≤ (4 + ε) |OPT |,

closing the proof.

The MDSP is the special case of the MPDSP in which P ′ = P , and thus it can be
(4 + ε)-approximated in linear time by the same algorithm.

5 Minimum Vertex Cover

In this section, we show how to obtain a linear-time approximation scheme to the MVCP.
We start by presenting an approximation scheme for point sets of constant diameter, and
then we use the shifting strategy to generalize the result to arbitrary diameter. Differently
than in the previous two problems, the size of a minimum vertex cover for a point set of
constant diameter is not upper bounded by a constant. Therefore, strictly speaking, a
coreset for the problem does not exist. Nevertheless, it is possible to use coresets to
approach the problem indirectly.

Given a graph G = (V,E) with n vertices, it is well known that I is an independent set
if and only if V \ I is a vertex cover. While a maximum independent set corresponds to a
minimum vertex cover, a constant approximation to the maximum independent set does
not necessarily correspond to a constant approximation to the minimum vertex cover.
However, in certain cases, an even stronger correspondence holds, as we show in the
following proof.

Theorem 6. Given a set P of n points as input, with diam(P ) = O(1), the MVCP can
be (1 + ε)-approximated in O(n) time in the real-RAM, for constant ε > 0.
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Proof. Our algorithm considers two cases, depending on the value of n. If

n <

(
1 +

3

4ε

)
(diam(P ) + 2)2

4
,

then n is constant, and we can solve the MVCP optimally in constant time.
Otherwise, we use Theorem 1 to obtain a 4-approximation I to the maximum indepen-

dent set. We now show that V = P \ I is a (1 + ε)-approximation to the minimum vertex
cover. Let IOPT , VOPT respectively be the maximum independent set and the minimum
vertex cover. Note that |V | = n − |I| and |VOPT | = n − |IOPT |. By a simple packing
argument, dividing the area of a disk of diameter diam(P ) + 2 by the area of a unit disk,

|IOPT | ≤
(diam(P ) + 2)2

4
,

and consequently

n ≥
(

1 +
3

4ε

)
|IOPT | =

(
1 +

3

4ε

)
(n− |VOPT |).

Manipulating the previous inequality, we obtain

n ≤ 4ε+ 3

3
|VOPT |. (3)

Since I is a 4-approximation to IOPT ,

|V | = n− |I| ≤ n− |IOPT |
4

=
4n− |IOPT |

4
=

3n+ |VOPT |
4

. (4)

Combining (3) and (4), we can write |V | ≤ (1 + ε)|VOPT |, as desired.

Using the shifting strategy we obtain the following result. The proof is similar to that
of Theorem 2.

Theorem 7. Given a set P of n points in the plane as input, the MVCP can be (1 +
ε)-approximated in O(n) time on a real-RAM with constant-time hashing and the floor
function, for constant ε > 0. Without these operations, it can be done in O(n log n) time.

Proof. Let k be the smallest integer such that(
k + 2

k

)2

≤ 1 + ε

1 + ε
2

. (5)

Throughout this proof, we consider grids with square cells of side 2k. We say a grid is
rooted at a point (x, y) if there is a grid cell with corner at (x, y). Given a cell C, the
square region C+, called the expansion of C, is formed by C and all points within L∞
distance at most 2 from C.

The algorithm proceeds as follows. For i, j from 0 to k − 1, we create a grid with
cells of side 2k rooted at (2i, 2j) and, for each cell C in the grid, we use Theorem 6 to
(1 + ε/2)-approximate the MVCP for P ∩ C+, obtaining a solution Vi,j(C). The vertex
cover Vi,j is constructed as the union of the vertex covers Vi,j(C) for all grid cells C. We
return the smallest vertex cover Vi,j that is found, call it V ∗.
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To prove that the returned solution is indeed a (1 + ε)-approximation, we use a prob-
abilistic argument. Let i, j be picked uniformly at random from 0, . . . , k− 1 and let OPT
denote the optimal solution. For every cell C, we have

|Vi,j(C)| ≤
(

1 +
ε

2

) ∣∣OPT ∩ C+
∣∣ .

Consequently, by summing over all grid cells,

|Vi,j | =
∑
C

|Vi,j(C)| ≤
(

1 +
ε

2

)∑
C

∣∣OPT ∩ C+
∣∣ .

We now bound E[|Vi,j |]. To do that, we define C+(p) as the collection of all cell
expansions containing a point p, so we can write

E[|Vi,j |]
1 + ε

2

≤ E

[∑
C

∣∣OPT ∩ C+
∣∣] = E

 ∑
p∈OPT

|C+(p)|

 =
∑

p∈OPT

E
[
|C+(p)|

]
by the linearity of expectation. The expected size of C+(p), for all p ∈ P , corresponds to
the ratio between the areas of C+ and C, namely

E
[
|C+(p)|

]
=

area(C+)

area(C)
=

(
k + 2

k

)2

.

Therefore, by using inequality (5), we obtain

E[|Vi,j |] ≤
(

1 +
ε

2

)(k + 2

k

)2

|OPT | ≤ (1 + ε) |OPT |.

Since the smallest among the vertex covers Vi,j has no more than their average number of
elements, the set V ∗ returned by the algorithm satisfies

|V ∗| ≤ E[|Vi,j |] ≤ (1 + ε) |OPT |,

closing the proof.

6 Conclusion

We introduced a method to obtain linear-time approximation algorithms for problems on
unit-disk graphs and other geometric intersection graphs as well. The central idea of the
method is a technique to obtain approximate solutions when the inputs are point sets
of constant diameter. The proposed method yielded linear-time (4 + ε)-approximation
algorithms for the MWISP and the MDSP, and a linear-time approximation scheme for
the MVCP.

While the approximation ratio for the MWISP and the MDSP is 4 (for constant di-
ameter inputs), we only know that the analysis is tight for the MDSP. Figure 5(a) shows
an MDSP instance where our algorithm does not achieve an approximation ratio better
than 4, even if we reduce the grid size and search for extreme points in a larger number
of directions.

In contrast, for the MWISP, the best lower bound we are aware of is 3.25, as shown
in the following example. Let P1 be the weighted point set from Figure 5(b), where all
adjacent vertices are at distance exactly 2. Create another set P2 by multiplying the
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Figure 5: (a) Example where the approximation ratio for the MDSP is exactly 4 (b) Coin
graph used in the example where the approximation ratio for the MWISP is 3.25

coordinates of the points in P1 by 1 + ε, while multiplying their weights by 1 − ε, for
arbitrarily small ε > 0. The set P2 forms an independent set of weight just smaller than
3.25, while the maximum independent set in P1 has weight 1. Since each vertex in P2

has a smaller weight and is arbitrarily close to a vertex of P1, the vertices of P2 will be
disregarded by the algorithm for the input instance P1 ∪ P2.

Several open problems remain. Can we obtain an approximation ratio better than 4
in (close to) linear time for the MWISP, or at least for its unweighted version? Can the
linear-time approximation scheme for the MVCP be generalized for the weighted version?
Are the point coordinates really necessary, or is it possible to devise similar graph-based
algorithms? Also, can we use our method to obtain better linear-time approximations to
related problems on unit disk graphs such as finding the minimum-weight dominating set
or the minimum connected dominating set?
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