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Abstract

Range searching is a fundamental problem in compu-
tational geometry. The problem involves preprocessing
a set of n points in Rd into a data structure, so that it
is possible to determine the subset of points lying within
a given query range. In approximate range searching, a
parameter ε > 0 is given, and for a given query range
R the points lying within distance ε · diam(R) of the
range’s boundary may be counted or not. In this pa-
per we present three results related to the issue of trade-
offs in approximate range searching. First, we introduce
the range sketching problem. Next, we present a space-
time tradeoff for smooth convex ranges, which general-
ize spherical ranges. Finally, we show how to modify
the previous data structure to obtain a space-time trade-
off for simplex ranges. In contrast to existing results,
which are based on relatively complex data structures,
all three of our results are based on simple, practical
data structures.
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1 Introduction

The range searching problem is among the funda-
mental problems in computational geometry. The prob-
lem consists of preprocessing a set P of n points in Rd

into a data structure, so that it is possible to count or
enumerate the points lying within a given query range
R. The query range is chosen from a predetermined set
of ranges, for example, the set of halfspaces, simplices,
or Euclidean balls. Excellent surveys have been written
by Matoušek [12] and Agarwal and Erickson [1].

The relatively high complexity of exact range search-
ing has led researchers to consider the problem in the
context of approximation. We consider the range shape
to be “fuzzy,” and allow points that are close to the
range’s boundary to either be counted or not. There
are two natural ways to define geometric approxima-
tion for range searching. In both cases a user-supplied
approximation parameter ε > 0 is given. In the rela-
tive model [3–6] it is assumed that the query range R is
bounded and points lying within distance ε · diam(R)
of the range boundary may or may not be included. In
the absolute model [9], points lying within distance ε of
the boundary of the range may or may not be included,
regardless of the diameter of the range. In this paper we
consider the relative model, but some of our data struc-
tures have been derived from recent work in the absolute
model [9].
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This paper presents three new results, all of which
involve tradeoffs of various forms in the context of ap-
proximate range searching. Tradeoffs are important in
many retrieval problems, since they provide users the
ability to improve access times depending on the amount
of space at hand. Our first result is a handy utility, called
a range sketching query, which intuitively provides a
limited resolution summary of the points lying within
or near a query range. The other two results involve
space-time tradeoffs for approximate range searching,
one for smooth convex ranges and the other for sim-
plex ranges. These two results are based on variants
of a novel and simple data structure, called the (rela-
tive) halfbox quadtree. Throughout, we assume that the
dimension d ≥ 2 is a constant and that the model of
computation is the real RAM with integer division.

1.1 Range Sketching

The concept of sketching arises frequently in approx-
imation algorithms. In the context of geometric com-
putation it refers to computing a limited resolution ap-
proximation to some quantity of interest. For exam-
ple, sketching has been employed in streaming compu-
tations, where huge volumes of data and limited mem-
ories forbid exact computations [11]. We introduce the
concept of a range sketching query. To motivate this
concept, it is useful to consider two well known extreme
cases, range counting and range reporting. In the for-
mer, the contents of a range are described in the most
concise terms possible (as a count or weight), but no ge-
ometric information regarding the locations of the points
is given. In the latter, the locations of the points in the
range are given, but the output size and query time may
be unbounded.

In many applications what is really desired is a com-
promise between these two extremes, that is, a concise
summary of the distribution of points that lie within the
range, albeit with limited resolution. Our approach is
to summarize the result of the range query as a dis-
joint union of weighted hypercubes whose sizes are
controlled by a user-supplied parameter and where the
weight of each box indicates the number of points lying
within it. Range sketching can be seen as query version
of the notion of coresets [2]. While a core set concisely
describes the structure of an entire set of points, a range
sketching query provides similar information within a
given region of space.

To make this more formal, let s be a resolution pa-
rameter that is specified at query time. Given a query
range R, the result of a sketching query qs(R) is a set of
pairwise disjoint hypercubes {Q1, . . . , Qk} that cover
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Figure 1. Range sketching.

P ∩ R and, for 1 ≤ i ≤ k: (i) s
2 < diam(Qi) ≤ s,

(ii) Qi ∩ R 6= ∅, (iii) Qi ∩ P 6= ∅, and (iv) Qi is asso-
ciated with a weight w(Qi) =

∑
p∈P∩Qi

w(p) (see the
Figure 1).

The output size k is proportional to the number of
non-empty quadtree boxes (see Section 2.1) of diameter
roughly s that intersect R. Thus, the output size can be
controlled through s. Let c > 0 be an arbitrary constant,
and R+ denote the locus of the points within distance at
most c ·diam(R) from R. Let k′ be the smallest number
of non-empty quadtree boxes of diameter at most s that
intersect R+. We show how to answer range sketching
queries in O(log n + k′) time with O(n) storage space
and O(n log n) preprocessing time, for arbitrary ranges.
The data structure consists of a balanced variant of the
well known quadtree data structure [7, 10]. Our results
assume the same unit-cost test assumption as in [6], that
is, given a range R and quadtree box Q, we can deter-
mine in O(1) time whether Q ⊆ R, R ∩ Q = ∅, or
neither. Note that answering a range sketching query re-
quires Ω(log n + k) time in the decision-tree model and
both k and k′ are O(1 + (diam(R)/s)d).

1.2 Smooth Convex Ranges

Space-time tradeoffs have emerged as an important
topic in many geometric retrieval problems, such as
range searching, in which it is difficult to achieve effi-
cient query times using roughly linear space. In order to
better understand the issue in the context of approximate
range searching, it is illustrative to consider Figure 2. It
presents a plot of query times for approximate spher-
ical range searching for 100,000 uniformly distributed
points in R10 when run on the kd-tree structure, as im-
plemented in the ANN library. The library implements a
practical version of the approximate range searching al-
gorithm described in [6]. The asymptotic query time of
this structure is O

(
log n + 1/εd−1

)
, which ignoring the
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Figure 2. Importance of ε-dependencies.

ε dependencies, is essentially optimal. Observe, how-
ever, that as the value of ε varies from 10 down to 0.001,
the query times grow from around 20 milliseconds to
over 40, 000. Thus, in the case of small ε, 99.95% of the
query time is due to the ε dependencies.

Given the burden of such high query times it is nat-
ural to wonder whether it is possible to achieve better
query times at the price of more space. We will con-
sider this problem from a more general perspective than
simple spherical range searching, by considering both
smooth and simplex ranges. Current work based on
AVDs (see, e.g., [3]) has had considerable theoretical
success, but the results rely on methods whose technical
complexity renders them inappropriate for implementa-
tion. Here we consider approaches based on simple, well
known data structures, therefore amenable for efficient
implementation.

In a general range searching formulation, we have a
commutative semigroup (S,+), a weight function w :
P → S, and want to compute

∑
p∈P∩R w(p). This

is called the semigroup version. In the more restrictive
group version (S,+) is a commutative (Abelian) group.
The group version may admit more efficient solutions,
because the presence of inverses means that both addi-
tion and subtraction may be used to compute the answer
to the query. Another restriction is the idempotent ver-
sion in which (S,+) is an idempotent semigroup, i.e.,
x+x = x for all x ∈ S. A special case of the semigroup
version is the reporting version, where the semigroup is
(2P ,∪) and w(p) = {p}. Range reporting deserves spe-
cial attention because we cannot store an arbitrary set of
points in O(1) space.

For κ ≥ 1, we say that a range R is κ-smooth if,
for any point p on the boundary of R, there exists some
Euclidean ball completely inside R that touches p and
has radius at least diam(R)/(2κ). (Observe that a Eu-

clidean ball is 1-smooth, and a convex polytope is not
κ-smooth for any finite κ.) A range is said to be smooth
if it is κ-smooth for some constant κ.

The best upper bounds for approximate range search-
ing for smooth convex ranges over arbitrary semigroups
were given by Arya and Mount [6]. They showed
that queries could be answered in space O(n) and time
O(log n + 1/εd−1) but provided no space-time trade-
offs. Approximate smooth range searching was later
studied in [4]. It was shown there that, irrespective of
space, there is a lower bound of Ω

(
log n + 1/ε(d−1)/2

)
on the query time. They presented a data structure of
linear space for the special case of idempotent semi-
groups, which nearly matches this lower bound, but they
left open the question of space-time tradeoffs for more
general semigroups.

Here we fill this gap by providing the first space-
time tradeoffs for smooth convex ranges and general
semigroups. We introduce a data structure called the
(relative) halfbox quadtree. It is a variant of the half-
box quadtree introduced by Fonseca [9] for the absolute
model. This simple data structure involves extending
the aforementioned balanced quadtree with an auxiliary
(flat) data structure for answering approximate halfspace
queries in the absolute model. We show that for 1 ≤ γ ≤
1/
√

ε, given space O(nγd) this data structure answers
queries in time O(log n + 1/(εγ)d−1). The data struc-
ture can be preprocessed in optimal O(n log n + nγd)
time.

At the low-space extreme (γ = 1) this matches
the earlier results of Arya and Mount [6]. At the
high-space extreme (γ = 1/

√
ε) our upper bound of

O
(
log n + 1/ε(d−1)/2

)
query time matches the lower

bound. Moreover, the tradeoffs are nearly tight through-
out the entire range. In particular, Arya, Malam-
atos, and Mount [5] showed that for general semi-
groups, given O(nγd) space, there is a lower bound of
Ω

(
log n + 1/(εγ)d−O(1)

)
on the query time for spher-

ical range searching. Since spheres are smooth, this
lower bound applies to smooth ranges as well. Indeed,
our data structure can be used for spherical range search-
ing, and for the given range of γ values, our data struc-
ture is both simpler, and more efficient (by logarithmic
factors in the preprocessing and query times and storage
space) than the AVD-based data structure for approxi-
mate spherical range searching given by Arya, Malam-
atos, and Mount [3].

1.3 Simplex Ranges

Although simplex range searching is arguably the
most well studied problem in exact range searching,
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there is little previous work on approximate simplex
range searching in the relative model. The best result to
date is the solution given in [6], which answers queries
for arbitrary convex ranges in O(log n + 1/εd−1) time
with O(n) space. It provides no space-time tradeoffs.
Later, Arya et al. [4] presented a lower bound for an-
swering approximate range queries for rotated unit hy-
percubes over integral semigroups. They showed that
for 0 ≤ k ≤ d − 1, given n/εk2

space, Ω(log n +
1/εd−2−2k) query time is required. This lower bound
applies to simplex range searching as well, but we
should note that the lower bound does not allow for the
use of subtraction.

We show that for any integer k, 0 ≤ k ≤ d − 1,
we can extend the relative halfbox quadtree to a k-
level data structure (where each additional level han-
dles an additional hyperplane). We obtain a data
structure that can answer approximate simplex range
queries in the group version. Our data structure uses
O

(
n/εk2d/(d−1)

)
storage space and answers queries in

O
(
log n + log(1/ε) + 1/εd−1−k

)
time. Although sim-

plex ranges are significantly more general than rotated
unit hypercubes — the latter are rigid transformations
of a single fixed object — our upper bound essentially
matches the lower bound for rotated unit hypercubes.
Given the same query time, both the lower and upper
bound on space are Θ

(
n/εΘ(k2)

)
.

The remainder of the paper is organized as follows.
In Section 2, we explain background results and provide
some definitions. In Section 3, we consider the range
sketching problem. In Section 4, we introduce the (rela-
tive) halfbox quadtree and show how to answer approx-
imate range queries for smooth ranges. Finally, in Sec-
tion 5, we introduce the multilevel halfbox quadtree and
show how to use it to answer approximate simplex range
queries.

2 Preliminaries

2.1 Quadtrees

A quadtree is a hierarchical partition of the space into
d-dimensional hypercubes. The root of the quadtree cor-
responds to a bounding hypercube for the set of data
points. An internal node has 2d children correspond-
ing to the disjoint subdivisions of the parent hyper-
cube. A leaf is a node which contains a single data
point. A quadtree box is defined recursively as the orig-
inal bounding hypercube or the hypercubes obtained by

evenly dividing a quadtree box. The quadtree box asso-
ciated with node v is denoted by v�.

A compressed quadtree, is obtained by replacing all
maximal chains of nodes that have a single non-empty
child by a single node associated with the coordinates
of the smallest quadtree box containing the data points.
A compressed quadtree storing n points can be built
in O(n log n) time [7, 10]. The size of a compressed
quadtree is O(n), but the height of the tree can be as
high as Θ(n). To overcome this deficiency, Arya and
Mount [7] introduced the BBD-tree, which combines
quadtree splits with a centroid decomposition construc-
tion. In this paper, instead of using a BBD-tree, we use a
related data structure by Har-Peled [10] that consists of
a compressed quadtree that is threaded with a separate
finger tree of height O(log n).

A separator for a tree T with n nodes is a node v such
that removing v from T produces a forest F where every
tree in F has at most n/2 nodes. Every tree has a sepa-
rator, and it can be computed in O(n) time by following
the largest subtrees starting from the root, until the sep-
arator is reached. We build the finger tree T ′ by setting
the root of T ′ to be a separator v of T , and the children
of v to be the root of the finger trees of the trees obtained
by removing v from T . The finger tree T ′ has O(n) size,
O(log n) height and can be built in O(n log n) time [10].

An important type of query that can be answered in
O(log n) time with the use of a finger tree is called a cell
query [10]. Let T be a compressed quadtree for the set
P of data points. Given a query quadtree box Q, a cell
query consists of finding the only quadtree box Q′ in T
such that P ∩Q = P ∩Q′, if it exists. The quadtree box
Q′ is unique because T is compressed and Q′ exists if
and only if P ∩Q 6= ∅.

2.2 Geometric Approximation Models

Given a range R and a real value α > 0, we define
R+α as the locus of points within distance at most α
from R and we define R−α as the locus of points within
distance at least α from the complement of R. We say
that a region Rα α-approximates R if R−α ⊆ Rα ⊆
R+α. We say that a region Rα α-approximates R within
a region Q if

R−α ∩Q ⊆ Rα ∩Q ⊆ R+α ∩Q.

The result of an exact range query is de-
fined as q(R) =

∑
p∈P∩R w(p). We define

qα(R) =
∑

p∈P∩Rα
w(p) for some region Rα that α-

approximates R. In the absolute model, answering an ε-
approximate query consists of computing qε(R). In the
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relative model, answering an ε-approximate query for a
range R of diameter ∆ consists of computing q∆ε(R).
The data structures described in this paper work in the
relative model, but make use of the absolute model data
structure from [9] described below for completeness.

Let ε be the approximation parameter and δ be the
diameter of the set of n data points in d-dimensional
space. Given the assumption of a model of compu-
tation that supports integer division, halfspace range
searching in the absolute model can be answered in
O(1) query time with O((δ/ε)d) storage space and
O(n + (δ/ε)d logd+1(δ/ε)) preprocessing time [9].
(Without this assumption the query time increases to
O(log(δ/ε)).)

Without loss of generality, we assume that the query
halfspaces are of the form xd ≤ b + a1x1 + · · · +
ad−1xd−1 with −1 ≤ a1, . . . , ad−1 ≤ 1. We call the
terms a1, . . . , ad−1 slopes and b the xd-intercept. An ar-
bitrary halfspace can be converted into this form through
an appropriate rotation involving the permutation of the
coordinate axes. As only 2d different rotations are nec-
essary, one data structure can be kept for each rotated set
of points, without changing our asymptotic results. We
also assume that the boundary of the query halfspace in-
tersects the bounding hypercube, because otherwise the
problem is trivial.

The ε-approximate halfspace range searching data
structure consists of a lookup table where the results of
halfspace range queries for a predetermined set of half-
spaces are stored. The set of halfspaces stored in the
lookup table is the set of halfspaces whose boundary
intersect the bounding hypercube and have the slopes
and the xd-intercept as multiples of 2ε/dδ. The size of
the lookup table is O((δ/ε)d). To answer an approxi-
mate halfspace range query, we round the slopes and xd-
intercept of the query halfspace to the nearest multiple
of 2ε/dδ, and return the value stored in corresponding
table entry. The query time is O(1).

2.3 Packing Lemmas

A packing lemma limits the number of disjoint ob-
jects that can intersect some region, as a function of the
size of the objects and the region. In our case, the objects
are always quadtree boxes. We present a set of packing
lemmas, which are important to analyze the query time
for our data structures. The following packing lemma
follows from Lemma 2 in [6].

Lemma 2.1. If Q is a set of pairwise disjoint quadtree
boxes, each of diameter at least δ, that intersect a region
R of diameter ∆ ≥ δ, then |Q| = O((∆/δ)d).

We can improve the previous result when the region
consists of the (d−1)-dimensional boundary of a convex
d-dimensional region. The following packing lemma
follows from Lemma 3 in [6].

Lemma 2.2. If Q is a set of pairwise disjoint quadtree
boxes, each of diameter at least δ, that intersect the
boundary of a convex region R of diameter ∆ ≥ δ, then
|Q| = O((∆/δ)d−1).

A (d − k)-face is flat if it is a subset of a (d − k)-
dimensional hyperplane. If the region consists of flat
(d − k)-faces, then we can obtain an improved bound.
The simple proof has been omitted.

Lemma 2.3. Given an integer constant k, where 0 ≤
k ≤ d − 1, if Q is a set of pairwise disjoint quadtree
boxes, each of diameter at least δ, that intersect a flat
(d − 1 − k)-face of diameter ∆ ≥ δ, then |Q| =
O((∆/δ)d−1−k).

3 Range Sketching

Let P be a set of n points in Rd and s be a param-
eter specified at query time. Recall that, given a range
R, the result of a range sketching query qs(R) is a set
of pairwise disjoint hypercubes Q1, . . . , Qk satisfying
the properties described in Section 1. The output size
k is proportional to the smallest number of non-empty
quadtree boxes of diameter at most s that intersect R.
Let c > 0 be an arbitrary constant, and R+ denote the
locus of the points within distance at most c · diam(R)
from R. Let k′ be the smallest number of non-empty
quadtree boxes of diameter at most s that intersect R+.
In this Section, we show how to answer range sketch-
ing queries in O(log n + k′) time with O(n) storage
space and O(n log n) preprocessing time, for arbitrary
ranges. The algorithm is quite simple and is similar
in structure to the approximate range search algorithm
given by Arya and Mount [6]. A straightforward exten-
sion of their algorithm would result in a running time of
O(k′ log n), however.

Let c > 0 be a constant. Let a be a valid diameter for
a quadtree box between c ·diam(R) and c ·diam(R)/2.
To answer a range sketching query, we define the set A
of quadtree boxes of diameter a that intersect R. Let B
be the set formed by the result of cell queries for each
element of A. Using Lemma 2.1, we have |B| = |A| =
O(1). Also, B can be computed in O(log n) time.

We answer the range sketching query by applying the
following query algorithm for each v ∈ B:

1. If v� ∩R = ∅, then return ∅.
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2. If v is a leaf node, then check whether the point
stored in v is contained in R. If yes, return the
quadtree box of diameter between s/2 and s that
contains the point. Otherwise return ∅.

3. If diam(v�) ≤ s, then return {v}.

4. Otherwise, return the union of the recursive calls of
the procedure for each child of v.

To analyze the time complexity, we look at the set
of recursion trees of the query algorithm above for each
node v ∈ B. By construction, the subtrees rooted at the
nodes of B are disjoint and only contain points within
distance c from R. Because T is a compressed quadtree,
every non-leaf node v has at least 2 children, and con-
tains more than one data point. Therefore, the number
of leaves and also the number of internal nodes in the re-
cursion trees is at most k′. The following theorem sum-
marizes this result.

Theorem 3.1. There exists a linear space data structure
which answers a range sketching query in O(log n+k′)
time, where k′ is the smallest number of nonempty
quadtree boxes of diameter at most s that are within dis-
tance c ·diam(R) from the query range, and c > 0 is an
arbitrary constant.

4 Smooth Convex Ranges

Let γ ≥ 1 be a parameter. We define a relative half-
box quadtree as a compressed quadtree T , threaded with
a finger tree T ′, where each quadtree box v� of diameter
δ stored in T is associated with an absolute model (δ/γ)-
approximate halfspace range searching data structure.

A (δ/γ)-approximate halfspace range searching data
structure for a quadtree box of diameter δ takes O(γd)
storage space. Since T has O(n) nodes, the total storage
space for the relative halfbox quadtree is O(nγd).

To preprocess T , we start by building a compressed
quadtree and a finger tree in O(n log n) time, using the
method described in [7, 10]. The leaves of the com-
pressed quadtree contain a single data point. Therefore,
we can build a halfspace range searching data structure
associated with the leaf nodes in O(γd) time for each
leaf node. The data structure for an internal node v
can be built in O(γd) time by performing at most 2d

queries to the children of v for each entry in the lookup
table. Note that the quadtree boxes of the children of a
node v have at most half the size of the quadtree box of
v, therefore the total error that accumulates in the data
structure associated with the root of the tree is bounded

by a factor of 2. The preprocessing algorithm takes
O(n log n + nγd) time, which is optimal.

Recall the definition of κ-smooth ranges given in the
introduction. The following lemma is the a central util-
ity for answering smooth range queries efficiently. The
proof is straightforward and has been omitted.

Lemma 4.1. Let R be an κ-smooth range of diameter
∆, ε an approximation parameter, and Q a quadtree box
of diameter δ. If δ ≤ ∆

√
ε/κ, then any halfspace h

whose bounding hyperplane is tangent to R at a point
within Q ∆ε-approximates R within Q.

Instead of restricting ourselves to smooth ranges of
bounded complexity, and specifying how the smooth
range is stored, we assume that a certain operation can
be performed in O(1) time. This approach is similar
to the one used in [4, 6], but our assumption is slightly
stronger. We assume that, given a smooth convex range
R and a quadtree box Q, in constant time we can deter-
mine whether Q ⊆ R, Q ∩ R = ∅, or neither and, in
the latter case, we can also find in constant time a hyper-
plane that is tangent to R at some point x ∈ Q. Note that
this assumption is easily satisfied for spherical ranges.

Let c > 0 be a constant, and R be a query range of
diameter ∆. Let a be a valid diameter for a quadtree
box, with a between c∆ and c∆/2. To answer a range
query q∆ε(R), we first determine the set A of quadtree
boxes of diameter a that intersect R. By Lemma 2.1,
we have |A| = O(1). Let V be the set formed by the
result of cell queries for each element of A. Note that
|V | = |A| = O(1), and V can be computed in O(log n)
time. The query is answered by performing the follow-
ing procedure for each v ∈ V , and summing the results.

1. If v� ∩R = ∅, then return 0.

2. If v� ⊂ R, then return the precomputed w(v) =∑
p∈P∩v�

w(p).

3. If v is a leaf, then verify whether the point stored
in v is contained in R and return the weight of the
point or 0, accordingly.

4. If diam(v�)/γ ≤ ∆ε/2 and diam(v�) ≤
∆

√
ε/(2κ), then determine a halfspace h that is

tangent to R inside v�, and return the precomputed
qdiam(v�)/γ(h ∩ v�).

5. Otherwise, return the sum of the recursive calls of
the procedure for each child of v.

We only need to show the correctness of Step 4, since
the other steps are clearly correct. To show that Step 4
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is correct, we note that, by Lemma 4.1, the halfspace
h (∆ε/2)-approximates R within v�. Also, v is asso-
ciated with a (∆ε/2)-approximate halfspace data struc-
ture, because diam(v�)/γ ≤ ∆ε/2. Adding both ap-
proximation errors, we obtain a (∆ε)-approximation.

To analyze the query time when κ is a constant, we
note that a recursive call is only performed when v� in-
tersects the boundary of R and

diam(v�) = Ω(∆εγ + ∆
√

ε).

Using Lemma 2.2, and summing the number of
recursive calls, we conclude that the query takes
O(1/(εγ)d−1 + 1/ε(d−1)/2) time. Note that there is no
advantage in setting γ > 1/

√
ε. The following theorem

summarizes the result.

Theorem 4.2. The relative halfbox quadtree with 1 ≤
γ ≤ 1/

√
ε is an ε-approximate range searching data

structure for smooth ranges, in the relative model, with
O(nγd) storage space, O(log n + 1/(εγ)d−1) query
time, and O(n log n + nγd) preprocessing time.

5 Simplex Ranges

The relative halfbox quadtree can also be used to an-
swer simplex range queries, as long as subtraction is al-
lowed. In order to obtain a space-time tradeoff, we build
a multi-level data structure using k levels of the approx-
imate halfspace range searching data structure for each
node in the quadtree, where k is an integer parameter
between 0 and d− 1.

Let v be a node in the compressed quadtree and δ be
the diameter of v�. The top level (δ/γ)-approximate
absolute model halfspace range searching data structure
associated with v remains exactly the same as before.
For each halfspace h stored in the lookup table for a
quadtree box v�, we store another (δ/γ)-approximate
halfspace range searching data structure for the point set
P ∩ v� ∩ h. We repeat this for a total of k levels. This
structure enables us to compute qδ/γ(h1∩ . . .∩hk∩v�)
in O(1) time, by successively querying the k levels
of the data structure. The storage space of the por-
tion of the data structure corresponding to any given
node in the quadtree is O(γdk), and the total storage
space for the data structure is O(nγdk). Using the
same approach from Section 4, the preprocessing time
is O(n log n + nγdk).

Let R be a query simplex of diameter ∆. We first de-
termine a set of O(1) nodes V , in O(log n) time, in the
same way as for smooth ranges. Then the range query
is answered by performing the following procedure for
each v ∈ V , and summing the results.

1. If v� ∩R = ∅, then return 0.

2. If v� ⊂ R or diam(v�) ≤ ∆ε, then return the
precomputed w(v) =

∑
p∈P∩v�

w(p).

3. If v is a leaf, then check whether the point stored
in v is contained in R and return the weight of the
point or 0, accordingly.

4. If diam(v�)/γ ≤ ∆ε and v� does not contain any
(d − 1 − k)-faces of R, then there is a set H of at
most d + 1 halfspaces that form the complement of
R. Since v� does not contain (d − 1 − k)-faces,
the intersection of v� and a subset of more than k
halfspaces from H is equal to the intersection of
v� and at most k halfspaces from H . Using the
inclusion-exclusion principle, approximate the sum
s of the weights of the points in the union of the
halfspaces of H . Then, return w(v)− s.

5. Otherwise, return the sum of the recursive calls of
the procedure for each child of v.

To analyze the query time, we note that a recursive
call is only performed when either (i) v� intersects the
boundary of R and diam(v�) > ∆εγ, or (ii) v� in-
tersects a (d − 1 − k)-face of R and diam(v�) > ∆ε.
Using Lemmas 2.2 and 2.3, it follows that the number of
recursive calls is O(log(1/ε)+1/(εγ)d−1+1/εd−1−k).

Including the time for finding the initial set of nodes
V , the query time is, therefore, O(log n + log(1/ε) +
1/(εγ)d−1 +1/εd−1−k). We set γ = 1/ε

k
d−1 to balance

the contributions of the last two terms. The following
theorem summarizes the result.

Theorem 5.1. For k ∈ {0, . . . , d − 1}, there is an
ε-approximate range searching data structure for sim-
plex ranges, in the relative model and group version,

with O
(
n/ε

k2d
d−1

)
storage space, O(log n + log(1/ε) +

1/εd−1−k) query time, and O
(
n log n + n/ε

k2d
d−1

)
pre-

processing time.

A simplex is fat if the angle between any pair of
bounding hyperplanes is at least a constant. If the query
simplex is fat, then Theorem 5.1 holds for the semigroup
version. We omit the details due to space limitations, but
a similar construction is presented in [8].

6 Conclusion

In this paper, we provided data structures for three
problems related to range searching: range sketching
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and approximate smooth range searching, and approx-
imate simplex range searching. All data structures are
based on the compressed quadtree together with a fin-
ger tree, which is somewhat simpler than the BBD-tree
(used in [3–7]).

The relative halfbox quadtree combines a compressed
quadtree with a data structure for halfspace range
searching in the absolute model [9]. The result is a data
structure that allows the arbitrary cutting angles pro-
vided by halfspaces and the varying box sizes provided
by the quadtree. The data structure provides space-time
tradeoffs for smooth, spherical and simplex ranges.

The relative halfbox quadtree was presented for the
semigroup and group versions of the problem. In
the semigroup version, the halfbox quadtree answers
smooth, spherical and fat simplex queries. A naive im-
plementation of the data structure for the reporting ver-
sion would consist of independently storing the sets of
points for each position in the lookup tables. This naive
version would require storage space quadratic in n. To
obtain a more efficient reporting version of the data
structure, we should store links that simulate the behav-
ior of the preprocessing algorithm, and apply compres-
sion in the same way as the range reporting data struc-
ture for the absolute model presented in [8]. Then, we
obtain a data structure for approximate range reporting
with the same complexities as the semigroup version ex-
cept for the additional time required to output the set of
points in the range.

The following two weaknesses of the relative half-
box quadtree are important topics for future research.
First, the space-time tradeoff for spherical range search-
ing is limited to query times that are not faster than
Θ(log n + 1/ε(d−1)/2). While this query time is opti-
mal for arbitrary smooth ranges [4], it can be improved
for spherical ranges, at the cost of additional storage
space [3]. Second, we do not know how to improve
the space-time tradeoff of the relative halfbox quadtree
for the case of idempotent semigroups. Significantly
faster data structures for approximate idempotent spher-
ical range searching exist [5]. The data structure for ap-
proximate idempotent halfspace range searching in the
absolute model [9] could possibly be used to obtain an
idempotent version of the halfbox quadtree.
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