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Abstract

A stable matching is a complete matching of men and women such
that no man and woman who are not partners both prefer each other to
their actual partners under the matching. In an instance of the STABLE
MARRIAGE problem, each of the » men and n women ranks the mem-
bers of the opposite sex in order of preference. It is well known that at
least one stable matching exists for every STABLE MARRIAGE problem
instance. We consider extensions of the STABLE MARRIAGE problem
obtained by forcing and by forbidding sets of pairs. We present a
characterization for the existence of a solution for the STABLE MAR-
RIAGE WITH FORCED AND FORBIDDEN PAIRS problem. In addition,
we describe a reduction of the STABLE MARRIAGE WITH FORCED AND
FORBIDDEN PAIRS problem to the STABLE MARRIAGE WITH FORBID-
DEN PAIRS problem. Finally, we also present algorithms for finding a
stable matching, all stable pairs and all stable matchings for this ex-
tension. The complexities of the proposed algorithms are the same as
the best known algorithms for the unrestricted version of the problem.
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1 Introduction

Given a set of n men and a set of n women, a complete matching is a set of
n pairs, each pair containing one man and one woman, such that no person
is in more than one pair. In an instance of the STABLE MARRIAGE problem,
each of the n men and n women ranks the members of the opposite sex in
order of preference. A stable matching is a complete matching of men and
women for which there is no blocking pair: a pair of man and woman who are
not partners and such that both prefer each other to their actual partners
under the matching. It is well known that at least one stable matching exists
for every STABLE MARRIAGE instance.

The Gale-Shapley algorithm [3] finds in time O(n?) a stable matching
for a given STABLE MARRIAGE instance. A pair is stable if it is contained
in some stable matching. Gusfield [4] gives algorithms for finding all stable
pairs and all S (a number possibly exponential in n) stable matchings in
O(n?) and O(n? +nS) time, respectively. The necessary background for the
structure of the set of solutions and corresponding algorithms is presented
in Section 2.

In this paper, we consider extensions of the STABLE MARRIAGE problem
obtained by restricting pairs.

A set of pairs @) is stable if there is a stable matching M such that every
pair in @) is a pair in M. We say that M is a stable matching with forced
pairs Q. An algorithm to find in O(n?) time a stable matching with given
forced pairs, if such a matching exists, was described by Knuth [8]. Gusfield
and Irving [5] present a characterization for the existence of a solution of the
STABLE MARRIAGE WITH FORCED PAIRS problem, and show how this char-
acterization leads to an algorithm that tests for the existence of a solution
of the STABLE MARRIAGE WITH FORCED PAIRS problem with forced pairs ()
in O(|Q|?) time, after pre-processing the preference lists in O(n?) time.

Given a set of pairs P, we say that M is a stable matching with forbid-
den pairs P if every pair in P is not a pair of M. In Section 3, we present
a characterization for the existence of a solution of the STABLE MARRIAGE
WITH FORCED AND FORBIDDEN PAIRS problem, and we show how this char-
acterization leads to an algorithm that tests for the existence of a solution
of the STABLE MARRIAGE WITH FORCED AND FORBIDDEN PAIRS problem
with forced pairs @ and forbidden pairs P in O((|Q| + |P|)?) time, after
pre-processing the preference lists in O(n?) time. Such an algorithm can be
useful if many sets of forced and forbidden pairs might be given. We end Sec-
tion 3 by presenting a reduction of STABLE MARRIAGE WITH FORCED AND
FORBIDDEN PAIRS to STABLE MARRIAGE WITH FORBIDDEN PAIRS. Given an



instance of the STABLE MARRIAGE WITH FORCED AND FORBIDDEN PAIRS
problem with forced pairs @ and forbidden pairs P, this reduction constructs
an instance of the STABLE MARRIAGE WITH FORBIDDEN PAIRS problem with
(|P]4+(n—1)|Q|) forbidden pairs. Note that this reduction increases the num-
ber of pairs that were previously forced by a factor of n—1, and this blow-up
in the size of the instance justifies presenting the O((|Q| + |P|)?) algorithm
(following O(n*) pre-processing time) in terms of the STABLE MARRIAGE
WITH FORCED AND FORBIDDEN PAIRS problem, rather than assuming that
@ = 0 and presenting, for example, an O(|P|?) algorithm (following O(n*)
pre-processing time) in terms of the STABLE MARRIAGE WITH FORBIDDEN
PAIRS problem.

In Section 4 we describe algorithms which find, in case they exist, for the
STABLE MARRIAGE WITH FORBIDDEN PAIRS problem: a stable matching, all
stable matchings, and all stable pairs. The complexities of these algorithms
are the same as Gusfield’s algorithms for the unrestricted version of the
STABLE MARRIAGE problem.

The extension STABLE MARRIAGE WITH FORCED AND FORBIDDEN PAIRS,
where a set of forced pairs and a set of forbidden pairs are given, has been
proposed and solved by Dias [1]. The reduction of STABLE MARRIAGE WITH
FORCED AND FORBIDDEN PAIRS t0 STABLE MARRIAGE WITH FORBIDDEN
PAIRS was considered by Fonseca [2] and applied to obtain algorithms which
find, if they exist, in this extension: a stable matching, all stable matchings,
and all stable pairs.

We conclude in Section 5 with a discussion on the optimality of our pro-
posed algorithms. Usually, (see [6]) in generating combinatorial structures,
listings with small prescribed differences between consecutive objects may
allow their faster generation. The discussion and the example in Section 5
show that in any algorithm for explicitly finding all solutions of STABLE
MARRIAGE the amount of computation between successive listed objects is
Q(n). As a consequence, no constant amortized time algorithm exists for
the problem.

We end this introduction by describing an example showing that the
marriage problem with restricted pairs cannot be reduced to the conven-
tional problem, simply by changing the input data (as in the case of incom-
plete lists, for example). This fact justifies the more elaborate approach
which has been taken in this paper. Superficially, STABLE MARRIAGE WITH
FORBIDDEN PAIRS resembles STABLE MARRIAGE WITH INCOMPLETE LISTS
— this is the variant of STABLE MARRIAGE in which persons may express
unacceptable partners, so that preference lists may be incomplete (see [5],
Section 1.4.2). The distinction between the variant proposed and solved



in the present paper and STABLE MARRIAGE WITH INCOMPLETE LISTS is
that, if a pair is a forbidden pair, it could still be a blocking pair with
respect to a matching. Consider the following instance of STABLE MAR-
RIAGE with three men mi,ms,m3; three women wy,ws,ws; and prefer-
ence lists mqi : wiwows, Mo : Wowswi, M3 : W3wWiW2, Wi : MoM3zmi,
wy : m3mime, ws : mymems. This instance admits three stable matchings:
My = {(m1,w1), (m2,w2), (m3, w3)}, M1 = {(m1,wz), (m2,ws), (m3,w1)},
M, = {(my,ws), (me,w), (m3,ws)}. Now suppose we add as restriction
the set of forbidden pairs P = {(m,w1), (m1,w2)}. We have that just M,
is a stable matching for this instance of STABLE MARRIAGE WITH FORBID-
DEN PAIRS. Consider the following instance of STABLE MARRIAGE WITH
INCOMPLETE LISTS with three men mq,mo, mg; three women wq,ws, ws;
and preference lists mq : wsg, mo : wowswy, M3z : W3wWiWs, Wi : MoMms3,
wy : m3meo, wg : mymaoms. This instance admits two stable matchings:
My = {(m1,w3), (m2,ws), (m3,w1)}, M, = {(m1,w3), (m2,w1), (m3, ws)}.
Note that M| is not a stable matching for the original unrestricted case,
since it has (my,ws) as blocking pair. So M| is not a stable matching for
the restricted case obtained by forbidding the set P of pairs either. With
respect to this restricted case, pair (mq,ws) is both forbidden and block-
ing. The reason why a pair (m,w) could be a forbidden pair, but could still
form a blocking pair could be justified by considering a centralized matching
scheme in which an administrator wishes to forbid (for whatever reason) two
agents from becoming matched. Yet these two agents could find each other
acceptable, leading to the possibility that they could form a blocking pair
with respect to the constructed matching.

2 The Lattice of Stable Matchings

The following background for the structure of the set of solutions and cor-
responding algorithms of the STABLE MARRIAGE problem has been fully
developed and described in [5]. We repeat some of these results here as they
will be referred to in the sections that follow.

The Gale-Shapley algorithm [3] yields in time O(n?) what is called the
man-optimal stable matching, denoted M,, with the property that every
man has the best partner he can have in any stable matching. If applied
with the roles of men and women interchanged, the algorithm yields the
woman-optimal stable matching, denoted M,, which similarly favours the
women.

Let M and M' be two stable matchings, and let maz;(M,M') be the



woman whom man ¢ prefers between his two assigned partners in M and M'.
Let min;(M, M") denote the other woman. Let maz(M, M') (respectively
min(M,M')) be the mapping of each man i to maz;(M,M') (respectively
min;(M, M'")). Say that stable matching M dominates stable matching M’
(from the perspective of men) if and only if M = max(M, M'). Say that a
stable matching X is between M and M' if and only if M dominates X and
X dominates M’, while X differs from both M and M’. It is surprising but
easy to show that maz(M, M') and min(M, M') are both stable matchings.
Hence, under the relation of dominance, the set of all stable matchings
forms a lattice A where the join and meet operations are the maxz and min
operations above. The unique maximum (most dominant) element of A
is the man-optimal stable matching My, and the unique minimum (most
dominated) element of A is the woman-optimal stable matching M,.

The concept of rotation is crucial for understanding the structure of the
lattice of solutions A of a STABLE MARRIAGE instance. Let M be a stable
matching. Let w be the first woman in the list of m after his partner in M
such that w prefers m to her partner in M. Let next(m) be the partner
of w in M. Then there is a sequence, called rotation, of pairs of M, say
m = (mg,wp), (my,w1),...,(my_1,w,_1) in the stable matching M, such
that for each 4, 0 < ¢ < r — 1, m;41 is equal to next(m;), where i + 1 is
taken modulo r. We say that rotation m is ezposed in M. Denote by M/x
the stable matching obtained by elimination of =, i.e., the stable matching
where each m; € 7 is married to w;41, while the remaining pairs are the
same as in M.

Once an exposed rotation has been identified and eliminated, then one
or more rotations may be exposed in the resulting matching. A rotation w
is said to be an ezplicit predecessor of rotation p = (mg,wp), (my,wy),...,
(my_1,w,—1) if, for some ¢,0 < ¢ < — 1, and for some woman wy(# w;), ™
is the eliminating rotation for (m;,w,) and m; prefers wy to w;41. Clearly
a rotation cannot become exposed until all of its explicit predecessors have
been eliminated. Further, the reflexive transitive closure < of the explicit
predecessor relation is a partial order on the set of rotations, called the
rotation poset denoted by II(A), and 7w < p if and only if ¥ must be eliminated
before p becomes exposed.

A closed set in a poset II(A) is a subset S of II(A) such that if p € S and
m < p then m € S. The following theorem was shown in [9].

Theorem 1 The stable matchings of a given instance are in one-to-one
correspondence with the closed subsets of the rotation poset. ]



The set of all rotations can be found in time O(n?) and the explicit con-
struction of the poset II(A) requires time O(n?). A compact representation
of II(A) is achieved by constructing a digraph G(A) which contains a subset
of pairs of rotations such that the transitive closure of G(A) is the poset
IT(A). The construction of G(A) from the set of all rotations can be carried
out in time O(n?).

Another important digraph is G(A), a subgraph of G(A). G(A) can
also be constructed in O(n?) and its transitive closure is also II(A) but the
outdegree of every rotation is at most n. This upper bound on the outdegree
is important to guarantee the O(n? + n.S) time complexity of the algorithm
that lists all stable matchings. For details about the structure and properties
of ITI(A), G(A) and G(A), we refer the reader to Gusfield and Irving [5].

3 A Characterization for Restricted Pairs
The following characterization was given by Gusfield in [4].

Theorem 2 A pair (m,w) is a stable pair if and only if it is a pair in M,
or it is a pair in some rotation. Equivalently, (m,w) is stable if and only if
it is a pair in My, or for some rotation (mg,wo), (my,wy),..., (M1, wr—1)
and some i, m = m; and W = Wi41. [ ]

We remark that the above characterization yields an O(n?) time algo-
rithm that given an instance of STABLE MARRIAGE finds all stable pairs
through the compact representation of II(A) by G(A).

Let @ be a stable set of pairs. Hence, by definition, there exists a stable
matching M such that every pair in () is married in M. For each pair
(m,w) € @ and not married under My, let v(m,w) be the unique rotation
that moves m to w, i.e., m = m; and w = w;11, for some ¢, in the rotation
m = y(m,w). For each pair (m,w) € @ and not married under M,, let
6(m,w) be the unique rotation that moves m from w, the pair (m, w) belongs
to the rotation # = 6(m,w). Note that, by Theorem 2, every stable pair
(m,w) that is not in My has a corresponding rotation ~y(m,w), and that
every stable pair (m,w) that is not in M, has a corresponding rotation
O(m,w).

In [5], the following characterization for stable sets is given. A cor-
responding algorithm is also presented, for deciding in O(|Q]?) time after
pre-processing the preference lists in O(n*) time whether a given set @ of
pairs is stable. The algorithm first constructs II(A) explicitly.



Theorem 3 A set QQ of pairs is stable if and only if each of the pairs
is stable, and there are no two pairs (m,w) and (m',w') in Q such that
O(m,w) < y(m',w'") in II(A). ]

The following theorem is an extension of Theorem 3. Theorem 4 gives
a characterization for determining whether, given two given sets of pairs @
and P, there exists a stable matching with set of forced pairs @) and set of
forbidden pairs P.

Theorem 4 Let P and @ be two sets of stable pairs. There exists a stable
matching with set of forced pairs Q@ and set of forbidden pairs P if and only
if there exists a set X of rotations such that:

(1) for every pair (m,w) € Q, we have either (m,w) € My, or y(m,w) € X.
In both cases, there is no p € X such that 0(m,w) < p;

(i) for every pair (m,w) € P, we have that if (m,w) € My or y(m,w) = p,
for p € X, then O(m,w) € X.

Proof. (=) Suppose there exists a stable matching M with set of forced
pairs @@ and set of forbidden pairs P. Let S be the closed subset of II(A)
corresponding to M. The existence of stable matching M says every pair
(m,w) € Q\ My is a stable pair and so admits a rotation y(m,w). Let I" be
the set of y-rotations for all pairs in @\ My. Also the existence of M implies
there is no pair (m,w) € P N My N M,, as such a pair would be present in
every stable matching. Let © be the set of f-rotations for all stable pairs
(m,w) € P\ M,. Clearly, X = (©UI")N S satisfies the requirements (i) and
(ii).

(<) Let S be the closed subset of II(A) such that the maximal rotations
in S are the rotations that are maximal in X with respect to the predecessor
relation <. Let M be the stable matching that corresponds to S. Clearly, M
is the desired stable matching with set of forced pairs () and set of forbidden
pairs P. ]

Next we show how the characterization presented in the above theorem
leads to an algorithm that tests for the existence of a solution of the STABLE
MARRIAGE WITH FORCED AND FORBIDDEN PAIRS problem with forced pairs
@ and forbidden pairs P in O((|Q| + |P|)?) time, after pre-processing the
preference lists in O(n*) time.

We can test within this time bound whether the desired set X of rota-
tions used in the characterization of Theorem 4 exists by processing a list
L of rotations as follows. First we deal with some trivial situations, where



the answer is obtained in the pre-processing phase and there is no need to
construct a set X. Clearly, we may assume we have a set of forced pairs @
such that every pair is stable. Also, a non stable pair in P is a forbidden
pair for any stable matching. Thus, we may remove from P all non stable
pairs and assume we have a set of forbidden pairs P such that every pair is
stable. In addition, if P contains a pair present both in My and in M, (this
means the pair belongs to every stable matching), then clearly there is no
solution.

Denote by (m;,w;),1 < i < g, the forced pairs in ). Denote by ~; the
y-rotation of pair (m;,w;) € @\ My, and call this set of rotations I'. Denote
by 6; the @-rotation of pair (m;,w;) € @ \ M,, and call this set of rotations
©. Denote by (m},w}),1 <14 < p, the forbidden pairs in P. Denote by ; the
f-rotation of a stable pair (m},w) € P\ M,, and call this set of rotations
©'. Denote by ~, the y-rotation of a stable pair (m}, w}) € P\ My, and call
this set of rotations I'. By hypothesis, no pair of P belongs both to Mj
and M,. Clearly, as in the case of the algorithm for forced pairs presented
in [5], the pre-processing of the preference lists identifies the stable pairs,
completely constructs II(A), and determines y(m,w) and 6(m,w), for each
stable pair (m,w).

Now construct and process a list £ of rotations as follows. Begin by
adding to £ all y(m,w), for every pair (m,w) € Q \ My, and all §'(m, w),
for every pair (m',w') € P N My. Process each rotation p of £ by adding p
to set X, and by testing, for each 6#;, a f#-rotation in ©, whether 6; < p. If
yes, then stop: there is no desired set X. Else, test, for each v}, a y-rotation
in IV, whether v} < p. If yes and (m},w)) € M,, then stop: there is no
desired set X. If yes and (m},w}) ¢ M,, then move €, from set ©' to L
and remove 7, from set I'. Continue by processing the rotations according
to their rank in £. In the case that all rotations in list £ are successfully
processed, then we have the desired set X built in time O((|Q| +|P|)?). As
in the case of forced pairs [5], this algorithm first constructs II(A) explicitly,
and so pre-processes the preference lists in O(n?) time.

We proceed to the transformation from STABLE MARRIAGE WITH FORCED
AND FORBIDDEN PAIRS t0 STABLE MARRIAGE WITH FORBIDDEN PAIRS.
Given an instance (n,L) of the original STABLE MARRIAGE problem, n is
the number of men and L is the set of 2n preference lists. In an instance
(n,L,Q, P) of STABLE MARRIAGE WITH FORCED AND FORBIDDEN PAIRS, ()
is the set of forced pairs and P is the set of forbidden pairs. We reduce STA-
BLE MARRIAGE WITH FORCED AND FORBIDDEN PAIRS to0 STABLE MARRIAGE
WITH FORBIDDEN PAIRS as follows [2].



Let (n, L, Q, P) be an instance of STABLE MARRIAGE WITH FORCED AND
FORBIDDEN PAIRS. Begin by setting P’ = P, and for each pair (m,w) € Q,
add (m,w') to P, for all w' # w. A matching is stable with respect to
(n,L,Q, P), if and only if it is stable with respect to (n, L,(, P").

Note that the above reduction constructs an instance of STABLE MAR-
RIAGE WITH FORBIDDEN PAIRS with (|P|+ (n —1)|Q]) forbidden pairs. This
observation justifies the characterization of Theorem 4 being stated for STA-
BLE MARRIAGE WITH FORCED AND FORBIDDEN PAIRS.

In Section 4, we focus on the STABLE MARRIAGE WITH FORBIDDEN PAIRS
problem. We denote an instance of STABLE MARRIAGE WITH FORBIDDEN
PAIRS by (n, L, P), where n is the number of men, L is the set of 2n preference
lists, and P is the set of forbidden pairs. We shall describe in Section 4
algorithms for STABLE MARRIAGE WITH FORBIDDEN PAIRS that find a stable
matching, if it exists, in time O(n?).

4 Optimal Algorithms for Restricted Pairs

Algorithm for finding a stable matching

We use the operation breakmarriage [7] to decide in time O(n?), given an
instance of STABLE MARRIAGE WITH FORBIDDEN PAIRS, whether it admits a
stable matching. Given a stable matching M, containing the pair (m, w), op-
eration breakmarriage(M, (m,w)) returns the man-optimal stable matching
which is dominated by M and does not contain the pair (m,w), if it exists.

The following algorithm [2] finds the man-optimal stable matching with a
set of forbidden pairs P. We call this matching M{". Note that Algorithm 1
may also find, if changed accordingly, the woman-optimal stable matching
with a set of forbidden pairs P. We call this matching M7,

Algorithm 1

Input: (n, L, P)

Output: The man-optimal stable matching with a set of forbidden pairs P,
if it exists, and “There is no solution” otherwise

M < man-optimal solution without considering P
while there is a forbidden pair (m,w) in M
M < breakmarriage(M, (m,w))
if M is not a matching
return “There is no solution”
return M



Theorem 5 Algorithm 1 decides in time O(n?) whether a given instance of
STABLE MARRIAGE WITH FORBIDDEN PAIRS admits a stable matching, and
returns the man-optimal solution if it exists.

Proof. The proof of correctness is straightforward. Let M, My, ..., M} be
the matchings assumed by variable M during the execution of the algorithm.
If the solution exists, every matching M; dominates or is equal to it. As M;
dominates M;,1, matching My is the solution. If there is no solution we
will certainly try to break a forbidden pair of P that is in the unrestricted
woman-optimal solution M, and breakmarriage will return an error.

For the complexity analysis, first note that we can determine in constant
time whether a given pair is forbidden by checking a pre-built boolean ma-
trix. We can maintain a list of all forbidden pairs in the current matching
by checking the boolean matrix during all changes of pairs in the matching
and adding or removing a pair from the list accordingly. To add or remove
these elements in constant time, it is necessary to maintain another matrix,
which points to the position of each forbidden pair in the list. It is clear
by [7] that the total time spent in the breakmarriage operation is bounded
by the total number of proposals performed within the operation. Since the
operation does not make the same proposal twice, this number is O(n?). =

Algorithm for all stable pairs

The relevant results from Section 1.3.1 of [5] can be extended to STABLE
MARRIAGE WITH FORBIDDEN PAIRS so that the set of stable matchings form
a lattice. Given an instance (n, L, P) of STABLE MARRIAGE WITH FORBID-
DEN PAIRS, call Ap the lattice of solutions of the version with forbidden
pairs and A the lattice of solutions of the unrestricted version obtained by
removing the set P.

First, we use Algorithm 1 to obtain stable matchings M and M! (we
assume that M} and M} exist, otherwise we may halt immediately). Then,
we consider only rotations in the maximal chains in A between M{ and
MPF to construct the corresponding subgraph of G(A). We construct the
digraph G'(Ap) by adding edges to this subgraph of G(A). The digraph
G'(Ap) contains, for each forbidden pair (m,w) € P, the directed edge
(@(m,w),y(m,w)), if O(m,w) and y(m,w) are rotations in the maximal
chains in A between M} and M. Note that these additional edges add
cycles to the acyclic digraph G(A). The number of edges added to the
subgraph of G(A) to obtain G'(Ap) is O(n?).

10



We extend the definition of closed set to digraphs as follows: a closed set
in a digraph G is a subset S of the vertex set of G such that if v € § and
there is a directed path from vertex w to vertex v, then w € §.

Theorem 6 There is a one to one correspondence between the stable match-
ings of Ap and the closed subsets of G'(Ap).

Proof. Given a closed subset of G'(Ap), the corresponding stable matching
is obtained by the elimination of every rotation in the subset starting from
M(f) . First, we show that the corresponding matchings are, in fact, stable.
Then we show that every stable matching can be generated this way.

Clearly, by Corollary 3.2.2 of [5] and Theorem 1, all these matchings are
in A. If a stable matching generated in this way contained a pair (m,w)
from P, then the corresponding subset would contain v(m,w) and would
not contain #(m,w). Since there is an edge (6(m,w),y(m,w)), this subset
is not closed.

To show that every matching in Ap has a corresponding closed subset
of G'(Ap), we suppose there is a matching M € Ap that contradicts this
assumption. There is a closed subset S of G(A) that corresponds to M.
Consequently, for some rotations 7 € S and «’ ¢ S, the edge (7', 7) is in
G'(Ap), but not in G(A). So, («',m) is (0(m,w),y(m,w)) for a forbidden
pair (m,w). Therefore, the forbidden pair (m,w) € M, contradicting its
stability. [ |

Let M be a stable matching and consider a set of rotations S that can
be eliminated in M consecutively, resulting in the stable matching M'. A
transformation T is a set of triples (m,w,w") corresponding to S. For each
man m which is married to a woman w in M and another woman w' # w
in M’ the corresponding transformation contains a triple (m,w,w'). We
denote by M/t the stable matching M’ obtained by elimination of 7: for
each (m,w,w') € 7, we have (m,w) € M and (m,w’) € M/7, the other
pairs are the same in M and M/7. If there is just one rotation in the
set, say m = (mo,wp), (m1,w1), ..., (Myr—1,wyr_1), then the corresponding
transformation is 7 = {(mo,wp, w1), (my,wy,ws), ..., (Mp_1,wr_1,wo)}.
We shall study next the lattice of solutions Ap of a STABLE MARRIAGE
WITH FORBIDDEN PAIRS instance.

We define the poset of transformations II(Ap) and construct its compact
representations G(Ap) and G(Ap) analogously to the poset of rotations
II(A) and its compact representations G(A) and G(A). The elements of
the poset II(Ap), and the vertices of the digraphs G(Ap) and G(Ap) are

11



the transformations corresponding to the strongly connected components of
G'(Ap).

Transformation 7 precedes 7" in II(Ap) if and only if 7 precedes 7' in
II(A), for some rotation m belonging to 7 and for some rotation ' belonging
to 7'

Theorem 7 There is a one to one correspondence between the stable match-
ings of Ap and the closed subsets of TI(Ap).

Proof. It is easy to verify that there is a one to one correspondence be-
tween the closed subsets of II(Ap) and the closed subsets of G'(Ap). Now
Theorem 6 implies that there is also a one to one correspondence between
the closed subsets of II(Ap) and the stable matchings of Ap. ]

We establish a result analogous to Theorem 2.

Theorem 8 A pair (m,w) is a stable pair in Ap if and only if it is a pair
in ME or (m,w',w) belongs to a transformation in II(Ap). Equivalently,
(m,w) is stable in Ap if and only if it is a pair in MY or (m,w,w') belongs
to a transformation in II(Ap).

Proof. It is enough to prove the first version of the theorem. The proof of
the second version is analogous. Let (m,w) be a pair such that (m,w’, w)
belongs to a transformation 7. Let M be the stable matching corresponding
to the smallest closed subset of Ap containing 7. The stable matching M is
a proof of the stability of the pair (m,w).

Conversely, let (m,w) be a stable pair that does not belong to Mj. Let
M be a stable matching in Ap containing (m,w). By Theorem 7, there exists
a closed subset S of II(Ap) corresponding to M. Now since (m,w) ¢ My,
there exists a transformation in S containing (m,w', w). ]

The above characterization yields an O(n?) time algorithm that given
an instance of STABLE MARRIAGE WITH FORBIDDEN PAIRS finds all stable
pairs. Notice that, in order to find all stable pairs, it is not necessary to
construct G(Ap), but only to determine its vertices, the transformations
corresponding to the strongly connected components of G'(Ap).

Given a strongly connected component S of G'(Ap), to construct the
corresponding transformation it is first necessary to find a valid order by
which the rotations of S can be eliminated. To do that, we must consider
the subgraph of G(A) induced by the vertices of S (in other words, we must
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remove from consideration the edges which created cycles in S). Any topo-
logical order of the vertices of this acyclic digraph is a valid order by which
the rotations can be eliminated. To construct the actual transformation it is
sufficient to simulate the elimination of these rotations and list the modified
pairs.

Algorithm for all stable matchings

The definition of the edges of G(Ap) is analogous to the definition of the
edges of G(A) given in [5]. There are two types of edges:

Type 1: If (m,w',w) € 7 and (m,w,w") € 7/, then (7,7') is a type 1
edge.

Type 2: If the transformation 7 moves a woman w from a man worse
than m to a man better than m and the transformation 7/ moves m from
a woman better than w to a woman worse than w, then (7,7') is a type 2
edge.

Theorem 9 If (1,7') is in G(Ap), then (1,7') is in I(Ap).

Proof. We follow a similar argument to the proof of Lemma 3.2.3 in [5]. If
(1,7") is a type 1 edge in G(Ap), it is clear that 7 must be eliminated before
7', s0 (1,7') is in II(Ap).

If (1, 7") is a type 2 edge in G(Ap), there is a pair (m, w) such that 7 takes
w from a man worse than m to a man better than m and 7’ takes m from
a woman better than w to a woman worse than w. The pair (m,w) blocks
any matching obtained by the elimination of 7 without the elimination of
7, 80 (7,7') is in II(Ap). ]

We say that 7 is an immediate predecessor of 7' in II(Ap) if there is no
7" such that 7 precedes 7" and 7" precedes 7'.

Theorem 10 If 7 is an immediate predecessor of 7' in II(Ap), then (7,7")
is in G(Ap).

Proof. We follow a similar argument to the proof of Lemma 3.2.4 in [5].
By Theorem 7, let M be the stable matching corresponding to the closed
set of all transformations ¢ such that (¢,7) € II(Ap). M/7 is also a stable
matching. As 7 is a immediate predecessor of 7/, M /7 /7’ is also a stable
matching, but M /7' is not.

As M/t /7" is a stable matching, but M /7’ is not, one of the following
conditions occurs: There is a pair created by 7 and broken by 7’ or there is
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a pair (m,w) such that 7 takes w from a man worse than m to a man better
than m and 7’ takes m from a woman better than w to a woman worse than
w. In the former case, (7,7') is a type 1 edge in G(Ap) and in the latter
case (1,7') is a type 2 edge in G(Ap). |

An immediate consequence of the last two theorems is:

Theorem 11 The transitive closure of G(Ap) is II(Ap). Consequently,
there ezists a one to one correspondence between the closed subsets of G(Ap)
and the stable matchings of Ap.

The following algorithm constructs G(Ap) by extending to the context of
transformations the algorithm for the construction of G(A) suggested by the
proof of Lemma 3.3.2 of [5]. An argument similar to the one in [5] establishes
the time complexity bound of O(n?) for the construction of G(Ap).

Algorithm 2
Input: (n, L, P), MF and the set of transformations
Output: The edges of G(Ap)

(Phase 1)
V[m,w] « 0, for every pair (m, w)
For each transformation 7
For each (m,w,w') € T
Vim,w] + 1
Tim,w] < 7
For each (m,w) such that 7 moves w from a man
worse than m to a man better than m
Vim,w] ¢ 2
Tim,w] 7
For each (m,w) € MF
Vim,w] « #
(Phase 2)
For each man m
t<0
For each woman w following the order of preference of m
If Vim,w] =#
Proceed to the next man
If Vim,w]=1
If t £0
Output type 1 edge (¢, T[m,w])
t < T[m,w]
If Vm,w] =2
If t #£0
Output type 2 edge (T'[m,w], t)
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Phase 1 of the algorithm assigns labels to the pairs. During phase 2, we
scan these labels on the preference lists of each man. When V[m,w] =1
(the same for V[m,w| = 2) and T[m,w] = 7 we say that there is a type 1
(type 2) label of 7.

Exploring the closed subsets of G(Ap) using the same algorithm used
in [5] will list all stable matchings, but the time complexity will not be
optimal, because some vertices may have an outdegree greater than n. To
solve this problem we extend to the context of transformations the method
used in [5] to obtain G(A) from G(A) and define another digraph, G(Ap),
which has some of the type 2 edges of G(Ap) removed. The only difference
between G(Ap) and G(Ap) is that, in phase 2 of the algorithm, if we find
two labels of the same transformation 7 during the scan of the preference
list of a man m, we only consider the first label and the additional type 1
labels. In other words, we do not consider type 2 labels that come after a
type 1 or type 2 label of the same transformation. Phase 2 of Algorithm 2
should be rewritten as follows:

Algorithm 3
Input: (n, L, P), MF and the set of transformations
Output: The edges of G(Ap)
(Phase 1)
The same as Algorithm 2
(Phase 2)
p[r] < 0, for every transformation 7
For each man m
t«0
For each woman w following the order of preference of m
If Vim,w] =#
Proceed to the next man
If Vim,w]=1
If ¢ £ 0
Output type 1 edge (¢, T[m,w])
t < T[m,w]
p[T[m,w]] < 1
Add T'[m,w] to a list
If Vim,w] =2
If t #0 and p[T[m,w]] =0
Output type 2 edge (T'[m,w], t)
p[T[m,w]] < 1
Add T'[m,w] to a list
p[r] < 0, for every T on the list
Empty the list

The next two theorems may be proved in a similar manner to Parts (i)
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and (ii) of Theorem 3.3.1 in [5].
Theorem 12 The outdegree of any node in G(Ap) is at most n.

Proof. Type 1 labels of a transformation 7 can appear only once in the
preference list of any man. So, at most one type 1 edge is created during the
scan of the preference list of each man. Since type 2 labels of 7 are ignored
if preceded by earlier labels of 7 and a type 2 label of 7 cannot precede the
unique type 1 label of 7, at most one edge out of 7 is created during the
scan of the preference list of each man. [ |

Theorem 13 The transitive closure of G(Ap) is II(Ap).

Proof. It is sufficient to prove that if (7,7') is a type 2 edge of G(Ap),
but not of G(Ap), there is a path from 7 to 7" in G(Ap). This edge (7, 7')
has been ignored when we were scanning the preference list of man m in
Algorithm 3 because there is another label of 7 before the type 1 label of
7'. But there is a type 1 edge (7,7") created because there is a type 1 label
of 7" before the type 1 label of 7/. As there is a path through type 1 edges
from 7" to 7', there is a path from 7 to 7" in G(Ap). ]

Exploring the closed subsets of G(Ap) involves extending to the context
of transformations the algorithm of Figure 3.8 of [5] which will list all stable
matchings in optimal worst case time. The only necessary change is that
instead of eliminating rotations, we must eliminate transformations. The
space complexity is O(n?). Summarizing, the proposed algorithm to find all
stable matchings consists of:

Algorithm 4

Input: (n, L, P)

Output: All stable matchings with set of forbidden pairs P
Construct G(A)

Add edges constructing G'(Ap)

Find the strongly connected components of G'(Ap)

and the corresponding transformations

Construct G(Ap)

Explore all closed subsets of G/(Ap)

and list the corresponding matchings
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5 Concluding remarks

We have described an algorithm for finding all S solutions, given an in-
stance of STABLE MARRIAGE WITH FORBIDDEN PAIRS, with n» men and n
women. The time complexity of the algorithm is O(n? +nS) while the space
complexity is O(n?).

It would be interesting to know whether there is an algorithm that could
solve the above problem in less than O(n) amortized time per solution for
a sufficiently large value of S. In general, most of the algorithms (e.g. [6])
for enumerating the set of size n objects of a desired collection achieving
efficient amortized time bounds work under the following model: the objects
of the collection are enumerated in a same memory space, of size n. The
following argument shows that any algorithm for explicitly finding all solu-
tions of STABLE MARRIAGE (with or without forbidden pairs) requires 2(n)
amortized time per solution, under the above model.

Denote by n(n) the following instance of STABLE MARRIAGE with n men
and n women. Let L(m,k) be the k-th woman on man m’s list and L(w, k)
the k-th man on woman w’s list. The preference lists in n(n) are: L(m;, k) =
Wirk_1, L(w;, k) = m;ik, where indices are taken modulo n.

The n stable matchings for instance 7(n) are precisely, for each fixed
value of k = 1,...,n, the set of n pairs: {(m, L(m,k)), for every man m}.
First, it is clearly true that for £ = 1, we have a stable matching because
every man is married to the first woman on his list and every man is married
to a distinct woman. By searching an exposed rotation in this matching, we
find the rotation ((my,w1), (ma,ws), ..., (my,wy)). The following matching
will have the exposed rotation ((m,ws), (m2,ws), ..., (my,w;)), and so on.
We generate in this way n distinct stable matchings for instance n(n). Note
that each one of the possible n? pairs is a stable pair, and that any pair is
in precisely one stable matching. Therefore instance 7n(n) admits precisely
n distinct stable matchings, and is such that any of its two stable matchings
have no common pairs, i.e., any two stable matchings differ by n pairs.

Next, we show how to construct an instance of STABLE MARRIAGE with
n = ning men, ny? stable matchings and such that any two distinct solutions
differ by n pairs, for any n1 and ns. By considering ns to be a constant,
we need (n) time to write the different pairs in memory.

To construct this instance we take no instances n(ny) for different sets
of n; men. Ounly the first n; positions on each list are filled, but the other
ones can be filled arbitrarily, because they will not be used in any stable
matching. The n; distinct stable matchings for each instance can be freely

combined yielding the claimed n}? stable matchings.
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Some variations of the STABLE MARRIAGE problem (like incomplete lists
or different sized sets) can be reduced to the conventional problem by chang-
ing the preference lists and possibly adding auxiliary men and women. The
solutions of the variations are found by removing these auxiliary people from
the obtained stable matchings. We show next that this kind of simple reduc-
tion is not possible for STABLE MARRIAGE WITH FORBIDDEN PAIRS. The set
of solutions for the instance n(4) described above with forbidden pairs P =
{(1,2), (1,9} is: {{(1,1), (2,2),(3,3), (4,4)},{(1,3), (2,4), (3,1), (4,2)}}. If
these two matchings were solutions of the STABLE MARRIAGE problem, then
they would be connected by a single rotation, which is not the case. A
rotation is a cyclic permutation of one subset of women among one subset
of men. In this example, two rotations are necessary to exchange the wives
of men 1 and 3, and of men 2 and 4. The need of two rotations remains if
auxiliary men and women are added.
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