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Abstra
t

A stable mat
hing is a 
omplete mat
hing of men and women su
h

that no man and woman who are not partners both prefer ea
h other to

their a
tual partners under the mat
hing. In an instan
e of the stable

marriage problem, ea
h of the n men and n women ranks the mem-

bers of the opposite sex in order of preferen
e. It is well known that at

least one stable mat
hing exists for every stable marriage problem

instan
e. We 
onsider extensions of the stable marriage problem

obtained by for
ing and by forbidding sets of pairs. We present a


hara
terization for the existen
e of a solution for the stable mar-

riage with for
ed and forbidden pairs problem. In addition,

we des
ribe a redu
tion of the stable marriage with for
ed and

forbidden pairs problem to the stable marriage with forbid-

den pairs problem. Finally, we also present algorithms for �nding a

stable mat
hing, all stable pairs and all stable mat
hings for this ex-

tension. The 
omplexities of the proposed algorithms are the same as

the best known algorithms for the unrestri
ted version of the problem.
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1 Introdu
tion

Given a set of n men and a set of n women, a 
omplete mat
hing is a set of

n pairs, ea
h pair 
ontaining one man and one woman, su
h that no person

is in more than one pair. In an instan
e of the stable marriage problem,

ea
h of the n men and n women ranks the members of the opposite sex in

order of preferen
e. A stable mat
hing is a 
omplete mat
hing of men and

women for whi
h there is no blo
king pair: a pair of man and woman who are

not partners and su
h that both prefer ea
h other to their a
tual partners

under the mat
hing. It is well known that at least one stable mat
hing exists

for every stable marriage instan
e.

The Gale-Shapley algorithm [3℄ �nds in time O(n

2

) a stable mat
hing

for a given stable marriage instan
e. A pair is stable if it is 
ontained

in some stable mat
hing. Gus�eld [4℄ gives algorithms for �nding all stable

pairs and all S (a number possibly exponential in n) stable mat
hings in

O(n

2

) and O(n

2

+nS) time, respe
tively. The ne
essary ba
kground for the

stru
ture of the set of solutions and 
orresponding algorithms is presented

in Se
tion 2.

In this paper, we 
onsider extensions of the stable marriage problem

obtained by restri
ting pairs.

A set of pairs Q is stable if there is a stable mat
hing M su
h that every

pair in Q is a pair in M . We say that M is a stable mat
hing with for
ed

pairs Q. An algorithm to �nd in O(n

2

) time a stable mat
hing with given

for
ed pairs, if su
h a mat
hing exists, was des
ribed by Knuth [8℄. Gus�eld

and Irving [5℄ present a 
hara
terization for the existen
e of a solution of the

stable marriage with for
ed pairs problem, and show how this 
har-

a
terization leads to an algorithm that tests for the existen
e of a solution

of the stable marriage with for
ed pairs problem with for
ed pairs Q

in O(jQj

2

) time, after pre-pro
essing the preferen
e lists in O(n

4

) time.

Given a set of pairs P , we say that M is a stable mat
hing with forbid-

den pairs P if every pair in P is not a pair of M . In Se
tion 3, we present

a 
hara
terization for the existen
e of a solution of the stable marriage

with for
ed and forbidden pairs problem, and we show how this 
har-

a
terization leads to an algorithm that tests for the existen
e of a solution

of the stable marriage with for
ed and forbidden pairs problem

with for
ed pairs Q and forbidden pairs P in O((jQj + jP j)

2

) time, after

pre-pro
essing the preferen
e lists in O(n

4

) time. Su
h an algorithm 
an be

useful if many sets of for
ed and forbidden pairs might be given. We end Se
-

tion 3 by presenting a redu
tion of stable marriage with for
ed and

forbidden pairs to stable marriage with forbidden pairs. Given an
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instan
e of the stable marriage with for
ed and forbidden pairs

problem with for
ed pairsQ and forbidden pairs P , this redu
tion 
onstru
ts

an instan
e of the stable marriage with forbidden pairs problem with

(jP j+(n�1)jQj) forbidden pairs. Note that this redu
tion in
reases the num-

ber of pairs that were previously for
ed by a fa
tor of n�1, and this blow-up

in the size of the instan
e justi�es presenting the O((jQj+ jP j)

2

) algorithm

(following O(n

4

) pre-pro
essing time) in terms of the stable marriage

with for
ed and forbidden pairs problem, rather than assuming that

Q = ; and presenting, for example, an O(jP j

2

) algorithm (following O(n

4

)

pre-pro
essing time) in terms of the stable marriage with forbidden

pairs problem.

In Se
tion 4 we des
ribe algorithms whi
h �nd, in 
ase they exist, for the

stable marriage with forbidden pairs problem: a stable mat
hing, all

stable mat
hings, and all stable pairs. The 
omplexities of these algorithms

are the same as Gus�eld's algorithms for the unrestri
ted version of the

stable marriage problem.

The extension stable marriage with for
ed and forbidden pairs,

where a set of for
ed pairs and a set of forbidden pairs are given, has been

proposed and solved by Dias [1℄. The redu
tion of stable marriage with

for
ed and forbidden pairs to stable marriage with forbidden

pairs was 
onsidered by Fonse
a [2℄ and applied to obtain algorithms whi
h

�nd, if they exist, in this extension: a stable mat
hing, all stable mat
hings,

and all stable pairs.

We 
on
lude in Se
tion 5 with a dis
ussion on the optimality of our pro-

posed algorithms. Usually, (see [6℄) in generating 
ombinatorial stru
tures,

listings with small pres
ribed di�eren
es between 
onse
utive obje
ts may

allow their faster generation. The dis
ussion and the example in Se
tion 5

show that in any algorithm for expli
itly �nding all solutions of stable

marriage the amount of 
omputation between su

essive listed obje
ts is


(n). As a 
onsequen
e, no 
onstant amortized time algorithm exists for

the problem.

We end this introdu
tion by des
ribing an example showing that the

marriage problem with restri
ted pairs 
annot be redu
ed to the 
onven-

tional problem, simply by 
hanging the input data (as in the 
ase of in
om-

plete lists, for example). This fa
t justi�es the more elaborate approa
h

whi
h has been taken in this paper. Super�
ially, stable marriage with

forbidden pairs resembles stable marriage with in
omplete lists

{ this is the variant of stable marriage in whi
h persons may express

una

eptable partners, so that preferen
e lists may be in
omplete (see [5℄,

Se
tion 1.4.2). The distin
tion between the variant proposed and solved
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in the present paper and stable marriage with in
omplete lists is

that, if a pair is a forbidden pair, it 
ould still be a blo
king pair with

respe
t to a mat
hing. Consider the following instan
e of stable mar-

riage with three men m

1

;m

2

;m

3

; three women w

1

; w

2

; w

3

; and prefer-

en
e lists m

1

: w

1

w

2

w

3

, m

2

: w

2

w

3

w

1

, m

3

: w

3

w

1

w

2

, w

1

: m

2

m

3

m

1

,

w

2

: m

3

m

1

m

2

, w

3

: m

1

m

2

m

3

. This instan
e admits three stable mat
hings:

M

0

= f(m

1

; w

1

); (m

2

; w

2

); (m

3

; w

3

)g, M

1

= f(m

1

; w

2

); (m

2

; w

3

); (m

3

; w

1

)g,

M

z

= f(m

1

; w

3

); (m

2

; w

1

); (m

3

; w

2

)g. Now suppose we add as restri
tion

the set of forbidden pairs P = f(m

1

; w

1

); (m

1

; w

2

)g. We have that just M

z

is a stable mat
hing for this instan
e of stable marriage with forbid-

den pairs. Consider the following instan
e of stable marriage with

in
omplete lists with three men m

1

;m

2

;m

3

; three women w

1

; w

2

; w

3

;

and preferen
e lists m

1

: w

3

, m

2

: w

2

w

3

w

1

, m

3

: w

3

w

1

w

2

, w

1

: m

2

m

3

,

w

2

: m

3

m

2

, w

3

: m

1

m

2

m

3

. This instan
e admits two stable mat
hings:

M

0

0

= f(m

1

; w

3

); (m

2

; w

2

); (m

3

; w

1

)g, M

z

= f(m

1

; w

3

); (m

2

; w

1

); (m

3

; w

2

)g.

Note that M

0

0

is not a stable mat
hing for the original unrestri
ted 
ase,

sin
e it has (m

1

; w

2

) as blo
king pair. So M

0

0

is not a stable mat
hing for

the restri
ted 
ase obtained by forbidding the set P of pairs either. With

respe
t to this restri
ted 
ase, pair (m

1

; w

2

) is both forbidden and blo
k-

ing. The reason why a pair (m;w) 
ould be a forbidden pair, but 
ould still

form a blo
king pair 
ould be justi�ed by 
onsidering a 
entralized mat
hing

s
heme in whi
h an administrator wishes to forbid (for whatever reason) two

agents from be
oming mat
hed. Yet these two agents 
ould �nd ea
h other

a

eptable, leading to the possibility that they 
ould form a blo
king pair

with respe
t to the 
onstru
ted mat
hing.

2 The Latti
e of Stable Mat
hings

The following ba
kground for the stru
ture of the set of solutions and 
or-

responding algorithms of the stable marriage problem has been fully

developed and des
ribed in [5℄. We repeat some of these results here as they

will be referred to in the se
tions that follow.

The Gale-Shapley algorithm [3℄ yields in time O(n

2

) what is 
alled the

man-optimal stable mat
hing, denoted M

0

, with the property that every

man has the best partner he 
an have in any stable mat
hing. If applied

with the roles of men and women inter
hanged, the algorithm yields the

woman-optimal stable mat
hing, denoted M

z

, whi
h similarly favours the

women.

Let M and M

0

be two stable mat
hings, and let max

i

(M;M

0

) be the
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woman whom man i prefers between his two assigned partners inM andM

0

.

Let min

i

(M;M

0

) denote the other woman. Let max(M;M

0

) (respe
tively

min(M;M

0

)) be the mapping of ea
h man i to max

i

(M;M

0

) (respe
tively

min

i

(M;M

0

)). Say that stable mat
hing M dominates stable mat
hing M

0

(from the perspe
tive of men) if and only if M = max(M;M

0

). Say that a

stable mat
hing X is between M and M

0

if and only if M dominates X and

X dominates M

0

, while X di�ers from both M and M

0

. It is surprising but

easy to show that max(M;M

0

) and min(M;M

0

) are both stable mat
hings.

Hen
e, under the relation of dominan
e, the set of all stable mat
hings

forms a latti
e � where the join and meet operations are the max and min

operations above. The unique maximum (most dominant) element of �

is the man-optimal stable mat
hing M

0

, and the unique minimum (most

dominated) element of � is the woman-optimal stable mat
hing M

z

.

The 
on
ept of rotation is 
ru
ial for understanding the stru
ture of the

latti
e of solutions � of a stable marriage instan
e. Let M be a stable

mat
hing. Let w be the �rst woman in the list of m after his partner in M

su
h that w prefers m to her partner in M . Let next(m) be the partner

of w in M . Then there is a sequen
e, 
alled rotation, of pairs of M , say

� = (m

0

; w

0

); (m

1

; w

1

); : : : ; (m

r�1

; w

r�1

) in the stable mat
hing M , su
h

that for ea
h i, 0 � i � r � 1, m

i+1

is equal to next(m

i

), where i + 1 is

taken modulo r. We say that rotation � is exposed in M . Denote by M=�

the stable mat
hing obtained by elimination of �, i.e., the stable mat
hing

where ea
h m

i

2 � is married to w

i+1

, while the remaining pairs are the

same as in M .

On
e an exposed rotation has been identi�ed and eliminated, then one

or more rotations may be exposed in the resulting mat
hing. A rotation �

is said to be an expli
it prede
essor of rotation � = (m

0

; w

0

); (m

1

; w

1

); : : : ;

(m

r�1

; w

r�1

) if, for some i; 0 � i � r � 1, and for some woman w

q

(6= w

i

), �

is the eliminating rotation for (m

i

; w

q

) and m

i

prefers w

q

to w

i+1

. Clearly

a rotation 
annot be
ome exposed until all of its expli
it prede
essors have

been eliminated. Further, the re
exive transitive 
losure � of the expli
it

prede
essor relation is a partial order on the set of rotations, 
alled the

rotation poset denoted by �(�), and � � � if and only if � must be eliminated

before � be
omes exposed.

A 
losed set in a poset �(�) is a subset S of �(�) su
h that if � 2 S and

� � � then � 2 S. The following theorem was shown in [9℄.

Theorem 1 The stable mat
hings of a given instan
e are in one-to-one


orresponden
e with the 
losed subsets of the rotation poset.
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The set of all rotations 
an be found in time O(n

2

) and the expli
it 
on-

stru
tion of the poset �(�) requires time O(n

4

). A 
ompa
t representation

of �(�) is a
hieved by 
onstru
ting a digraph G(�) whi
h 
ontains a subset

of pairs of rotations su
h that the transitive 
losure of G(�) is the poset

�(�). The 
onstru
tion of G(�) from the set of all rotations 
an be 
arried

out in time O(n

2

).

Another important digraph is

~

G(�), a subgraph of G(�).

~

G(�) 
an

also be 
onstru
ted in O(n

2

) and its transitive 
losure is also �(�) but the

outdegree of every rotation is at most n. This upper bound on the outdegree

is important to guarantee the O(n

2

+ nS) time 
omplexity of the algorithm

that lists all stable mat
hings. For details about the stru
ture and properties

of �(�), G(�) and

~

G(�), we refer the reader to Gus�eld and Irving [5℄.

3 A Chara
terization for Restri
ted Pairs

The following 
hara
terization was given by Gus�eld in [4℄.

Theorem 2 A pair (m;w) is a stable pair if and only if it is a pair in M

z

or it is a pair in some rotation. Equivalently, (m;w) is stable if and only if

it is a pair in M

0

, or for some rotation (m

0

; w

0

); (m

1

; w

1

); : : : ; (m

r�1

; w

r�1

)

and some i, m = m

i

and w = w

i+1

.

We remark that the above 
hara
terization yields an O(n

2

) time algo-

rithm that given an instan
e of stable marriage �nds all stable pairs

through the 
ompa
t representation of �(�) by G(�).

Let Q be a stable set of pairs. Hen
e, by de�nition, there exists a stable

mat
hing M su
h that every pair in Q is married in M . For ea
h pair

(m;w) 2 Q and not married under M

0

, let 
(m;w) be the unique rotation

that moves m to w, i.e., m = m

i

and w = w

i+1

, for some i, in the rotation

� = 
(m;w). For ea
h pair (m;w) 2 Q and not married under M

z

, let

�(m;w) be the unique rotation thatmovesm from w, the pair (m;w) belongs

to the rotation � = �(m;w). Note that, by Theorem 2, every stable pair

(m;w) that is not in M

0

has a 
orresponding rotation 
(m;w), and that

every stable pair (m;w) that is not in M

z

has a 
orresponding rotation

�(m;w).

In [5℄, the following 
hara
terization for stable sets is given. A 
or-

responding algorithm is also presented, for de
iding in O(jQj

2

) time after

pre-pro
essing the preferen
e lists in O(n

4

) time whether a given set Q of

pairs is stable. The algorithm �rst 
onstru
ts �(�) expli
itly.

6



Theorem 3 A set Q of pairs is stable if and only if ea
h of the pairs

is stable, and there are no two pairs (m;w) and (m

0

; w

0

) in Q su
h that

�(m;w) � 
(m

0

; w

0

) in �(�).

The following theorem is an extension of Theorem 3. Theorem 4 gives

a 
hara
terization for determining whether, given two given sets of pairs Q

and P , there exists a stable mat
hing with set of for
ed pairs Q and set of

forbidden pairs P .

Theorem 4 Let P and Q be two sets of stable pairs. There exists a stable

mat
hing with set of for
ed pairs Q and set of forbidden pairs P if and only

if there exists a set X of rotations su
h that:

(i) for every pair (m;w) 2 Q, we have either (m;w) 2M

0

, or 
(m;w) 2 X.

In both 
ases, there is no � 2 X su
h that �(m;w) � �;

(ii) for every pair (m;w) 2 P , we have that if (m;w) 2M

0

or 
(m;w) � �,

for � 2 X, then �(m;w) 2 X.

Proof. ()) Suppose there exists a stable mat
hing M with set of for
ed

pairs Q and set of forbidden pairs P . Let S be the 
losed subset of �(�)


orresponding to M . The existen
e of stable mat
hing M says every pair

(m;w) 2 Q nM

0

is a stable pair and so admits a rotation 
(m;w). Let � be

the set of 
-rotations for all pairs in QnM

0

. Also the existen
e ofM implies

there is no pair (m;w) 2 P \M

0

\M

z

, as su
h a pair would be present in

every stable mat
hing. Let � be the set of �-rotations for all stable pairs

(m;w) 2 P nM

z

. Clearly, X = (�[�)\S satis�es the requirements (i) and

(ii).

(() Let S be the 
losed subset of �(�) su
h that the maximal rotations

in S are the rotations that are maximal in X with respe
t to the prede
essor

relation �. LetM be the stable mat
hing that 
orresponds to S. Clearly,M

is the desired stable mat
hing with set of for
ed pairs Q and set of forbidden

pairs P .

Next we show how the 
hara
terization presented in the above theorem

leads to an algorithm that tests for the existen
e of a solution of the stable

marriage with for
ed and forbidden pairs problem with for
ed pairs

Q and forbidden pairs P in O((jQj + jP j)

2

) time, after pre-pro
essing the

preferen
e lists in O(n

4

) time.

We 
an test within this time bound whether the desired set X of rota-

tions used in the 
hara
terization of Theorem 4 exists by pro
essing a list

L of rotations as follows. First we deal with some trivial situations, where

7



the answer is obtained in the pre-pro
essing phase and there is no need to


onstru
t a set X. Clearly, we may assume we have a set of for
ed pairs Q

su
h that every pair is stable. Also, a non stable pair in P is a forbidden

pair for any stable mat
hing. Thus, we may remove from P all non stable

pairs and assume we have a set of forbidden pairs P su
h that every pair is

stable. In addition, if P 
ontains a pair present both in M

0

and in M

z

(this

means the pair belongs to every stable mat
hing), then 
learly there is no

solution.

Denote by (m

i

; w

i

); 1 � i � q, the for
ed pairs in Q. Denote by 


i

the


-rotation of pair (m

i

; w

i

) 2 QnM

0

, and 
all this set of rotations �. Denote

by �

i

the �-rotation of pair (m

i

; w

i

) 2 Q nM

z

, and 
all this set of rotations

�. Denote by (m

0

i

; w

0

i

); 1 � i � p, the forbidden pairs in P . Denote by �

0

i

the

�-rotation of a stable pair (m

0

i

; w

0

i

) 2 P nM

z

, and 
all this set of rotations

�

0

. Denote by 


0

i

the 
-rotation of a stable pair (m

0

i

; w

0

i

) 2 P nM

0

, and 
all

this set of rotations �

0

. By hypothesis, no pair of P belongs both to M

0

and M

z

. Clearly, as in the 
ase of the algorithm for for
ed pairs presented

in [5℄, the pre-pro
essing of the preferen
e lists identi�es the stable pairs,


ompletely 
onstru
ts �(�), and determines 
(m;w) and �(m;w), for ea
h

stable pair (m;w).

Now 
onstru
t and pro
ess a list L of rotations as follows. Begin by

adding to L all 
(m;w), for every pair (m;w) 2 Q nM

0

, and all �

0

(m;w),

for every pair (m

0

; w

0

) 2 P \M

0

. Pro
ess ea
h rotation � of L by adding �

to set X, and by testing, for ea
h �

i

, a �-rotation in �, whether �

i

� �. If

yes, then stop: there is no desired set X. Else, test, for ea
h 


0

i

, a 
-rotation

in �

0

, whether 


0

i

� �. If yes and (m

0

i

; w

0

i

) 2 M

z

, then stop: there is no

desired set X. If yes and (m

0

i

; w

0

i

) 62 M

z

, then move �

0

i

from set �

0

to L

and remove 


0

i

from set �

0

. Continue by pro
essing the rotations a

ording

to their rank in L. In the 
ase that all rotations in list L are su

essfully

pro
essed, then we have the desired set X built in time O((jQj+ jP j)

2

). As

in the 
ase of for
ed pairs [5℄, this algorithm �rst 
onstru
ts �(�) expli
itly,

and so pre-pro
esses the preferen
e lists in O(n

4

) time.

We pro
eed to the transformation from stable marriage with for
ed

and forbidden pairs to stable marriage with forbidden pairs.

Given an instan
e (n;L) of the original stable marriage problem, n is

the number of men and L is the set of 2n preferen
e lists. In an instan
e

(n;L;Q; P ) of stable marriage with for
ed and forbidden pairs, Q

is the set of for
ed pairs and P is the set of forbidden pairs. We redu
e sta-

ble marriage with for
ed and forbidden pairs to stable marriage

with forbidden pairs as follows [2℄.

8



Let (n;L;Q; P ) be an instan
e of stable marriage with for
ed and

forbidden pairs. Begin by setting P

0

= P , and for ea
h pair (m;w) 2 Q,

add (m;w

0

) to P

0

, for all w

0

6= w. A mat
hing is stable with respe
t to

(n;L;Q; P ), if and only if it is stable with respe
t to (n;L; ;; P

0

).

Note that the above redu
tion 
onstru
ts an instan
e of stable mar-

riage with forbidden pairs with (jP j+(n�1)jQj) forbidden pairs. This

observation justi�es the 
hara
terization of Theorem 4 being stated for sta-

ble marriage with for
ed and forbidden pairs.

In Se
tion 4, we fo
us on the stable marriage with forbidden pairs

problem. We denote an instan
e of stable marriage with forbidden

pairs by (n;L; P ), where n is the number of men, L is the set of 2n preferen
e

lists, and P is the set of forbidden pairs. We shall des
ribe in Se
tion 4

algorithms for stable marriage with forbidden pairs that �nd a stable

mat
hing, if it exists, in time O(n

2

).

4 Optimal Algorithms for Restri
ted Pairs

Algorithm for �nding a stable mat
hing

We use the operation breakmarriage [7℄ to de
ide in time O(n

2

), given an

instan
e of stable marriage with forbidden pairs, whether it admits a

stable mat
hing. Given a stable mat
hingM , 
ontaining the pair (m;w), op-

eration breakmarriage(M; (m;w)) returns the man-optimal stable mat
hing

whi
h is dominated by M and does not 
ontain the pair (m;w), if it exists.

The following algorithm [2℄ �nds the man-optimal stable mat
hing with a

set of forbidden pairs P . We 
all this mat
hing M

P

0

. Note that Algorithm 1

may also �nd, if 
hanged a

ordingly, the woman-optimal stable mat
hing

with a set of forbidden pairs P . We 
all this mat
hing M

P

z

.

Algorithm 1

Input: (n;L; P )

Output: The man-optimal stable mat
hing with a set of forbidden pairs P ,

if it exists, and \There is no solution" otherwise

M  man-optimal solution without 
onsidering P

while there is a forbidden pair (m;w) in M

M  breakmarriage(M; (m;w))

if M is not a mat
hing

return \There is no solution"

return M

9



Theorem 5 Algorithm 1 de
ides in time O(n

2

) whether a given instan
e of

stable marriage with forbidden pairs admits a stable mat
hing, and

returns the man-optimal solution if it exists.

Proof. The proof of 
orre
tness is straightforward. Let M

1

;M

2

; :::;M

k

be

the mat
hings assumed by variableM during the exe
ution of the algorithm.

If the solution exists, every mat
hing M

i

dominates or is equal to it. As M

i

dominates M

i+1

, mat
hing M

k

is the solution. If there is no solution we

will 
ertainly try to break a forbidden pair of P that is in the unrestri
ted

woman-optimal solution M

z

and breakmarriage will return an error.

For the 
omplexity analysis, �rst note that we 
an determine in 
onstant

time whether a given pair is forbidden by 
he
king a pre-built boolean ma-

trix. We 
an maintain a list of all forbidden pairs in the 
urrent mat
hing

by 
he
king the boolean matrix during all 
hanges of pairs in the mat
hing

and adding or removing a pair from the list a

ordingly. To add or remove

these elements in 
onstant time, it is ne
essary to maintain another matrix,

whi
h points to the position of ea
h forbidden pair in the list. It is 
lear

by [7℄ that the total time spent in the breakmarriage operation is bounded

by the total number of proposals performed within the operation. Sin
e the

operation does not make the same proposal twi
e, this number is O(n

2

).

Algorithm for all stable pairs

The relevant results from Se
tion 1.3.1 of [5℄ 
an be extended to stable

marriage with forbidden pairs so that the set of stable mat
hings form

a latti
e. Given an instan
e (n;L; P ) of stable marriage with forbid-

den pairs, 
all �

P

the latti
e of solutions of the version with forbidden

pairs and � the latti
e of solutions of the unrestri
ted version obtained by

removing the set P .

First, we use Algorithm 1 to obtain stable mat
hings M

P

0

and M

P

z

(we

assume thatM

P

0

andM

P

z

exist, otherwise we may halt immediately). Then,

we 
onsider only rotations in the maximal 
hains in � between M

P

0

and

M

P

z

to 
onstru
t the 
orresponding subgraph of G(�). We 
onstru
t the

digraph G

0

(�

P

) by adding edges to this subgraph of G(�). The digraph

G

0

(�

P

) 
ontains, for ea
h forbidden pair (m;w) 2 P , the dire
ted edge

(�(m;w); 
(m;w)), if �(m;w) and 
(m;w) are rotations in the maximal


hains in � between M

P

0

and M

P

z

. Note that these additional edges add


y
les to the a
y
li
 digraph G(�). The number of edges added to the

subgraph of G(�) to obtain G

0

(�

P

) is O(n

2

).
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We extend the de�nition of 
losed set to digraphs as follows: a 
losed set

in a digraph G is a subset S of the vertex set of G su
h that if v 2 S and

there is a dire
ted path from vertex w to vertex v, then w 2 S.

Theorem 6 There is a one to one 
orresponden
e between the stable mat
h-

ings of �

P

and the 
losed subsets of G

0

(�

P

).

Proof. Given a 
losed subset of G

0

(�

P

), the 
orresponding stable mat
hing

is obtained by the elimination of every rotation in the subset starting from

M

P

0

. First, we show that the 
orresponding mat
hings are, in fa
t, stable.

Then we show that every stable mat
hing 
an be generated this way.

Clearly, by Corollary 3.2.2 of [5℄ and Theorem 1, all these mat
hings are

in �. If a stable mat
hing generated in this way 
ontained a pair (m;w)

from P , then the 
orresponding subset would 
ontain 
(m;w) and would

not 
ontain �(m;w). Sin
e there is an edge (�(m;w); 
(m;w)), this subset

is not 
losed.

To show that every mat
hing in �

P

has a 
orresponding 
losed subset

of G

0

(�

P

), we suppose there is a mat
hing M 2 �

P

that 
ontradi
ts this

assumption. There is a 
losed subset S of G(�) that 
orresponds to M .

Consequently, for some rotations � 2 S and �

0

62 S, the edge (�

0

; �) is in

G

0

(�

P

), but not in G(�). So, (�

0

; �) is (�(m;w); 
(m;w)) for a forbidden

pair (m;w). Therefore, the forbidden pair (m;w) 2 M , 
ontradi
ting its

stability.

Let M be a stable mat
hing and 
onsider a set of rotations S that 
an

be eliminated in M 
onse
utively, resulting in the stable mat
hing M

0

. A

transformation � is a set of triples (m;w;w

0

) 
orresponding to S. For ea
h

man m whi
h is married to a woman w in M and another woman w

0

6= w

in M

0

, the 
orresponding transformation 
ontains a triple (m;w;w

0

). We

denote by M=� the stable mat
hing M

0

obtained by elimination of � : for

ea
h (m;w;w

0

) 2 � , we have (m;w) 2 M and (m;w

0

) 2 M=� , the other

pairs are the same in M and M=� . If there is just one rotation in the

set, say � = (m

0

; w

0

); (m

1

; w

1

), : : :, (m

r�1

; w

r�1

), then the 
orresponding

transformation is � = f(m

0

; w

0

; w

1

), (m

1

; w

1

; w

2

), : : :, (m

r�1

; w

r�1

; w

0

)g.

We shall study next the latti
e of solutions �

P

of a stable marriage

with forbidden pairs instan
e.

We de�ne the poset of transformations �(�

P

) and 
onstru
t its 
ompa
t

representations G(�

P

) and

~

G(�

P

) analogously to the poset of rotations

�(�) and its 
ompa
t representations G(�) and

~

G(�). The elements of

the poset �(�

P

), and the verti
es of the digraphs G(�

P

) and

~

G(�

P

) are

11



the transformations 
orresponding to the strongly 
onne
ted 
omponents of

G

0

(�

P

).

Transformation � pre
edes �

0

in �(�

P

) if and only if � pre
edes �

0

in

�(�), for some rotation � belonging to � and for some rotation �

0

belonging

to �

0

.

Theorem 7 There is a one to one 
orresponden
e between the stable mat
h-

ings of �

P

and the 
losed subsets of �(�

P

).

Proof. It is easy to verify that there is a one to one 
orresponden
e be-

tween the 
losed subsets of �(�

P

) and the 
losed subsets of G

0

(�

P

). Now

Theorem 6 implies that there is also a one to one 
orresponden
e between

the 
losed subsets of �(�

P

) and the stable mat
hings of �

P

.

We establish a result analogous to Theorem 2.

Theorem 8 A pair (m;w) is a stable pair in �

P

if and only if it is a pair

in M

P

0

or (m;w

0

; w) belongs to a transformation in �(�

P

). Equivalently,

(m;w) is stable in �

P

if and only if it is a pair in M

P

z

or (m;w;w

0

) belongs

to a transformation in �(�

P

).

Proof. It is enough to prove the �rst version of the theorem. The proof of

the se
ond version is analogous. Let (m;w) be a pair su
h that (m;w

0

; w)

belongs to a transformation � . Let M be the stable mat
hing 
orresponding

to the smallest 
losed subset of �

P


ontaining � . The stable mat
hing M is

a proof of the stability of the pair (m;w).

Conversely, let (m;w) be a stable pair that does not belong to M

0

. Let

M be a stable mat
hing in �

P


ontaining (m;w). By Theorem 7, there exists

a 
losed subset S of �(�

P

) 
orresponding to M . Now sin
e (m;w) 62 M

0

,

there exists a transformation in S 
ontaining (m;w

0

; w).

The above 
hara
terization yields an O(n

2

) time algorithm that given

an instan
e of stable marriage with forbidden pairs �nds all stable

pairs. Noti
e that, in order to �nd all stable pairs, it is not ne
essary to


onstru
t G(�

P

), but only to determine its verti
es, the transformations


orresponding to the strongly 
onne
ted 
omponents of G

0

(�

P

).

Given a strongly 
onne
ted 
omponent S of G

0

(�

P

), to 
onstru
t the


orresponding transformation it is �rst ne
essary to �nd a valid order by

whi
h the rotations of S 
an be eliminated. To do that, we must 
onsider

the subgraph of G(�) indu
ed by the verti
es of S (in other words, we must

12



remove from 
onsideration the edges whi
h 
reated 
y
les in S). Any topo-

logi
al order of the verti
es of this a
y
li
 digraph is a valid order by whi
h

the rotations 
an be eliminated. To 
onstru
t the a
tual transformation it is

suÆ
ient to simulate the elimination of these rotations and list the modi�ed

pairs.

Algorithm for all stable mat
hings

The de�nition of the edges of G(�

P

) is analogous to the de�nition of the

edges of G(�) given in [5℄. There are two types of edges:

Type 1: If (m;w

0

; w) 2 � and (m;w;w

00

) 2 �

0

, then (�; �

0

) is a type 1

edge.

Type 2: If the transformation � moves a woman w from a man worse

than m to a man better than m and the transformation �

0

moves m from

a woman better than w to a woman worse than w, then (�; �

0

) is a type 2

edge.

Theorem 9 If (�; �

0

) is in G(�

P

), then (�; �

0

) is in �(�

P

).

Proof. We follow a similar argument to the proof of Lemma 3.2.3 in [5℄. If

(�; �

0

) is a type 1 edge in G(�

P

), it is 
lear that � must be eliminated before

�

0

, so (�; �

0

) is in �(�

P

).

If (�; �

0

) is a type 2 edge inG(�

P

), there is a pair (m;w) su
h that � takes

w from a man worse than m to a man better than m and �

0

takes m from

a woman better than w to a woman worse than w. The pair (m;w) blo
ks

any mat
hing obtained by the elimination of �

0

without the elimination of

� , so (�; �

0

) is in �(�

P

).

We say that � is an immediate prede
essor of �

0

in �(�

P

) if there is no

�

00

su
h that � pre
edes �

00

and �

00

pre
edes �

0

.

Theorem 10 If � is an immediate prede
essor of �

0

in �(�

P

), then (�; �

0

)

is in G(�

P

).

Proof. We follow a similar argument to the proof of Lemma 3.2.4 in [5℄.

By Theorem 7, let M be the stable mat
hing 
orresponding to the 
losed

set of all transformations t su
h that (t; �) 2 �(�

P

). M=� is also a stable

mat
hing. As � is a immediate prede
essor of �

0

, M=�=�

0

is also a stable

mat
hing, but M=�

0

is not.

As M=�=�

0

is a stable mat
hing, but M=�

0

is not, one of the following


onditions o

urs: There is a pair 
reated by � and broken by �

0

or there is

13



a pair (m;w) su
h that � takes w from a man worse than m to a man better

than m and �

0

takes m from a woman better than w to a woman worse than

w. In the former 
ase, (�; �

0

) is a type 1 edge in G(�

P

) and in the latter


ase (�; �

0

) is a type 2 edge in G(�

P

).

An immediate 
onsequen
e of the last two theorems is:

Theorem 11 The transitive 
losure of G(�

P

) is �(�

P

). Consequently,

there exists a one to one 
orresponden
e between the 
losed subsets of G(�

P

)

and the stable mat
hings of �

P

.

The following algorithm 
onstru
ts G(�

P

) by extending to the 
ontext of

transformations the algorithm for the 
onstru
tion of G(�) suggested by the

proof of Lemma 3.3.2 of [5℄. An argument similar to the one in [5℄ establishes

the time 
omplexity bound of O(n

2

) for the 
onstru
tion of G(�

P

).

Algorithm 2

Input: (n;L; P ), M

P

z

and the set of transformations

Output: The edges of G(�

P

)

(Phase 1)

V [m;w℄ 0, for every pair (m;w)

For ea
h transformation �

For ea
h (m;w;w

0

) 2 �

V [m;w℄ 1

T [m;w℄ �

For ea
h (m;w) su
h that � moves w from a man

worse than m to a man better than m

V [m;w℄ 2

T [m;w℄ �

For ea
h (m;w) 2M

P

z

V [m;w℄ #

(Phase 2)

For ea
h man m

t 0

For ea
h woman w following the order of preferen
e of m

If V [m;w℄ = #

Pro
eed to the next man

If V [m;w℄ = 1

If t 6= 0

Output type 1 edge (t; T [m;w℄)

t T [m;w℄

If V [m;w℄ = 2

If t 6= 0

Output type 2 edge (T [m;w℄; t)
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Phase 1 of the algorithm assigns labels to the pairs. During phase 2, we

s
an these labels on the preferen
e lists of ea
h man. When V [m;w℄ = 1

(the same for V [m;w℄ = 2) and T [m;w℄ = � we say that there is a type 1

(type 2) label of � .

Exploring the 
losed subsets of G(�

P

) using the same algorithm used

in [5℄ will list all stable mat
hings, but the time 
omplexity will not be

optimal, be
ause some verti
es may have an outdegree greater than n. To

solve this problem we extend to the 
ontext of transformations the method

used in [5℄ to obtain

~

G(�) from G(�) and de�ne another digraph,

~

G(�

P

),

whi
h has some of the type 2 edges of G(�

P

) removed. The only di�eren
e

between

~

G(�

P

) and G(�

P

) is that, in phase 2 of the algorithm, if we �nd

two labels of the same transformation � during the s
an of the preferen
e

list of a man m, we only 
onsider the �rst label and the additional type 1

labels. In other words, we do not 
onsider type 2 labels that 
ome after a

type 1 or type 2 label of the same transformation. Phase 2 of Algorithm 2

should be rewritten as follows:

Algorithm 3

Input: (n;L; P ), M

P

z

and the set of transformations

Output: The edges of

~

G(�

P

)

(Phase 1)

The same as Algorithm 2

(Phase 2)

p[� ℄ 0, for every transformation �

For ea
h man m

t 0

For ea
h woman w following the order of preferen
e of m

If V [m;w℄ = #

Pro
eed to the next man

If V [m;w℄ = 1

If t 6= 0

Output type 1 edge (t; T [m;w℄)

t T [m;w℄

p[T [m;w℄℄ 1

Add T [m;w℄ to a list

If V [m;w℄ = 2

If t 6= 0 and p[T [m;w℄℄ = 0

Output type 2 edge (T [m;w℄; t)

p[T [m;w℄℄ 1

Add T [m;w℄ to a list

p[� ℄ 0, for every � on the list

Empty the list

The next two theorems may be proved in a similar manner to Parts (i)
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and (ii) of Theorem 3.3.1 in [5℄.

Theorem 12 The outdegree of any node in

~

G(�

P

) is at most n.

Proof. Type 1 labels of a transformation � 
an appear only on
e in the

preferen
e list of any man. So, at most one type 1 edge is 
reated during the

s
an of the preferen
e list of ea
h man. Sin
e type 2 labels of � are ignored

if pre
eded by earlier labels of � and a type 2 label of � 
annot pre
ede the

unique type 1 label of � , at most one edge out of � is 
reated during the

s
an of the preferen
e list of ea
h man.

Theorem 13 The transitive 
losure of

~

G(�

P

) is �(�

P

).

Proof. It is suÆ
ient to prove that if (�; �

0

) is a type 2 edge of G(�

P

),

but not of

~

G(�

P

), there is a path from � to �

0

in

~

G(�

P

). This edge (�; �

0

)

has been ignored when we were s
anning the preferen
e list of man m in

Algorithm 3 be
ause there is another label of � before the type 1 label of

�

0

. But there is a type 1 edge (�; �

00

) 
reated be
ause there is a type 1 label

of �

00

before the type 1 label of �

0

. As there is a path through type 1 edges

from �

00

to �

0

, there is a path from � to �

0

in

~

G(�

P

).

Exploring the 
losed subsets of

~

G(�

P

) involves extending to the 
ontext

of transformations the algorithm of Figure 3.8 of [5℄ whi
h will list all stable

mat
hings in optimal worst 
ase time. The only ne
essary 
hange is that

instead of eliminating rotations, we must eliminate transformations. The

spa
e 
omplexity is O(n

2

). Summarizing, the proposed algorithm to �nd all

stable mat
hings 
onsists of:

Algorithm 4

Input: (n;L; P )

Output: All stable mat
hings with set of forbidden pairs P

Constru
t G(�)

Add edges 
onstru
ting G

0

(�

P

)

Find the strongly 
onne
ted 
omponents of G

0

(�

P

)

and the 
orresponding transformations

Constru
t

~

G(�

P

)

Explore all 
losed subsets of

~

G(�

P

)

and list the 
orresponding mat
hings
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5 Con
luding remarks

We have des
ribed an algorithm for �nding all S solutions, given an in-

stan
e of stable marriage with forbidden pairs, with n men and n

women. The time 
omplexity of the algorithm is O(n

2

+nS) while the spa
e


omplexity is O(n

2

).

It would be interesting to know whether there is an algorithm that 
ould

solve the above problem in less than O(n) amortized time per solution for

a suÆ
iently large value of S. In general, most of the algorithms (e.g. [6℄)

for enumerating the set of size n obje
ts of a desired 
olle
tion a
hieving

eÆ
ient amortized time bounds work under the following model: the obje
ts

of the 
olle
tion are enumerated in a same memory spa
e, of size n. The

following argument shows that any algorithm for expli
itly �nding all solu-

tions of stable marriage (with or without forbidden pairs) requires 
(n)

amortized time per solution, under the above model.

Denote by �(n) the following instan
e of stable marriage with n men

and n women. Let L(m; k) be the k-th woman on man m's list and L(w; k)

the k-th man on woman w's list. The preferen
e lists in �(n) are: L(m

i

; k) =

w

i+k�1

, L(w

i

; k) = m

i+k

, where indi
es are taken modulo n.

The n stable mat
hings for instan
e �(n) are pre
isely, for ea
h �xed

value of k = 1; : : : ; n, the set of n pairs: f(m;L(m; k)); for every man mg.

First, it is 
learly true that for k = 1, we have a stable mat
hing be
ause

every man is married to the �rst woman on his list and every man is married

to a distin
t woman. By sear
hing an exposed rotation in this mat
hing, we

�nd the rotation ((m

1

; w

1

); (m

2

; w

2

); : : : ; (m

n

; w

n

)). The following mat
hing

will have the exposed rotation ((m

1

; w

2

); (m

2

; w

3

); :::; (m

n

; w

1

)), and so on.

We generate in this way n distin
t stable mat
hings for instan
e �(n). Note

that ea
h one of the possible n

2

pairs is a stable pair, and that any pair is

in pre
isely one stable mat
hing. Therefore instan
e �(n) admits pre
isely

n distin
t stable mat
hings, and is su
h that any of its two stable mat
hings

have no 
ommon pairs, i.e., any two stable mat
hings di�er by n pairs.

Next, we show how to 
onstru
t an instan
e of stable marriage with

n = n

1

n

2

men, n

n

2

1

stable mat
hings and su
h that any two distin
t solutions

di�er by n

1

pairs, for any n

1

and n

2

. By 
onsidering n

2

to be a 
onstant,

we need 
(n) time to write the di�erent pairs in memory.

To 
onstru
t this instan
e we take n

2

instan
es �(n

1

) for di�erent sets

of n

1

men. Only the �rst n

1

positions on ea
h list are �lled, but the other

ones 
an be �lled arbitrarily, be
ause they will not be used in any stable

mat
hing. The n

1

distin
t stable mat
hings for ea
h instan
e 
an be freely


ombined yielding the 
laimed n

n

2

1

stable mat
hings.
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Some variations of the stable marriage problem (like in
omplete lists

or di�erent sized sets) 
an be redu
ed to the 
onventional problem by 
hang-

ing the preferen
e lists and possibly adding auxiliary men and women. The

solutions of the variations are found by removing these auxiliary people from

the obtained stable mat
hings. We show next that this kind of simple redu
-

tion is not possible for stable marriage with forbidden pairs. The set

of solutions for the instan
e �(4) des
ribed above with forbidden pairs P =

f(1; 2); (1; 4)g is: ff(1; 1); (2; 2); (3; 3); (4; 4)g; f(1; 3); (2; 4); (3; 1); (4; 2)gg. If

these two mat
hings were solutions of the stable marriage problem, then

they would be 
onne
ted by a single rotation, whi
h is not the 
ase. A

rotation is a 
y
li
 permutation of one subset of women among one subset

of men. In this example, two rotations are ne
essary to ex
hange the wives

of men 1 and 3, and of men 2 and 4. The need of two rotations remains if

auxiliary men and women are added.
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