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Abstrat

A stable mathing is a omplete mathing of men and women suh

that no man and woman who are not partners both prefer eah other to

their atual partners under the mathing. In an instane of the stable

marriage problem, eah of the n men and n women ranks the mem-

bers of the opposite sex in order of preferene. It is well known that at

least one stable mathing exists for every stable marriage problem

instane. We onsider extensions of the stable marriage problem

obtained by foring and by forbidding sets of pairs. We present a

haraterization for the existene of a solution for the stable mar-

riage with fored and forbidden pairs problem. In addition,

we desribe a redution of the stable marriage with fored and

forbidden pairs problem to the stable marriage with forbid-

den pairs problem. Finally, we also present algorithms for �nding a

stable mathing, all stable pairs and all stable mathings for this ex-

tension. The omplexities of the proposed algorithms are the same as

the best known algorithms for the unrestrited version of the problem.
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1 Introdution

Given a set of n men and a set of n women, a omplete mathing is a set of

n pairs, eah pair ontaining one man and one woman, suh that no person

is in more than one pair. In an instane of the stable marriage problem,

eah of the n men and n women ranks the members of the opposite sex in

order of preferene. A stable mathing is a omplete mathing of men and

women for whih there is no bloking pair: a pair of man and woman who are

not partners and suh that both prefer eah other to their atual partners

under the mathing. It is well known that at least one stable mathing exists

for every stable marriage instane.

The Gale-Shapley algorithm [3℄ �nds in time O(n

2

) a stable mathing

for a given stable marriage instane. A pair is stable if it is ontained

in some stable mathing. Gus�eld [4℄ gives algorithms for �nding all stable

pairs and all S (a number possibly exponential in n) stable mathings in

O(n

2

) and O(n

2

+nS) time, respetively. The neessary bakground for the

struture of the set of solutions and orresponding algorithms is presented

in Setion 2.

In this paper, we onsider extensions of the stable marriage problem

obtained by restriting pairs.

A set of pairs Q is stable if there is a stable mathing M suh that every

pair in Q is a pair in M . We say that M is a stable mathing with fored

pairs Q. An algorithm to �nd in O(n

2

) time a stable mathing with given

fored pairs, if suh a mathing exists, was desribed by Knuth [8℄. Gus�eld

and Irving [5℄ present a haraterization for the existene of a solution of the

stable marriage with fored pairs problem, and show how this har-

aterization leads to an algorithm that tests for the existene of a solution

of the stable marriage with fored pairs problem with fored pairs Q

in O(jQj

2

) time, after pre-proessing the preferene lists in O(n

4

) time.

Given a set of pairs P , we say that M is a stable mathing with forbid-

den pairs P if every pair in P is not a pair of M . In Setion 3, we present

a haraterization for the existene of a solution of the stable marriage

with fored and forbidden pairs problem, and we show how this har-

aterization leads to an algorithm that tests for the existene of a solution

of the stable marriage with fored and forbidden pairs problem

with fored pairs Q and forbidden pairs P in O((jQj + jP j)

2

) time, after

pre-proessing the preferene lists in O(n

4

) time. Suh an algorithm an be

useful if many sets of fored and forbidden pairs might be given. We end Se-

tion 3 by presenting a redution of stable marriage with fored and

forbidden pairs to stable marriage with forbidden pairs. Given an
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instane of the stable marriage with fored and forbidden pairs

problem with fored pairsQ and forbidden pairs P , this redution onstruts

an instane of the stable marriage with forbidden pairs problem with

(jP j+(n�1)jQj) forbidden pairs. Note that this redution inreases the num-

ber of pairs that were previously fored by a fator of n�1, and this blow-up

in the size of the instane justi�es presenting the O((jQj+ jP j)

2

) algorithm

(following O(n

4

) pre-proessing time) in terms of the stable marriage

with fored and forbidden pairs problem, rather than assuming that

Q = ; and presenting, for example, an O(jP j

2

) algorithm (following O(n

4

)

pre-proessing time) in terms of the stable marriage with forbidden

pairs problem.

In Setion 4 we desribe algorithms whih �nd, in ase they exist, for the

stable marriage with forbidden pairs problem: a stable mathing, all

stable mathings, and all stable pairs. The omplexities of these algorithms

are the same as Gus�eld's algorithms for the unrestrited version of the

stable marriage problem.

The extension stable marriage with fored and forbidden pairs,

where a set of fored pairs and a set of forbidden pairs are given, has been

proposed and solved by Dias [1℄. The redution of stable marriage with

fored and forbidden pairs to stable marriage with forbidden

pairs was onsidered by Fonsea [2℄ and applied to obtain algorithms whih

�nd, if they exist, in this extension: a stable mathing, all stable mathings,

and all stable pairs.

We onlude in Setion 5 with a disussion on the optimality of our pro-

posed algorithms. Usually, (see [6℄) in generating ombinatorial strutures,

listings with small presribed di�erenes between onseutive objets may

allow their faster generation. The disussion and the example in Setion 5

show that in any algorithm for expliitly �nding all solutions of stable

marriage the amount of omputation between suessive listed objets is


(n). As a onsequene, no onstant amortized time algorithm exists for

the problem.

We end this introdution by desribing an example showing that the

marriage problem with restrited pairs annot be redued to the onven-

tional problem, simply by hanging the input data (as in the ase of inom-

plete lists, for example). This fat justi�es the more elaborate approah

whih has been taken in this paper. Super�ially, stable marriage with

forbidden pairs resembles stable marriage with inomplete lists

{ this is the variant of stable marriage in whih persons may express

unaeptable partners, so that preferene lists may be inomplete (see [5℄,

Setion 1.4.2). The distintion between the variant proposed and solved
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in the present paper and stable marriage with inomplete lists is

that, if a pair is a forbidden pair, it ould still be a bloking pair with

respet to a mathing. Consider the following instane of stable mar-

riage with three men m

1

;m

2

;m

3

; three women w

1

; w

2

; w

3

; and prefer-

ene lists m

1

: w

1

w

2

w

3

, m

2

: w

2

w

3

w

1

, m

3

: w

3

w

1

w

2

, w

1

: m

2

m

3

m

1

,

w

2

: m

3

m

1

m

2

, w

3

: m

1

m

2

m

3

. This instane admits three stable mathings:

M

0

= f(m

1

; w

1

); (m

2

; w

2

); (m

3

; w

3

)g, M

1

= f(m

1

; w

2

); (m

2

; w

3

); (m

3

; w

1

)g,

M

z

= f(m

1

; w

3

); (m

2

; w

1

); (m

3

; w

2

)g. Now suppose we add as restrition

the set of forbidden pairs P = f(m

1

; w

1

); (m

1

; w

2

)g. We have that just M

z

is a stable mathing for this instane of stable marriage with forbid-

den pairs. Consider the following instane of stable marriage with

inomplete lists with three men m

1

;m

2

;m

3

; three women w

1

; w

2

; w

3

;

and preferene lists m

1

: w

3

, m

2

: w

2

w

3

w

1

, m

3

: w

3

w

1

w

2

, w

1

: m

2

m

3

,

w

2

: m

3

m

2

, w

3

: m

1

m

2

m

3

. This instane admits two stable mathings:

M

0

0

= f(m

1

; w

3

); (m

2

; w

2

); (m

3

; w

1

)g, M

z

= f(m

1

; w

3

); (m

2

; w

1

); (m

3

; w

2

)g.

Note that M

0

0

is not a stable mathing for the original unrestrited ase,

sine it has (m

1

; w

2

) as bloking pair. So M

0

0

is not a stable mathing for

the restrited ase obtained by forbidding the set P of pairs either. With

respet to this restrited ase, pair (m

1

; w

2

) is both forbidden and blok-

ing. The reason why a pair (m;w) ould be a forbidden pair, but ould still

form a bloking pair ould be justi�ed by onsidering a entralized mathing

sheme in whih an administrator wishes to forbid (for whatever reason) two

agents from beoming mathed. Yet these two agents ould �nd eah other

aeptable, leading to the possibility that they ould form a bloking pair

with respet to the onstruted mathing.

2 The Lattie of Stable Mathings

The following bakground for the struture of the set of solutions and or-

responding algorithms of the stable marriage problem has been fully

developed and desribed in [5℄. We repeat some of these results here as they

will be referred to in the setions that follow.

The Gale-Shapley algorithm [3℄ yields in time O(n

2

) what is alled the

man-optimal stable mathing, denoted M

0

, with the property that every

man has the best partner he an have in any stable mathing. If applied

with the roles of men and women interhanged, the algorithm yields the

woman-optimal stable mathing, denoted M

z

, whih similarly favours the

women.

Let M and M

0

be two stable mathings, and let max

i

(M;M

0

) be the
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woman whom man i prefers between his two assigned partners inM andM

0

.

Let min

i

(M;M

0

) denote the other woman. Let max(M;M

0

) (respetively

min(M;M

0

)) be the mapping of eah man i to max

i

(M;M

0

) (respetively

min

i

(M;M

0

)). Say that stable mathing M dominates stable mathing M

0

(from the perspetive of men) if and only if M = max(M;M

0

). Say that a

stable mathing X is between M and M

0

if and only if M dominates X and

X dominates M

0

, while X di�ers from both M and M

0

. It is surprising but

easy to show that max(M;M

0

) and min(M;M

0

) are both stable mathings.

Hene, under the relation of dominane, the set of all stable mathings

forms a lattie � where the join and meet operations are the max and min

operations above. The unique maximum (most dominant) element of �

is the man-optimal stable mathing M

0

, and the unique minimum (most

dominated) element of � is the woman-optimal stable mathing M

z

.

The onept of rotation is ruial for understanding the struture of the

lattie of solutions � of a stable marriage instane. Let M be a stable

mathing. Let w be the �rst woman in the list of m after his partner in M

suh that w prefers m to her partner in M . Let next(m) be the partner

of w in M . Then there is a sequene, alled rotation, of pairs of M , say

� = (m

0

; w

0

); (m

1

; w

1

); : : : ; (m

r�1

; w

r�1

) in the stable mathing M , suh

that for eah i, 0 � i � r � 1, m

i+1

is equal to next(m

i

), where i + 1 is

taken modulo r. We say that rotation � is exposed in M . Denote by M=�

the stable mathing obtained by elimination of �, i.e., the stable mathing

where eah m

i

2 � is married to w

i+1

, while the remaining pairs are the

same as in M .

One an exposed rotation has been identi�ed and eliminated, then one

or more rotations may be exposed in the resulting mathing. A rotation �

is said to be an expliit predeessor of rotation � = (m

0

; w

0

); (m

1

; w

1

); : : : ;

(m

r�1

; w

r�1

) if, for some i; 0 � i � r � 1, and for some woman w

q

(6= w

i

), �

is the eliminating rotation for (m

i

; w

q

) and m

i

prefers w

q

to w

i+1

. Clearly

a rotation annot beome exposed until all of its expliit predeessors have

been eliminated. Further, the reexive transitive losure � of the expliit

predeessor relation is a partial order on the set of rotations, alled the

rotation poset denoted by �(�), and � � � if and only if � must be eliminated

before � beomes exposed.

A losed set in a poset �(�) is a subset S of �(�) suh that if � 2 S and

� � � then � 2 S. The following theorem was shown in [9℄.

Theorem 1 The stable mathings of a given instane are in one-to-one

orrespondene with the losed subsets of the rotation poset.
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The set of all rotations an be found in time O(n

2

) and the expliit on-

strution of the poset �(�) requires time O(n

4

). A ompat representation

of �(�) is ahieved by onstruting a digraph G(�) whih ontains a subset

of pairs of rotations suh that the transitive losure of G(�) is the poset

�(�). The onstrution of G(�) from the set of all rotations an be arried

out in time O(n

2

).

Another important digraph is

~

G(�), a subgraph of G(�).

~

G(�) an

also be onstruted in O(n

2

) and its transitive losure is also �(�) but the

outdegree of every rotation is at most n. This upper bound on the outdegree

is important to guarantee the O(n

2

+ nS) time omplexity of the algorithm

that lists all stable mathings. For details about the struture and properties

of �(�), G(�) and

~

G(�), we refer the reader to Gus�eld and Irving [5℄.

3 A Charaterization for Restrited Pairs

The following haraterization was given by Gus�eld in [4℄.

Theorem 2 A pair (m;w) is a stable pair if and only if it is a pair in M

z

or it is a pair in some rotation. Equivalently, (m;w) is stable if and only if

it is a pair in M

0

, or for some rotation (m

0

; w

0

); (m

1

; w

1

); : : : ; (m

r�1

; w

r�1

)

and some i, m = m

i

and w = w

i+1

.

We remark that the above haraterization yields an O(n

2

) time algo-

rithm that given an instane of stable marriage �nds all stable pairs

through the ompat representation of �(�) by G(�).

Let Q be a stable set of pairs. Hene, by de�nition, there exists a stable

mathing M suh that every pair in Q is married in M . For eah pair

(m;w) 2 Q and not married under M

0

, let (m;w) be the unique rotation

that moves m to w, i.e., m = m

i

and w = w

i+1

, for some i, in the rotation

� = (m;w). For eah pair (m;w) 2 Q and not married under M

z

, let

�(m;w) be the unique rotation thatmovesm from w, the pair (m;w) belongs

to the rotation � = �(m;w). Note that, by Theorem 2, every stable pair

(m;w) that is not in M

0

has a orresponding rotation (m;w), and that

every stable pair (m;w) that is not in M

z

has a orresponding rotation

�(m;w).

In [5℄, the following haraterization for stable sets is given. A or-

responding algorithm is also presented, for deiding in O(jQj

2

) time after

pre-proessing the preferene lists in O(n

4

) time whether a given set Q of

pairs is stable. The algorithm �rst onstruts �(�) expliitly.
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Theorem 3 A set Q of pairs is stable if and only if eah of the pairs

is stable, and there are no two pairs (m;w) and (m

0

; w

0

) in Q suh that

�(m;w) � (m

0

; w

0

) in �(�).

The following theorem is an extension of Theorem 3. Theorem 4 gives

a haraterization for determining whether, given two given sets of pairs Q

and P , there exists a stable mathing with set of fored pairs Q and set of

forbidden pairs P .

Theorem 4 Let P and Q be two sets of stable pairs. There exists a stable

mathing with set of fored pairs Q and set of forbidden pairs P if and only

if there exists a set X of rotations suh that:

(i) for every pair (m;w) 2 Q, we have either (m;w) 2M

0

, or (m;w) 2 X.

In both ases, there is no � 2 X suh that �(m;w) � �;

(ii) for every pair (m;w) 2 P , we have that if (m;w) 2M

0

or (m;w) � �,

for � 2 X, then �(m;w) 2 X.

Proof. ()) Suppose there exists a stable mathing M with set of fored

pairs Q and set of forbidden pairs P . Let S be the losed subset of �(�)

orresponding to M . The existene of stable mathing M says every pair

(m;w) 2 Q nM

0

is a stable pair and so admits a rotation (m;w). Let � be

the set of -rotations for all pairs in QnM

0

. Also the existene ofM implies

there is no pair (m;w) 2 P \M

0

\M

z

, as suh a pair would be present in

every stable mathing. Let � be the set of �-rotations for all stable pairs

(m;w) 2 P nM

z

. Clearly, X = (�[�)\S satis�es the requirements (i) and

(ii).

(() Let S be the losed subset of �(�) suh that the maximal rotations

in S are the rotations that are maximal in X with respet to the predeessor

relation �. LetM be the stable mathing that orresponds to S. Clearly,M

is the desired stable mathing with set of fored pairs Q and set of forbidden

pairs P .

Next we show how the haraterization presented in the above theorem

leads to an algorithm that tests for the existene of a solution of the stable

marriage with fored and forbidden pairs problem with fored pairs

Q and forbidden pairs P in O((jQj + jP j)

2

) time, after pre-proessing the

preferene lists in O(n

4

) time.

We an test within this time bound whether the desired set X of rota-

tions used in the haraterization of Theorem 4 exists by proessing a list

L of rotations as follows. First we deal with some trivial situations, where
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the answer is obtained in the pre-proessing phase and there is no need to

onstrut a set X. Clearly, we may assume we have a set of fored pairs Q

suh that every pair is stable. Also, a non stable pair in P is a forbidden

pair for any stable mathing. Thus, we may remove from P all non stable

pairs and assume we have a set of forbidden pairs P suh that every pair is

stable. In addition, if P ontains a pair present both in M

0

and in M

z

(this

means the pair belongs to every stable mathing), then learly there is no

solution.

Denote by (m

i

; w

i

); 1 � i � q, the fored pairs in Q. Denote by 

i

the

-rotation of pair (m

i

; w

i

) 2 QnM

0

, and all this set of rotations �. Denote

by �

i

the �-rotation of pair (m

i

; w

i

) 2 Q nM

z

, and all this set of rotations

�. Denote by (m

0

i

; w

0

i

); 1 � i � p, the forbidden pairs in P . Denote by �

0

i

the

�-rotation of a stable pair (m

0

i

; w

0

i

) 2 P nM

z

, and all this set of rotations

�

0

. Denote by 

0

i

the -rotation of a stable pair (m

0

i

; w

0

i

) 2 P nM

0

, and all

this set of rotations �

0

. By hypothesis, no pair of P belongs both to M

0

and M

z

. Clearly, as in the ase of the algorithm for fored pairs presented

in [5℄, the pre-proessing of the preferene lists identi�es the stable pairs,

ompletely onstruts �(�), and determines (m;w) and �(m;w), for eah

stable pair (m;w).

Now onstrut and proess a list L of rotations as follows. Begin by

adding to L all (m;w), for every pair (m;w) 2 Q nM

0

, and all �

0

(m;w),

for every pair (m

0

; w

0

) 2 P \M

0

. Proess eah rotation � of L by adding �

to set X, and by testing, for eah �

i

, a �-rotation in �, whether �

i

� �. If

yes, then stop: there is no desired set X. Else, test, for eah 

0

i

, a -rotation

in �

0

, whether 

0

i

� �. If yes and (m

0

i

; w

0

i

) 2 M

z

, then stop: there is no

desired set X. If yes and (m

0

i

; w

0

i

) 62 M

z

, then move �

0

i

from set �

0

to L

and remove 

0

i

from set �

0

. Continue by proessing the rotations aording

to their rank in L. In the ase that all rotations in list L are suessfully

proessed, then we have the desired set X built in time O((jQj+ jP j)

2

). As

in the ase of fored pairs [5℄, this algorithm �rst onstruts �(�) expliitly,

and so pre-proesses the preferene lists in O(n

4

) time.

We proeed to the transformation from stable marriage with fored

and forbidden pairs to stable marriage with forbidden pairs.

Given an instane (n;L) of the original stable marriage problem, n is

the number of men and L is the set of 2n preferene lists. In an instane

(n;L;Q; P ) of stable marriage with fored and forbidden pairs, Q

is the set of fored pairs and P is the set of forbidden pairs. We redue sta-

ble marriage with fored and forbidden pairs to stable marriage

with forbidden pairs as follows [2℄.

8



Let (n;L;Q; P ) be an instane of stable marriage with fored and

forbidden pairs. Begin by setting P

0

= P , and for eah pair (m;w) 2 Q,

add (m;w

0

) to P

0

, for all w

0

6= w. A mathing is stable with respet to

(n;L;Q; P ), if and only if it is stable with respet to (n;L; ;; P

0

).

Note that the above redution onstruts an instane of stable mar-

riage with forbidden pairs with (jP j+(n�1)jQj) forbidden pairs. This

observation justi�es the haraterization of Theorem 4 being stated for sta-

ble marriage with fored and forbidden pairs.

In Setion 4, we fous on the stable marriage with forbidden pairs

problem. We denote an instane of stable marriage with forbidden

pairs by (n;L; P ), where n is the number of men, L is the set of 2n preferene

lists, and P is the set of forbidden pairs. We shall desribe in Setion 4

algorithms for stable marriage with forbidden pairs that �nd a stable

mathing, if it exists, in time O(n

2

).

4 Optimal Algorithms for Restrited Pairs

Algorithm for �nding a stable mathing

We use the operation breakmarriage [7℄ to deide in time O(n

2

), given an

instane of stable marriage with forbidden pairs, whether it admits a

stable mathing. Given a stable mathingM , ontaining the pair (m;w), op-

eration breakmarriage(M; (m;w)) returns the man-optimal stable mathing

whih is dominated by M and does not ontain the pair (m;w), if it exists.

The following algorithm [2℄ �nds the man-optimal stable mathing with a

set of forbidden pairs P . We all this mathing M

P

0

. Note that Algorithm 1

may also �nd, if hanged aordingly, the woman-optimal stable mathing

with a set of forbidden pairs P . We all this mathing M

P

z

.

Algorithm 1

Input: (n;L; P )

Output: The man-optimal stable mathing with a set of forbidden pairs P ,

if it exists, and \There is no solution" otherwise

M  man-optimal solution without onsidering P

while there is a forbidden pair (m;w) in M

M  breakmarriage(M; (m;w))

if M is not a mathing

return \There is no solution"

return M

9



Theorem 5 Algorithm 1 deides in time O(n

2

) whether a given instane of

stable marriage with forbidden pairs admits a stable mathing, and

returns the man-optimal solution if it exists.

Proof. The proof of orretness is straightforward. Let M

1

;M

2

; :::;M

k

be

the mathings assumed by variableM during the exeution of the algorithm.

If the solution exists, every mathing M

i

dominates or is equal to it. As M

i

dominates M

i+1

, mathing M

k

is the solution. If there is no solution we

will ertainly try to break a forbidden pair of P that is in the unrestrited

woman-optimal solution M

z

and breakmarriage will return an error.

For the omplexity analysis, �rst note that we an determine in onstant

time whether a given pair is forbidden by heking a pre-built boolean ma-

trix. We an maintain a list of all forbidden pairs in the urrent mathing

by heking the boolean matrix during all hanges of pairs in the mathing

and adding or removing a pair from the list aordingly. To add or remove

these elements in onstant time, it is neessary to maintain another matrix,

whih points to the position of eah forbidden pair in the list. It is lear

by [7℄ that the total time spent in the breakmarriage operation is bounded

by the total number of proposals performed within the operation. Sine the

operation does not make the same proposal twie, this number is O(n

2

).

Algorithm for all stable pairs

The relevant results from Setion 1.3.1 of [5℄ an be extended to stable

marriage with forbidden pairs so that the set of stable mathings form

a lattie. Given an instane (n;L; P ) of stable marriage with forbid-

den pairs, all �

P

the lattie of solutions of the version with forbidden

pairs and � the lattie of solutions of the unrestrited version obtained by

removing the set P .

First, we use Algorithm 1 to obtain stable mathings M

P

0

and M

P

z

(we

assume thatM

P

0

andM

P

z

exist, otherwise we may halt immediately). Then,

we onsider only rotations in the maximal hains in � between M

P

0

and

M

P

z

to onstrut the orresponding subgraph of G(�). We onstrut the

digraph G

0

(�

P

) by adding edges to this subgraph of G(�). The digraph

G

0

(�

P

) ontains, for eah forbidden pair (m;w) 2 P , the direted edge

(�(m;w); (m;w)), if �(m;w) and (m;w) are rotations in the maximal

hains in � between M

P

0

and M

P

z

. Note that these additional edges add

yles to the ayli digraph G(�). The number of edges added to the

subgraph of G(�) to obtain G

0

(�

P

) is O(n

2

).

10



We extend the de�nition of losed set to digraphs as follows: a losed set

in a digraph G is a subset S of the vertex set of G suh that if v 2 S and

there is a direted path from vertex w to vertex v, then w 2 S.

Theorem 6 There is a one to one orrespondene between the stable math-

ings of �

P

and the losed subsets of G

0

(�

P

).

Proof. Given a losed subset of G

0

(�

P

), the orresponding stable mathing

is obtained by the elimination of every rotation in the subset starting from

M

P

0

. First, we show that the orresponding mathings are, in fat, stable.

Then we show that every stable mathing an be generated this way.

Clearly, by Corollary 3.2.2 of [5℄ and Theorem 1, all these mathings are

in �. If a stable mathing generated in this way ontained a pair (m;w)

from P , then the orresponding subset would ontain (m;w) and would

not ontain �(m;w). Sine there is an edge (�(m;w); (m;w)), this subset

is not losed.

To show that every mathing in �

P

has a orresponding losed subset

of G

0

(�

P

), we suppose there is a mathing M 2 �

P

that ontradits this

assumption. There is a losed subset S of G(�) that orresponds to M .

Consequently, for some rotations � 2 S and �

0

62 S, the edge (�

0

; �) is in

G

0

(�

P

), but not in G(�). So, (�

0

; �) is (�(m;w); (m;w)) for a forbidden

pair (m;w). Therefore, the forbidden pair (m;w) 2 M , ontraditing its

stability.

Let M be a stable mathing and onsider a set of rotations S that an

be eliminated in M onseutively, resulting in the stable mathing M

0

. A

transformation � is a set of triples (m;w;w

0

) orresponding to S. For eah

man m whih is married to a woman w in M and another woman w

0

6= w

in M

0

, the orresponding transformation ontains a triple (m;w;w

0

). We

denote by M=� the stable mathing M

0

obtained by elimination of � : for

eah (m;w;w

0

) 2 � , we have (m;w) 2 M and (m;w

0

) 2 M=� , the other

pairs are the same in M and M=� . If there is just one rotation in the

set, say � = (m

0

; w

0

); (m

1

; w

1

), : : :, (m

r�1

; w

r�1

), then the orresponding

transformation is � = f(m

0

; w

0

; w

1

), (m

1

; w

1

; w

2

), : : :, (m

r�1

; w

r�1

; w

0

)g.

We shall study next the lattie of solutions �

P

of a stable marriage

with forbidden pairs instane.

We de�ne the poset of transformations �(�

P

) and onstrut its ompat

representations G(�

P

) and

~

G(�

P

) analogously to the poset of rotations

�(�) and its ompat representations G(�) and

~

G(�). The elements of

the poset �(�

P

), and the verties of the digraphs G(�

P

) and

~

G(�

P

) are

11



the transformations orresponding to the strongly onneted omponents of

G

0

(�

P

).

Transformation � preedes �

0

in �(�

P

) if and only if � preedes �

0

in

�(�), for some rotation � belonging to � and for some rotation �

0

belonging

to �

0

.

Theorem 7 There is a one to one orrespondene between the stable math-

ings of �

P

and the losed subsets of �(�

P

).

Proof. It is easy to verify that there is a one to one orrespondene be-

tween the losed subsets of �(�

P

) and the losed subsets of G

0

(�

P

). Now

Theorem 6 implies that there is also a one to one orrespondene between

the losed subsets of �(�

P

) and the stable mathings of �

P

.

We establish a result analogous to Theorem 2.

Theorem 8 A pair (m;w) is a stable pair in �

P

if and only if it is a pair

in M

P

0

or (m;w

0

; w) belongs to a transformation in �(�

P

). Equivalently,

(m;w) is stable in �

P

if and only if it is a pair in M

P

z

or (m;w;w

0

) belongs

to a transformation in �(�

P

).

Proof. It is enough to prove the �rst version of the theorem. The proof of

the seond version is analogous. Let (m;w) be a pair suh that (m;w

0

; w)

belongs to a transformation � . Let M be the stable mathing orresponding

to the smallest losed subset of �

P

ontaining � . The stable mathing M is

a proof of the stability of the pair (m;w).

Conversely, let (m;w) be a stable pair that does not belong to M

0

. Let

M be a stable mathing in �

P

ontaining (m;w). By Theorem 7, there exists

a losed subset S of �(�

P

) orresponding to M . Now sine (m;w) 62 M

0

,

there exists a transformation in S ontaining (m;w

0

; w).

The above haraterization yields an O(n

2

) time algorithm that given

an instane of stable marriage with forbidden pairs �nds all stable

pairs. Notie that, in order to �nd all stable pairs, it is not neessary to

onstrut G(�

P

), but only to determine its verties, the transformations

orresponding to the strongly onneted omponents of G

0

(�

P

).

Given a strongly onneted omponent S of G

0

(�

P

), to onstrut the

orresponding transformation it is �rst neessary to �nd a valid order by

whih the rotations of S an be eliminated. To do that, we must onsider

the subgraph of G(�) indued by the verties of S (in other words, we must

12



remove from onsideration the edges whih reated yles in S). Any topo-

logial order of the verties of this ayli digraph is a valid order by whih

the rotations an be eliminated. To onstrut the atual transformation it is

suÆient to simulate the elimination of these rotations and list the modi�ed

pairs.

Algorithm for all stable mathings

The de�nition of the edges of G(�

P

) is analogous to the de�nition of the

edges of G(�) given in [5℄. There are two types of edges:

Type 1: If (m;w

0

; w) 2 � and (m;w;w

00

) 2 �

0

, then (�; �

0

) is a type 1

edge.

Type 2: If the transformation � moves a woman w from a man worse

than m to a man better than m and the transformation �

0

moves m from

a woman better than w to a woman worse than w, then (�; �

0

) is a type 2

edge.

Theorem 9 If (�; �

0

) is in G(�

P

), then (�; �

0

) is in �(�

P

).

Proof. We follow a similar argument to the proof of Lemma 3.2.3 in [5℄. If

(�; �

0

) is a type 1 edge in G(�

P

), it is lear that � must be eliminated before

�

0

, so (�; �

0

) is in �(�

P

).

If (�; �

0

) is a type 2 edge inG(�

P

), there is a pair (m;w) suh that � takes

w from a man worse than m to a man better than m and �

0

takes m from

a woman better than w to a woman worse than w. The pair (m;w) bloks

any mathing obtained by the elimination of �

0

without the elimination of

� , so (�; �

0

) is in �(�

P

).

We say that � is an immediate predeessor of �

0

in �(�

P

) if there is no

�

00

suh that � preedes �

00

and �

00

preedes �

0

.

Theorem 10 If � is an immediate predeessor of �

0

in �(�

P

), then (�; �

0

)

is in G(�

P

).

Proof. We follow a similar argument to the proof of Lemma 3.2.4 in [5℄.

By Theorem 7, let M be the stable mathing orresponding to the losed

set of all transformations t suh that (t; �) 2 �(�

P

). M=� is also a stable

mathing. As � is a immediate predeessor of �

0

, M=�=�

0

is also a stable

mathing, but M=�

0

is not.

As M=�=�

0

is a stable mathing, but M=�

0

is not, one of the following

onditions ours: There is a pair reated by � and broken by �

0

or there is
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a pair (m;w) suh that � takes w from a man worse than m to a man better

than m and �

0

takes m from a woman better than w to a woman worse than

w. In the former ase, (�; �

0

) is a type 1 edge in G(�

P

) and in the latter

ase (�; �

0

) is a type 2 edge in G(�

P

).

An immediate onsequene of the last two theorems is:

Theorem 11 The transitive losure of G(�

P

) is �(�

P

). Consequently,

there exists a one to one orrespondene between the losed subsets of G(�

P

)

and the stable mathings of �

P

.

The following algorithm onstruts G(�

P

) by extending to the ontext of

transformations the algorithm for the onstrution of G(�) suggested by the

proof of Lemma 3.3.2 of [5℄. An argument similar to the one in [5℄ establishes

the time omplexity bound of O(n

2

) for the onstrution of G(�

P

).

Algorithm 2

Input: (n;L; P ), M

P

z

and the set of transformations

Output: The edges of G(�

P

)

(Phase 1)

V [m;w℄ 0, for every pair (m;w)

For eah transformation �

For eah (m;w;w

0

) 2 �

V [m;w℄ 1

T [m;w℄ �

For eah (m;w) suh that � moves w from a man

worse than m to a man better than m

V [m;w℄ 2

T [m;w℄ �

For eah (m;w) 2M

P

z

V [m;w℄ #

(Phase 2)

For eah man m

t 0

For eah woman w following the order of preferene of m

If V [m;w℄ = #

Proeed to the next man

If V [m;w℄ = 1

If t 6= 0

Output type 1 edge (t; T [m;w℄)

t T [m;w℄

If V [m;w℄ = 2

If t 6= 0

Output type 2 edge (T [m;w℄; t)
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Phase 1 of the algorithm assigns labels to the pairs. During phase 2, we

san these labels on the preferene lists of eah man. When V [m;w℄ = 1

(the same for V [m;w℄ = 2) and T [m;w℄ = � we say that there is a type 1

(type 2) label of � .

Exploring the losed subsets of G(�

P

) using the same algorithm used

in [5℄ will list all stable mathings, but the time omplexity will not be

optimal, beause some verties may have an outdegree greater than n. To

solve this problem we extend to the ontext of transformations the method

used in [5℄ to obtain

~

G(�) from G(�) and de�ne another digraph,

~

G(�

P

),

whih has some of the type 2 edges of G(�

P

) removed. The only di�erene

between

~

G(�

P

) and G(�

P

) is that, in phase 2 of the algorithm, if we �nd

two labels of the same transformation � during the san of the preferene

list of a man m, we only onsider the �rst label and the additional type 1

labels. In other words, we do not onsider type 2 labels that ome after a

type 1 or type 2 label of the same transformation. Phase 2 of Algorithm 2

should be rewritten as follows:

Algorithm 3

Input: (n;L; P ), M

P

z

and the set of transformations

Output: The edges of

~

G(�

P

)

(Phase 1)

The same as Algorithm 2

(Phase 2)

p[� ℄ 0, for every transformation �

For eah man m

t 0

For eah woman w following the order of preferene of m

If V [m;w℄ = #

Proeed to the next man

If V [m;w℄ = 1

If t 6= 0

Output type 1 edge (t; T [m;w℄)

t T [m;w℄

p[T [m;w℄℄ 1

Add T [m;w℄ to a list

If V [m;w℄ = 2

If t 6= 0 and p[T [m;w℄℄ = 0

Output type 2 edge (T [m;w℄; t)

p[T [m;w℄℄ 1

Add T [m;w℄ to a list

p[� ℄ 0, for every � on the list

Empty the list

The next two theorems may be proved in a similar manner to Parts (i)
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and (ii) of Theorem 3.3.1 in [5℄.

Theorem 12 The outdegree of any node in

~

G(�

P

) is at most n.

Proof. Type 1 labels of a transformation � an appear only one in the

preferene list of any man. So, at most one type 1 edge is reated during the

san of the preferene list of eah man. Sine type 2 labels of � are ignored

if preeded by earlier labels of � and a type 2 label of � annot preede the

unique type 1 label of � , at most one edge out of � is reated during the

san of the preferene list of eah man.

Theorem 13 The transitive losure of

~

G(�

P

) is �(�

P

).

Proof. It is suÆient to prove that if (�; �

0

) is a type 2 edge of G(�

P

),

but not of

~

G(�

P

), there is a path from � to �

0

in

~

G(�

P

). This edge (�; �

0

)

has been ignored when we were sanning the preferene list of man m in

Algorithm 3 beause there is another label of � before the type 1 label of

�

0

. But there is a type 1 edge (�; �

00

) reated beause there is a type 1 label

of �

00

before the type 1 label of �

0

. As there is a path through type 1 edges

from �

00

to �

0

, there is a path from � to �

0

in

~

G(�

P

).

Exploring the losed subsets of

~

G(�

P

) involves extending to the ontext

of transformations the algorithm of Figure 3.8 of [5℄ whih will list all stable

mathings in optimal worst ase time. The only neessary hange is that

instead of eliminating rotations, we must eliminate transformations. The

spae omplexity is O(n

2

). Summarizing, the proposed algorithm to �nd all

stable mathings onsists of:

Algorithm 4

Input: (n;L; P )

Output: All stable mathings with set of forbidden pairs P

Construt G(�)

Add edges onstruting G

0

(�

P

)

Find the strongly onneted omponents of G

0

(�

P

)

and the orresponding transformations

Construt

~

G(�

P

)

Explore all losed subsets of

~

G(�

P

)

and list the orresponding mathings
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5 Conluding remarks

We have desribed an algorithm for �nding all S solutions, given an in-

stane of stable marriage with forbidden pairs, with n men and n

women. The time omplexity of the algorithm is O(n

2

+nS) while the spae

omplexity is O(n

2

).

It would be interesting to know whether there is an algorithm that ould

solve the above problem in less than O(n) amortized time per solution for

a suÆiently large value of S. In general, most of the algorithms (e.g. [6℄)

for enumerating the set of size n objets of a desired olletion ahieving

eÆient amortized time bounds work under the following model: the objets

of the olletion are enumerated in a same memory spae, of size n. The

following argument shows that any algorithm for expliitly �nding all solu-

tions of stable marriage (with or without forbidden pairs) requires 
(n)

amortized time per solution, under the above model.

Denote by �(n) the following instane of stable marriage with n men

and n women. Let L(m; k) be the k-th woman on man m's list and L(w; k)

the k-th man on woman w's list. The preferene lists in �(n) are: L(m

i

; k) =

w

i+k�1

, L(w

i

; k) = m

i+k

, where indies are taken modulo n.

The n stable mathings for instane �(n) are preisely, for eah �xed

value of k = 1; : : : ; n, the set of n pairs: f(m;L(m; k)); for every man mg.

First, it is learly true that for k = 1, we have a stable mathing beause

every man is married to the �rst woman on his list and every man is married

to a distint woman. By searhing an exposed rotation in this mathing, we

�nd the rotation ((m

1

; w

1

); (m

2

; w

2

); : : : ; (m

n

; w

n

)). The following mathing

will have the exposed rotation ((m

1

; w

2

); (m

2

; w

3

); :::; (m

n

; w

1

)), and so on.

We generate in this way n distint stable mathings for instane �(n). Note

that eah one of the possible n

2

pairs is a stable pair, and that any pair is

in preisely one stable mathing. Therefore instane �(n) admits preisely

n distint stable mathings, and is suh that any of its two stable mathings

have no ommon pairs, i.e., any two stable mathings di�er by n pairs.

Next, we show how to onstrut an instane of stable marriage with

n = n

1

n

2

men, n

n

2

1

stable mathings and suh that any two distint solutions

di�er by n

1

pairs, for any n

1

and n

2

. By onsidering n

2

to be a onstant,

we need 
(n) time to write the di�erent pairs in memory.

To onstrut this instane we take n

2

instanes �(n

1

) for di�erent sets

of n

1

men. Only the �rst n

1

positions on eah list are �lled, but the other

ones an be �lled arbitrarily, beause they will not be used in any stable

mathing. The n

1

distint stable mathings for eah instane an be freely

ombined yielding the laimed n

n

2

1

stable mathings.
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Some variations of the stable marriage problem (like inomplete lists

or di�erent sized sets) an be redued to the onventional problem by hang-

ing the preferene lists and possibly adding auxiliary men and women. The

solutions of the variations are found by removing these auxiliary people from

the obtained stable mathings. We show next that this kind of simple redu-

tion is not possible for stable marriage with forbidden pairs. The set

of solutions for the instane �(4) desribed above with forbidden pairs P =

f(1; 2); (1; 4)g is: ff(1; 1); (2; 2); (3; 3); (4; 4)g; f(1; 3); (2; 4); (3; 1); (4; 2)gg. If

these two mathings were solutions of the stable marriage problem, then

they would be onneted by a single rotation, whih is not the ase. A

rotation is a yli permutation of one subset of women among one subset

of men. In this example, two rotations are neessary to exhange the wives

of men 1 and 3, and of men 2 and 4. The need of two rotations remains if

auxiliary men and women are added.
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