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—— Abstract

A (multi)set of segments in the plane may form a TSP tour, a matching, a tree, or any multigraph. If
two segments cross, then we can reduce the total length with the following flip operation. We remove
a pair of crossing segments, and insert a pair of non-crossing segments, while keeping the same vertex
degrees. The goal of this paper is to devise efficient strategies to flip the segments in order to obtain
crossing-free segments after a small number of flips. Linear and near-linear bounds on the number
of flips were only known for segments with endpoints in convex position. We generalize these results,
proving linear and near-linear bounds for cases with endpoints that are not in convex position. Our
results are proved in a general setting that applies to multiple problems, using multigraphs and the
distinction between removal and insertion choices when performing a flip.
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1 Introduction

TheFuclidean Travelling Salesman Problem (TSP) is one of the most studied geometric
optimization problems. We are given a set P of points in the plane and the goal is to find a
tour S of minimum length. While the optimal solution has no crossing segments, essentially
all approximation algorithms, heuristics, and PTASs may produce solutions S with crossings.
Given S, the only procedure known to obtain a solution S’ without crossings and of shorter
length is to perform a flip operation. In our case, a flip consists of removing a pair of
crossing segments, and then inserting a pair of non-crossing segments preserving a tour (and
consequently reducing its length). Flips are performed in sequence until a crossing-free tour
is obtained, in a procedure called untangle.

The same flip operation may be applied in other settings. More precisely, a flip consists
of removing a pair of crossing segments s, sy and inserting a pair of segments s}, s5 in a way
that s, s}, 2, 85 forms a cycle and a certain graph property is preserved. In the case of TSP
tours, the property is being a Hamiltonian cycle. Other properties have also been studied,
such as spanning trees, perfect matchings, and multigraphs. Notice that flips preserve the
degrees of all vertices and multiple copies of the same edge may appear when we perform a
flip on certain graphs.

When the goal is to obtain a crossing-free TSP tour, we are allowed to choose which
pair of crossing segments to remove in order to perform fewer flips, which we call removal
choice (Figure 1(a)). Notice that, in a tour, choosing which pair of crossing edges we remove
defines which pair of crossing edges we insert. However, this is not the case for matchings
and multigraphs. There, we are also allowed to choose which pair of segments to insert
among two possibilities, which we call insertion choice (Figure 1(b)).
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Figure 1 (a) Three untangle sequences for a tour with different removal choices. (b) Three
untangle sequences for a matching with different insertion choices. We highlight the segments
removed and inserted at each flip.

Using removal or insertion choices to obtain shorter flip sequences has not been explicitly
studied before and opens several new questions, while unifying the solution to multiple
reconfiguration problems. Next, we describe previous work according to which choices are
used. Throughout, P denotes the set of points and n the number of segments.

Using no choice: Van Leeuwen et al. [27] showed that the length (i.e. the number of
flips) of any untangle sequence for a TSP tour is O(n?®) and it is easy to construct Q(n?)
examples. The same proof has been rediscovered in the context of matchings [9] after 35
years. If P is in convex position, then the number of crossings decreases at each flip, which
gives a tight bound of ©(n?). If all points except the endpoints of ¢ segments are in convex
position, then the authors [12] recently showed a bound of O(tn?).

Using only insertion choice: Bonnet et al. [9] showed that using only insertion choice,
it is possible to untangle a matching using O(n?) flips. Let o be the spread of P, that is, the
ratio between the maximum and minimum distances among points in P. Using insertion
choice, it is also possible to untangle a matching using O(no) flips [7].

Using only removal choice: If P is in convex position, then by using O(n) flips we
can untangle a TSP tour [24, 29], as well as a red-blue matching [7], while the best known
bound for trees is O(nlogn) [7]. If instead of convex position, we have colinear red points in
a red-blue matching, then O(n?) flips suffice [7, 13].

Using both removal and insertion choices: If P is in convex position, then by using
O(n) flips we can untangle a matching [7].

1.1 New Results

Previous results are usually stated for a single graph property. Using choices, we are able to
state the results in a more general setting. Proofs that use insertion choice are unlikely to
generalize to red-blue matchings, TSP tours, or trees, where insertion choice is not available
(still, they may hold for both non-bipartite matchings and multigraphs). In contrast, bounds
for multigraphs using only removal choice apply to all these cases. Previously, we only knew
linear or near-linear bounds when the points P are in convex position and removal choice is
available. The goal of the paper is to obtain linear and near-linear bounds to as many cases
as possible, considering near-convex configurations as well as removal and insertion choices.

Let P = C UT where C is in convex position and the points of T" are outside the convex
hull of C, unless otherwise specified. Let S be a multiset of n segments with endpoints P
and ¢ be the number of segments with at least one endpoint in 7. We prove the following
results to untangle S, and some are summarized in Table 1.

Using only insertion choice (Section 2): If 7' = (), then O(nlogn) flips suffice. If T
is separated from C by two parallel lines, then O(tnlogn) flips suffice.
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Using only removal choice (Section 3): If |[T| < 2 and ¢t = O(1), then O(nlogn)
flips suffice. In this case, our results hold with the points T being anywhere with respect
to the convex hull of C'. As the bounds hold for trees, it is useful to compare them against
the O(nlogn) bound for trees from [7] that strongly uses the fact that S forms a tree. The
O(logn) factor is not present for the special cases of TSP tours and red-blue matchings.

Using both removal and insertion choices (Section 4): If T is separated from C
by two parallel lines, then O(tn) flips suffice. If T is anywhere outside the convex hull of C
and S is a matching, then O(t3n) flips suffice.

Table 1 Upper bounds to different versions of the problem with points having O(1) degree. The
letter R corresponds to removal choice, I to insertion choice, and @) to no choice. New results are
highlighted in yellow with the theorem number in parenthesis and tight bounds are bold.

Property: || Matching TSP, Red-Blue
Choices: || RI [ 1 [R [0 R [0
Convex n [7] nlogn (2.1) | nlogn (3.1) | n? n [7, 24, 29] | n?

T =1 n (4.1) nlogn (2.2) | nlogn (3.3) | n? [12] | n (3.3) n? [12]
|T| =2 n (4.3) n? [9] nlogn (3.4) | n2 [12] | n (3.4) n? [12]
separated || tn (4.1) | tnlogn (2.2) | tn? [12]

curT t3n (4.3) | n? [9] tn? [12]

In a matching or TSP tour, we have t = O(|T|) and n = O(|P|), however in a tree, t can
be as high as O(|T|?). In a multigraph ¢ and n can be much larger than |T'| and |P|. The
theorems describe more precise bounds as functions of all these parameters. For simplicity,
the introduction only shows bounds in terms of only n and t.

1.2 Related Reconfiguration Problems

Combinatorial reconfiguration studies the step-by-step transition from one solution to another,
for a given combinatorial problem. Many reconfiguration problems are presented in [26]. We
give a brief overlook of reconfiguration among line segments using alternative flip operations.

The 20PT flip is not restricted to crossing segments. It removes and inserts pairs of
segments (the four segments forming a cycle) as the total length decreases. In contrast to
flips among crossing segments, the number of 20PT flips performed may be exponential [14].

It is possible to relax the flip definition even further to all operations that replace two
segments by two others forming a cycle [5, 6, 8, 10, 15, 28]. This definition has also been
considered for multigraphs [17, 18, 20].

Another type of flip consists of removing a single segment and inserting another one.
Such flips are widely studied for triangulations [3, 19, 21, 22, 23, 25]. They have also been
considered for non-crossing trees [1] and paths. It is possible to reconfigure any two non-
crossing paths if the points are in convex position [4, 11] or if there is one point inside the
convex hull [2].

1.3 Preliminaries

Throughout, we consider multigraphs (P, S) whose vertices P (called endpoints) are points in
the plane and edges S are a multiset of line segments. We assume that the endpoints are in
general position and that the two endpoints of a segment are distinct. Given two (possibly
equal) sets Py, P of endpoints, we say that a segment is a Py Py-segment if one endpoint is
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in P; and the other is in P,. Similarly, we say that a segment is a Pj-segment if at least one
endpoint is in P;.

We say that two segments cross if they intersect at a single point that is not an endpoint
of either segment. We say that a line crosses a segment if they intersect at a single point
that is not an endpoint of the segment. We say that a segment or a line h separates a set of
points P if P can be partitioned into two non-empty sets P;, P> such that every segment
p1p2 with p; € P, ps € Py crosses h. Given a set of segments S, the line potential A({) is
the number of segments of S crossed by ¢. Several proofs in this paper use the following two
lemmas from previous papers.

» Lemma 1.1 ([27]). Given a multiset S of segments and a line €, let A(£) be the number of
segments in S crossing £. Then, A\(£) never increases at a flip.

» Lemma 1.2 ([9]). Consider a partition S =\J; S; of the multiset S of segments and let P;
be the set of endpoints of S;. If no segment of (P;’) crosses a segment of (gf) for i # j, then

the sequences of flips in each S; are independent.

We say that a segment s is uncrossable if for any two endpoints py, p2, we have that pips
do not cross s. Lemma 1.2 implies that an uncrossable segment cannot be flipped.

Our bounds often have terms like O(¢tn) and O(nlog|C|) that would incorrectly become
0 if ¢ or log |C| is 0. In order to avoid this problem, factors in the O notation should be made
at least 1. For example, the aforementioned bounds should be respectively interpreted as
O((1 +t)n) and O(nlog(2 + |C])).

1.4 Techniques

To prove our results, we combine previous and new potential functions with refined strategies
and analysis. Van Leeuwen et al. [27] as well as Bonnet et al. [9] consider \(¢) for a set L of
all O(|P|?) lines defined by P. Since there always exists a line in L whose potential decreases
at a flip, we obtain the O(|P|*n) = O(n?) classical bound without any choice. Bonnet et
al. [9] show that a set L of |P| — 1 parallel lines (with one point between two consecutive
lines) suffices with insertion choice. Since there is always an insertion choice that makes
some A(¢) decrease for ¢ € L, the O(|P|n) = O(n?) bound follows.

In order to avoid a quadratic dependency in n, new line potentials have to be introduced
with careful removal and/or insertion choices. For example, to prove Theorem 4.3, we have
to perform several flips in order to find a line ¢ with A(¢) = O(t) before applying the line
potential argument. In contrast, to prove Theorem 2.2, we modify the line potential to only
count the t T-segments. However, with this change the line potential may increase, which we
need to handle properly.

Another key potential, inspired by [7] and used for the convex case is the depth potential
0(papp) of a segment p,pyp, defined as the number of points between p, and p, along the convex
hull boundary with a given orientation. Careful removal and insertion choices as well as
adaptations of this potential had to be made in order to guarantee that the potential decreases
during most flips and never increases by too much. For example, to prove Theorems 2.1
and 2.2, we had to consider the product of the depth, instead of the usual sum. To prove
Theorem 3.1, we had to modify the depth potential to only count endpoints of segments that
have crossings, which we call the crossing depth 6« (paps)-

In the convex case, the number of crossings decreases at each flip, which implies the
trivial (Z) upper bound. However, the number of crossings may increase when the points are
not in convex position. An analysis of the number of crossings is used to bound the number
of flips in the proof of Theorem 3.5.
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Finally, we use the concept of splitting from [9], presented in Lemma 1.2. The difficulty of
splitting is to obtain the disjoint sets required by the lemma. For example, in Theorem 4.3,
we untangle segments with both endpoints in C' last to obtain the desired separation. In
Theorem 3.4, we carefully find lines that split the original problem into problems with a
smaller value of ¢ that are solved recursively. The special case of uncrossable segments is
used in Theorems 3.3 and 3.4.

2 Insertion Choice

In this section, we show how to untangle a multigraph using only insertion choice, that is,
our strategies do not choose which pair of crossing segments is removed, but only which pair
of segments with the same endpoints is subsequently inserted. We start with the convex case,
followed by points outside the convex separated by two parallel lines.

2.1 Convex

Let P =C = {p1,...,p|c|} be a set of points in convex position sorted in counterclockwise
order along the convex hull boundary (Figure 2(a)). Given a segment p,py, we define the
depth §(papy) = |b— al. This definition resembles but is not the same as the depth used in [7].
We use the depth to prove the following theorem.

ps 15 p4

P7 To—o

Figure 2 (a) A multigraph (C,S) with |C| = 14 points in convex position and n = 9 segments.
(b) Insertion choice for Case 1 and 2 of the proof of Theorem 2.1. (c) Insertion choice for Case 3.

» Theorem 2.1. Every multigraph (C,S) with C' in convex position has an untangle sequence
of length O(nlog|C|) = O(nlogn) using only insertion choice, where n = |S]|.

Proof. Let the potential function

o(5) =[] o(s).

ses

As 6(s) € {1,...,|C| — 1}, we have that ¢(S) is integer, positive, and at most |C|™. Next,
we show that for any flipped pair of segments p,py, pcpq there exists an insertion choice that
multiplies ¢(.S) by a factor of at most 3/4, and the theorem follows.

Consider a flip of a segment p,p, with a segment p.py and assume without loss of
generality that a < ¢ < b < d. The contribution of the pair of segments p,pp, pcpq to the
potential ¢(S) is the factor f = §(papp)d(pepa). Let f’ be the factor corresponding to the
pair of inserted segments.

Case 1: If §(pape) < 0(peps), then we insert the segments p,p. and pppg and we get
f" = 6(papc)d(pppa) (Figure 2(b)). We notice d(paps) = d(papc) + 6(pepy). 1t follows
d(pape) < 6(papy)/2 and we have d(pppq) < d(pcpa) and then f/ < f/2.
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Case 2: If d(pppa) < 0(pepy), then we insert the same segments p,p. and pypg as

previously. We have §(pape) < d(paps) and d(pppa) < 6(pepa)/2, which gives f/ < f/2.
Case 3: If (i) 0(pape) > O(pepy) and (ii) 0(pppa) > d(pepy), then we insert the

segments p,pq and p.p, (Figure 2(c)). The contribution of the new pair of segments is

' = 6(papa)d(pepy). We introduce the coefficients = = % and y = % so that

b
0(pape) = x0(pepy) and d(pppa) = yo(pepy). It follows that d(papy) = (1 + x)5(pPeps),
0(pepd) = (1 + y)d(pepy) and 6(papa) = (1 + x + y)o(pepy). The ratio f'/f is equal to a
function g(z,y) = (1};)“"% Due to (i) and (ii), we have that > 1 and y > 1. In other
words, we can upper bound the ratio f’/f by the maximum of the function g(z,y) with
x,y > 1. Tt is easy to show that the function g(x,y) is decreasing with both = and y. Then

its maximum is obtained for z = y = 1 and it is equal to 3/4, showing that f' < 3f/4. <

2.2 Separated by Two Parallel Lines

In this section, we prove the following theorem, which is a generalization of Theorem 2.1.

Figure 3 (a) Statement of Theorem 2.2. (b) Some insertion choices in the proof of Theorem 2.2.

» Theorem 2.2. Consider a multigraph (P, S) with P = C UT; UTy where C is in convex
position and there exist two horizontal lines £, o, with T above €1 above C' above £y above
Ty. Let T =Ty UTy, n=|S|, and t be the number of T-segments. There exists an untangle
sequence of length O(t|P|log |C| + nlog|C|) = O(tnlogn) using only insertion choice.

Proof. We start by describing the insertion choice for flips involving at least one point in
T. Let p1,...,pp| be the points P sorted vertically from top to bottom. Consider a flip
involving the points p,, py, Pe, Pq With a < b < ¢ < d. The insertion choice is to create the
segments p,pp and p.pq. See Figure 3(b). As in [9], we define the potential 7 of a segment

pip; as
n(pips) = i — jl-

Notice that 7 is an integer between 1 and |P| — 1. We define nr(S) as the sum of n(p;p;)
for p;p; € S with p; or p; in T. Notice that 0 < n7(S) < t|P|. It is easy to verify that any
flip involving a point in T decreases nr(S) and other flips do not change nr(S). Hence, the
number of flips involving at least one point in T is O(t|P]).

For the flips involving only points of C, we use the same choice as in the proof of
Theorem 2.1. The potential function

$(S) = 11 3(pip;)

pip; €S : p;€C and p;eC
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is at most |C|™ and decreases by a factor of at most 3/4 at every flip that involves only
points of C.

However, ¢(S) may increase by a factor of O(|C|?) when performing a flip that involves
a point in T. As such flips only happen O(¢|P]) times, the total increase is at most a factor
of |C|O¢PD,

Concluding, the number of flips involving only points in C' is at most

log s (1C19™|CIOUFD) = O(nlog|C| + t|P|log |C). «

3 Removal Choice

In this section, we show how to untangle a multigraph using only removal choice. We start
with the convex case, followed by 1 point inside or outside the convex, then 2 points outside
the convex, 2 points inside the convex, and 1 point inside and 1 outside the convex. As only
removal choice is used, all results also apply to red-blue matchings, TSP tours, and trees.

3.1 Convex

Let P =C = {p1,...,p|c|} be a set of points in convex position sorted in counterclockwise
order along the convex hull boundary and consider a set of segments S with endpoints P.
Given a segment p,pp and assuming without loss of generality that a < b, we define the
crossing depth dx (pqpy) as the number of points in py41, ..., pp—1 that are an endpoint of a
segment in S that crosses any other segment in S (not necessarily p,pp). We use the crossing
depth to prove the following theorem, which implies a simpler and more general proof of the
O(nlogn) bound for trees [7].

Figure 4 Proof of Theorem 3.1. (a) The segments of a convex multigraph are labeled with the
crossing depth. (b,c) Two possible pairs of inserted segments, with one segment of the pair having
crossing depth 2] =1.

» Theorem 3.1. Every multigraph (C,S) with C' in convex position has an untangle sequence
of length O(nlog|C|) = O(nlogn) using only removal choice, where n = |S)|.

Proof. We repeat the following procedure until there are no more crossings. Let p,py € S
be a segment with crossings (hence, crossing depth at least one) and a < b minimizing
Ox (pape) (Figure 4(a)). Let qi,...,qs, (p.p,) be the points defining dx (paps) in order and let
i = [0« (papp)/2]. Since papp has minimum crossing depth, the point ¢; is the endpoint of
segment ¢;p. that crosses p,pp. When flipping ¢;p. and p,py, we obtain a segment s (either
S = q;pa Or s = ¢;pp) With d (s) at most half of the original value of d (papy) (Figure 4(b,c)).
Hence, this operation always divides the value of the smallest positive crossing depth by
at least two. As the crossing depth is an integer smaller than |C|, after performing this
operation O(log |C|) times, it produces a segment of crossing depth 0. As the segments of
crossing depth 0 can no longer participate in a flip, the claimed bound follows. <
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3.2 One Point Inside or Outside a Convex

In this section, we prove Theorem 3.3. In the case of TSP tours [24, 29] and red-blue
matchings [8], the preprocessing to untangle C'C-segments takes O(n) flips. However, in the
case of trees [8] and in general (Theorem 3.1), the best bound known is O(nlogn). We first
state a lemma used to prove Theorem 3.3.

» Lemma 3.2. Consider a set C of points in convex position, and a multiset S of n crossing-
free segments with endpoints in C. Consider the multiset SU{s} where s is an extra segment
with one endpoint in C' and one endpoint q anywhere in the plane. There exists an untangle
sequence for S U {s} of length O(n) using only removal choice.

Proof. Iteratively flip the segment ¢p; with the segment paps € S crossing gp; the farthest
from ¢. This flip inserts a C'C-segment p;ps, which is impossible to flip again, because the
line pyps is crossing free. The flip does not create any crossing between C'C-segments. <«

We are now ready to state and prove the theorem.

» Theorem 3.3. Consider a multigraph (P, S) with P = CUT where C is in convex position,
and T = {q}, and such that there is no crossing pair of CC-segments (possibly after a
preprocessing for the convex case). Let n = |S| and t be the number of T-segments. There
exists an untangle sequence of length O(tn) using only removal choice.

Proof. For each segment s with endpoint ¢ with crossing, we apply Lemma 3.2 to s and the
CC-segments crossing s. Once a segment s incident to ¢ is crossing free, it is impossible to
flip it again as we fall in one of the following cases. Let £ be the line containing s.

Case 1: If / is crossing free, then it splits the multigraph in three partitions: the segments
on one side of ¢, the segments on the other side of ¢, and the segment s itself.

Case 2: If ¢ is not crossing free and ¢ is outside the convex hull of C, then s is uncrossable.

Case 3: If ¢ is inside the convex hull of C, then introducing a crossing on s would require
that g lies in the interior of the convex quadrilateral whose diagonals are the two segments
removed by a flip. The procedure excludes this possibility by ensuring that there are no
crossing pair of C'C-segments, and, therefore, that one of the removed segment already has ¢
as an endpoint.

Therefore, we need at most n flips for each of the ¢ segments incident to gq. <

3.3 Two Points Outside a Convex

In this section, we prove a theorem with a bound that is exponential in ¢, which makes it of
little interest for large t. Notice, however, that in matchings ¢ < 2, in a TSP tour ¢ < 4, and
in a binary tree ¢t < 6. Also notice that the definition of ¢ is different from other theorems
(here TT-segments are counted twice). Both definitions are equivalent up to a factor of 2,
but since t appears in the exponent, they are not exchangeable.

» Theorem 3.4. Consider a multigraph (P, S) with P = CUT where C' is in convex position,
the points of T are outside the convexr hull of C, and |T| < 2. Let n = |S| and t be the sum
of the degrees of the points in T. There exists an untangle sequence of length O(2'dcony(n))
using only removal choice, where dcony(n) is the number of flips to untangle any multiset of
at most n segments with endpoints in convex position.

Proof. Throughout this proof, we partition the TT-segments respectively the C'T-segments
into two types: TTI-segment and CTI-segment if it intersects the interior of the convex hull
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of C and TTO-segment and CTO-segment otherwise. Let f(t) be the number of flips to
untangle a multiset S as in the statement of the theorem. The proof proceeds by induction.
The base case is t = 0, when f(0) < deonv(n) by definition of deony(n).

Next, we show how to bound f(t) for ¢ > 0, but first we need some definitions. A line ¢ is
a T-splitter if £ is crossing free and either ¢ contains a T-segment or there are T-segments on
both sides of . We abusively say that a segment s is a T-splitter if the line containing s is a
T-splitter. A T-splitter is useful because we can apply Lemma 1.2 and solve sub-problems
with a lower value of ¢ by induction.

Phase 1: untangle all but one segment by induction. We remove an arbitrary
CT-segment or TT-segment s from S. We then use induction to untangle S using f(t — 1)
flips and insert the segment s back in S afterwards. Notice that all crossings are now on s.

Phase 2.1: apply induction if possible. If S admits a T-splitter ¢, then we apply
Lemma 1.2 to solve each side of ¢ independently using induction.

If S has a crossing-free TTO-segment gq’ such that the line gq¢’ is not crossing free, then
qq’ is uncrossable, and we remove ¢¢’ from S and untangle S by induction. Similarly, in the
case where T' = {q, ¢’} and where ¢¢’ is a TTI-segment, if S has a CTO-segment, say pq,
then pq is uncrossable, and we remove pq from S and untangle S by induction.

In all the three cases of Phase 2.1 we get f(t) < f(t —1)+ f(t1) + f(t2), where t; +t2 <t
and tl, tg Z 1.

Phase 2.2: split after one flip. If S contains no T-splitter and if s is a TT-segment,
then there remains no CT-segment in S (as every C'T-segment shares an endpoint with the
TT-segment s that contains all crossings), and s crosses a CC-segment s’. A crossing-free
CT-segment would either be a CTI-segment, hence a T-splitter, or a C'T'O-segment and,
hence uncrossable and removed by one of the induction cases of Phase 2.1.

The segment s’ becomes a T-splitter after flipping s with s/, and we invoke induction.
By Lemma 1.2, we get in this case f(t) < f(t —1) + 1+ f(t1) + f(t2), where t; +t2 <t and
t,ty > 1.

Phase 2.3: split after O(n) flips. In this case, S contains no T-splitter and s is a
CT-segment, say with ¢ as its endpoint in 7. While &', the segment of S that crosses s the
farthest away from g, is a CC-segment, we flip s and s’ and we set s to be the newly inserted
CT-segment incident to g. By Lemma 3.2, at most n flips are performed in this loop.

At the end of the loop, either s is crossing free, or s’ is a CT-segment, say with ¢’ as its
endpoint in 7. Then, we also flip s and s'.

Insertion case 1: If two C'T-segments are inserted, then, either one of them is uncrossable
(this is the case if s’ is a CTO-segment), or s’ is now a T-splitter (recall that if ¢¢’ is a
TTI-segment, then all the CTO-segments have been removed at Phase 2.1.).

Insertion case 2: If the TT-segment ¢q’ is inserted, then the inserted CC-segment is
crossing free (as in the proof of Lemma 3.2), and, if ¢¢’ is not already crossing free, we flip
qq’ with any segment, say pp’.

Next, we split S as follows. Among the CTI-segments of S which are on the upper
(respectively lower) side of the line g¢’, consider the one whose endpoint pypper (respectively
Dlower) i C' is the closest to the line g¢’. The segments of S are either inside or outside the
convex quadrilateral gpiowerq Pupper, and we know that only the segments inside may have
crossings. By Lemma 1.2, we remove from S all the segments outside gpiowerq’ Pupper- Recall
that, in our case, qq¢’ is a TTI-segment, and all the CTO-segments have been removed at
Phase 2.1. The line pp’ is finally a T-splitter. Again, by Lemma 1.2, we get in this case
f(t) S f(t — ].) +n+2+ f(tl) + f(tQ), where tl -I—tg § t and tl,tQ Z 1.

The last bound on f(¢) dominates the recurrence. Using that f(t1)+f(t2) < f(t—1)+f(1)
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and t < n we get
fO) < fE=1)+n+2+f(tr) + f(t2) < On) +2f(t - 1),

which solves to f(t) = O(2'dcony(n)) as claimed. <

3.4 Two Points inside a Convex
We prove a similar theorem for two points inside the convex hull of C.

» Theorem 3.5. Consider a multigraph (P, S) with P = CUT where C is in convex position,
the points of T are inside the convex hull of C, and T = {q,q'}. Let n =|S| and t be the
number of T-segments. There exists an untangle sequence of length O(deony(n) + tn) using
only removal choice, where deony(n) is the number of flips to untangle any multiset of at most
n segments with endpoints in conver position.

Proof. The untangle sequence is decomposed in five phases. At the end of each phase, a
new type of crossings is removed, and types of crossings removed in the previous phases are
not present, even if they may temporarily appear during the phase.

Phase 1 (CT x CT). In this phase, we remove all crossings between pairs of C'T-
segments using O(dcony(t)) = O(dconv(n)) flips. We separately solve two convex sub-problems
defined by the CT-segments, one on each side of the line qq’.

Phase 2 (CC x CC). In this phase, we remove all crossings between pairs of CC-
segments using O(dcony(n)) flips. As no CT-segment has been created, there is still no
crossing between a pair of CT' segments. Throughout, our removal will preserve the invariant
that no pair of C'C-segments crosses.

Phase 3 (CT x non-central CC). We distinguish between a few types of CC-segments.
The central CC-segments cross the segment qq’ (regardless of g¢’ being in S or not), while
the non-central do not. The peripheral CC-segments cross the line g¢’ but not the segment
qq’', while the outermost CC-segments do not cross either. In this phase, we remove all
crossings between C'T-segments and non-central C'C-segments.

Given a non-central CC-segment pp’, let the out-depth §'(pp’) be the number of points
of C that are contained inside the halfplane bounded by the line pp’ and not containing
T. Also, let x be the number of crossings between the non-central C'C-segments and the
CT-segments. At the end of each step the two following invariants are preserved. (i) No pair
of CC-segments crosses. (ii) No pair of CT-segments crosses.

At each step, we choose to flip the non-central CC-segment pp’ of minimum out-depth
that crosses a CT-segment. We flip pp’ with the CT-segment ¢’p” (with ¢" € {q,q¢'}) that
crosses pp’ at the point closest to p (Figure 5(a) and Figure 6(a)). One of the possibly
inserted pairs may contain a C'T-segment s that crosses another CT-segment s’, violating
the invariant (ii) (Figure 5(b) and Figure 6(b)). If there are multiple such segments s, then
we consider s’ to be the segment whose crossing with s is closer to ¢”. We flip s and s’
and obtain either two CT-segments (Figure 5(c) and Figure 6(c)) or a CC-segment and the
segment ¢q’ (Figure 5(d) and Figure 6(d)). The analysis is divided in two main cases.

If pp’ is an outermost C'C-segment (see Figure 5), then case analysis shows that the two
invariants are preserved and y decreases.

If pp’ is a peripheral C'C-segment (see Figure 6), then a case analysis shows that the two
invariants are preserved and x has the following behavior. If no CC-segment is inserted, then
x decreases. Otherwise a C'C-segment and a TT-segment are inserted and y may increase
by O(t) (Figure 6(d)). Notice that the number of times the TT-segment gq’ is inserted is
O(t), which bounds the total increase by O(t?).
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Figure 6 Theorem 3.5, Phase 3 when pp’ is a peripheral segment.

As x = O(tn), the total increase is O(t?), and y decreases at all but O(t) steps, we have
that the number of flips in Phase 3 is O(tn).

Phase 4 (CT x central CC). At this point, each crossing involves a central CC-
segment and either a CT-segment or the TT-segment ¢¢’. In this phase, we remove all
crossings between C'T-segments and central C'C-segments, ignoring the T7T-segments. This
phase ends with crossings only between ¢¢’ and central CC-segments.

(a) )

Figure 7 Theorem 3.5, Phase 4. (a) A pair of CT-segments with an ear. (b) A CC-segment and
a CT-segment with an ear. (c) Flipping an ear that produces crossing pairs of CT-segments. (d)
Flipping an ear that inserts a non-central C'C-segment with crossings.

Given four endpoints ¢’ € T, p,p” € C, and z € C UT, we say that a pair of segments
p"q",xp € S crossing at a point ¢ contains an ear ]7]—)7 if the interior of the triangle pp’c
intersects no segment of S (see Figure 7(a) and 7(b)). Every set of segments with endpoints
in CUT with |T| = 2 that has crossings (not involving the TT-segment) contains an ear
(adjacent to the crossing that is farthest from the line ¢q’).

At each step, we flip a pair of segments p”¢”, zp that contains an ear 5]7, prioritizing
pairs where both segments are CT-segments. Notice that, even though initially we did not
have crossing pairs of CT-segments, they may be produced in the flip (Figure 7(c)). If the
flip inserts a non-central CC-segment which crosses some CT-segments (Figure 7(d)), then,
we perform the following while loop. Assume without loss of generality that qq’ is horizontal

and s is closer to ¢’ than to q. While there exists a non-central C'C-segment s with crossings,

11
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we flip s with the CT-segment s’ crossing s that comes first according to the following order.
As a first criterion, a segment incident to g comes before a segment incident to ¢’. As a
second tie-breaking criterion, a segment whose crossing point with s that is farther from the
line q¢’ comes before one that is closer.

Let x = O(tn) be the number of crossings between central C'C-segments and C'T-segments
plus the number of crossings between C'T-segments. A case analysis shows that the value of
x decreases at each step. If no non-central CC-segment is inserted, then the corresponding
step consists of a single flip. As y decreases, there are O(tn) steps that do not insert a
non-central C'C-segment.

However, if a non-central CC-segment is inserted, at the end of the step we inserted a
CC-segment that can no longer be flipped (Lemma 1.2). As the number of CC-segments
is O(n), we have that the number of times the while loop is executed is O(n). Since each
execution of the while loop performs O(t) flips, we have a total of O(¢n) flips in this phase.

Phase 5 (TT x central CC). In this phase, we remove all crossings left, which are
between the possibly multiple copies of the TT-segment gq’ and central CC-segments. The
endpoints of the segments with crossings are in convex position and all other endpoints
are outside their convex hull. Hence, by Lemma 1.2, it is possible to obtain a crossing-free
multigraph using O(deony(n)) flips. <

3.5 One Point inside and One Point Qutside a Convex

Given an endpoint p, let 6(p) denote the degree of p, that is, the number of segments incident
to p. The following lemma is used to prove Theorem 3.7.

» Lemma 3.6. Consider a multigraph (P,S) with P = C UT where C is in convex position,
and T = {q,q'} such that q is outside the convezx hull of C and ¢’ is inside the convex hull
of C. Consider that q is the endpoint of a single segment s and all crossings are on s. Let
n=1S| and t = O(4(q")) be the number of T-segments. There exists a flip sequence of length
O(tn) using only removal choice that ends with all crossings (if any) on the segment qq’.

Proof. We proceed as follows, while s has crossings. For induction purpose, let f(n') be
the length of the flip sequence in the lemma statement for n’ < n segments. Let s’ be the
segment that crosses s at the point farthest from ¢q. We flip s and s, arriving at one of the
three cases below (Figure 8).

Case 1

Figure 8 The three cases in the proof of Lemma 3.6.

Case 1 (CT x CC). In this case, the segment s’ is a C'C-segment. Notice that the line
¢ containing s’ becomes crossing free after the flip. There are segments on both sides of £. If
¢ separates ¢, ¢’, then we untangle both sides independently (Lemma 1.2) using O(n) and
O(tn) flips (Theorem 3.3). Otherwise, the segments on one side of ¢ are already crossing free
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(because of the specific choice of s’) and we inductively untangle the n’ < n — 1 segments on
the other side of £ using f(n') flips.

Case 2 (CT x CT — CC,TT). If s’ is a CT-segment and one of the inserted segments
is the TT-segment qq’, then the procedure is over as all crossings are on qq’.

Case 3 (CT x CT — CT,CT). In this case two CT-segments are inserted. Let p € C
be an endpoint of s = gp. Since the inserted CT-segment ¢'p is crossing free, Case 3 only
happens O(t) times before we arrive at Case 1 or Case 2.

Putting the three cases together, we obtain the recurrence

fn) <O@)+ f(n'), with n’ <n -1,
which solves to f(n) = O(tn), as claimed. <

We are now ready to prove the theorem.

» Theorem 3.7. Consider a multigraph (P, S) with P = CUT where C is in convex position,
and T = {q,q'} such that q is outside the convex hull of C and ¢’ is inside the convez hull
of C. Let n = |S| and t be the number of T-segments. There exists an untangle sequence
of length O(donv(n) + 5(q)6(¢")n) = O(deons(n) + t2n) using only removal choice, where
deonv(n) is the number of flips to untangle any multiset of at most n segments with endpoints
in convex position.

Proof. The untangle sequence contains four phases.

Phase 1 (CC x CC). In this phase, we remove all crossings between pairs of CC-
segments using deony(n) flips. Throughout all the phases, the invariant that no pair of
CC-segments crosses is preserved.

Phase 2 (Cq’ x CC). In this phase, we remove all crossings between pairs composed of
a CC-segment and a C'T-segment incident to ¢’ (the point inside the convex hull of C') using
O(tn) flips by Theorem 3.3.

Phase 3 (Cq). At this point, all crossings involve a segment incident to ¢. In this phase,
we deal with all remaining crossings except the crossings involving the segment ¢¢’. Lemma 1.2
allows us to remove the crossings in each CT-segment s incident to ¢ independently, which
we do using O(§(¢')n) flips using Lemma 3.6. As there are §(q) CT-segments adjacent to g,
the total number of flips is O(5(¢q)d(¢")n) = O(t?n).

Phase 4 (CC x TT). At this point, all crossings involve the TT-segment ¢q’. The
endpoints in C' that are adjacent to segments with crossings, together with ¢, are all in convex
position. Hence, the only endpoint not in convex position is g, and we apply Theorem 3.3
using O(tn) flips.

After the dcony(n) flips in Phase 1, the number of flips is dominated by Phase 3 with
0(6(q)d(¢")n) = O(t?*n) flips. <

Notice that, in certain cases (for example in the red-blue case with ¢, ¢’ having different
colors) a flip between two CT-segments never produces two CT-segments. Consequently,
Case 3 of the proof of Lemma 3.6 never happens, and the bound in Theorem 3.7 decreases
to O(deony(n) + tn).

4 Removal and Insertion Choices

In this section, we show how to untangle a matching or a multigraph using both removal
and insertion choices. We start with the case of points outside the convex separated by two
parallel lines. Afterwards, we prove an important lemma and apply it to untangle a matching
with points outside the convex.

13
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4.1 Separated by Two Parallel Lines

We start with the simpler case in which T is separated from C' by two parallel lines. In this
case, our bound of O(n + ¢|P|) interpolates the tight convex bound of O(n) from [7] and the
O(t|P|) bound from [9] for ¢t arbitrary segments.

» Theorem 4.1. Consider a multigraph (P, S) with P = C UT, UTy where C is in convex
position and there exist two horizontal lines £1, (s, with T above €1 above C' above £y above
Ty. Letn=|S|, T =Ty UTs, and t be the number of T-segments. There exists an untangle
sequence of length O(n + t|P|) = O(tn) using both removal and insertion choices.

Proof. The algorithm runs in two phases.

Phase 1. We use removal choice to perform the flips involving a point in 7. At the
end of the first phase, there can only be crossings among segments with all endpoints in
C. The insertion choice for the first phase is the following. Let p1,...,p p| be the points P
sorted vertically from top to bottom. Consider a flip involving the points pg, pp, Pe, Pg With
a < b < ¢ < d. The insertion choice is to create the segments p,p, and p.ps. As in [9], we
define the potential n of a segment p;p; as n(p;p;) = |i — j|. Notice that 1 is an integer from
1 to |P| — 1. We define 1(S) as the sum of n(p;p,) for p;p; € S with p; or p; in T. Notice
that 0 < n(S) < t|P|. It is easy to verify that any flip involving a point in T' decreases 7(S).
Hence, the number of flips in Phase 1 is O(t|P]).

Phase 2. Since T is outside the convex hull of C, flips between segments with all
endpoints in C cannot create crossings with the other segments, which are guaranteed to be
crossing free at this point. Hence, it suffices to run an algorithm to untangle a convex set
with removal and insertion choice from [7], which performs O(n) flips. <

4.2 Liberating a Line

In this section, we prove the following key lemma, which we use in the following section. The
lemma only applies to matchings and it is easy to find a counter-example for multisets (S
consisting of n copies of a single segment that crosses pq).

» Lemma 4.2. Consider a matching S of n segments with endpoints C' in convex position,
and a segment pq separating C. Using O(n) flips with removal and insertion choices on the
ingtial set S U {pq}, we obtain a set of segments that do not cross the line pq.

Proof. For each flip performed in the subroutine described hereafter, at least one of the
inserted segments does not cross the line pg and is removed from S (see Figure 9).

p P\ p\ P\
1 . N . R
Pre— 1| Pa P1g Pig Pig
T —p ‘ Y2 \ P2 \ P2
P3 e——1——o D4 P3e 2 P3e P4 p3 Y2 p3 \\1)4
B Y A z .
iy A “\ ;
Pon—1 TS . Pon—1 . . DPon—1 . . Don—1 . . Don—1 . .
\,p?n /p?n /an /pZn /pZn
a” q q q q

Figure 9 An untangle sequence of the subroutine to liberate the line pg (with n = 4).

Preprocessing. First, we remove from S the segments that do not intersect the line
pq, as they are irrelevant. Second, anytime two segments in S cross, we flip them choosing
to insert the pair of segments not crossing the line pg. One such flip removes two segments
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from S. Let p1p2 (respectively pa,_1pay,) be the segment in S whose intersection point with
pq is the closest from p (respectively ¢). Without loss of generality, assume that the points
p1 and po,_1 are on the same side of the line pq.

First flip. Lemma A.1 applied to the segment pq and the triangle pypopon_1 shows

that at least one of the segments among ppo,_1,qp1, gp2 intersects all the segments of S.

Without loss of generality, assume that pps,_1 is such a segment, i.e., that pps,_1 crosses
all segments of S\ {pan—_1p2n}. We choose to remove the segments pq and pay,—1pan, and we
choose to insert the segments pps,_1 and gpso,. As the segment gps, does not cross the line
pq, we remove it from S.

Second flip. We choose to flip the segments ppo,,—1 and p1ps. If n is odd, we choose to
insert the pair of segments pp1, papan—1. If n is even, we insert the segments ppo, p1pon—1-

By convexity, one of the inserted segment (the one with endpoints in C) crosses all other
n — 2 segments. The other inserted segment (the one with p as one of its endpoints) does
not cross the line pg, so we remove it from S. Note that the condition on the parity of n is
there only to ensure that the last segment ps,_3po,_2 is dealt with at the last flip.

Remaining flips. We describe the third flip. The remaining flips are performed similarly.

Let s be the previously inserted segment. Let psps be the segment in S whose intersection
point with pq is the closest from p. Without loss of generality, assume that ps3 is on the same
side of the line pq as p; and pa,_1.

We choose to flip s with psps. If s = papa,—1, we choose to insert the pair of segments
D2P4, P3Pan—1- If S = p1pan_1, we choose to insert the pair of segments p1ps3, Papon_1-

By convexity, one inserted segment (the one with ps,_1 as an endpoint) crosses all other
n — 3 segments. The other inserted segment does not cross the line pq, so we remove it from
S. Note that the insertion choice described is the only viable one, as the alternative would
insert a crossing-free segment crossing the line pg that cannot be removed. |

4.3 Points Outside a Convex

We are now ready to prove the following theorem, which only applies to matchings because
it uses Lemma 4.2.

» Theorem 4.3. Consider a matching S consisting of n segments with endpoints P =CUT
where C' is in convex position and T is outside the convex hull of C. Lett = |T|. There
exists an untangle sequence of length O(t3n) using both removal and insertion choices.

Proof. Throughout this proof, we partition the TT-segments into two types: TTI-segment
if it intersects the interior of the convex hull of C' and TTO-segment otherwise.

TT-segments. At any time during the untangle procedure, if there is a TTI-segment s
that crosses more than ¢ segments, we apply Lemma 4.2 to liberate s from every C'C-segment
using O(n) flips. Let £ be the line containing s. Since A({) cannot increase (Lemma 1.1),
A(¢) < t after Lemma 4.2, and there are O(t?) different TT I-segments, it follows that
Lemma 4.2 is applied O(t?) times, performing a total O(t?n) flips. As the number of times s
is inserted and removed differ by at most 1 and A(¢) decreases at each flip that removes s, it
follows that s participates in O(¢) flips. As there are O(t?) different TTI-segments, the total
number of flips involving TT I-segments is O(t3).

We define a set L of O(t) lines as follows. For each point ¢ € T, we have two lines
l1,€ € L that are the two tangents of the convex hull of C that pass through ¢. As the
lines £ € L do not separate C, the potential A(¢) = O(t). When flipping a TTO-segment
q1g2 with another segment gzp with gz € T' (p may be in T or in C'), we make the insertion
choice of creating a TT'O-segment ¢;g3 such that there exists a line ¢ € L whose potential
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A(0) decreases. It is easy to verify that ¢ always exist (see Lemmas B.1 and B.2 in the
Appendix). Hence, the number of flips involving TTO-segments is O(t?) and the number of
flips involving T'T-segments in general is O(t3).

All except pairs of CC-segments. We keep flipping segments that are not both
CC-segments with the following insertion choices. Whenever we flip two CT-segments, we
make the insertion choice of creating a TT-segment. Hence, as the number of flips involving
TT-segments is O(t3), so is the number of flips of two C'T-segments.

Whenever we flip a C'T-segment p1q with ¢ € T and a CC-segment p3p4, we make the
following insertion choice. Let v(g) be a vector such that the dot product v(q) - ¢ < v(q) - p
for all p € C, that is, v is orthogonal to a line ¢ separating ¢ from C' and pointing towards C.
We define the potential n(p,q) of a segment with p, € C and g € T as the number of points
p € C such that v(q) - p < v(q) - pz, that is the number of points in C before p, in direction
v. We choose to insert the segment p,q that minimizes n(p,q) for x = {1,2}. Let n(S) be
the sum of n(p,q) for all CT-segments p,q in S. It is easy to see that n(S) is O(¢|C|) and
decreases at each flip involving a CT-segment (not counting the flips inside Lemma 4.2).

There are two situation in which 7(.S) may increase. One is when Lemma 4.2 is applied,
which happens O(t?) times. Another one is when a TT-segment and a C'C-segment flip,
creating two CT-segments, which happens O(t?) times. At each of these two situations,
n(S) increases by O(|C|). Consequently, the number of flips between a CT-segment and a
CC-segment is O(t3|C]) = O(t3n).

CC-segments. By removal choice, we choose to flip the pairs of C'C-segments last
(except for the ones flipped in Lemma 4.2). As T is outside the convex hull of C, flipping
two CC-segments does not create crossings with other segments (Lemma 1.2). Hence, we
apply the algorithm from [7] to untangle the remaining segments using O(n) flips. <
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Short Flip Sequences to Untangle Segments in the Plane

A  Auxiliary Lemma of Section 4.2

In this section, we prove Lemma A.1 used in the proof of Lemma 4.2.

Recall that, in the proof of Lemma 4.2, we have a convex quadrilateral pypsps,pon—1 and
a segment pq crossing the segments p1ps and pa,pa,—1 in this order when drawn from p to g,
and we invoke Lemma A.1 to show that at least one of the segments among ppa,_1, qp1, qp2
intersects all the segments of S. Before proving Lemma A.1, we detail how to apply it to
this context.

Lemma A.1 applied to the segment pg and the triangle p;psopa,—1 asserts that at least
one of the following pairs of segments cross: ppa,—_1,p1D2, Or qP1, P2P2n—1, O qD2, P1P2n—1- 1f
the segments ppo,—1, p1p2 cross, then we are done. If the segments gp1, p2pan—1 cross, then
the segments gp1, panp2an_1 also cross and we are done. If the segments ¢p2, p1p2n_1 cross,
then the segments gpo, p2np2n_1 also cross and we are done.

Next, we state and prove Lemma A.1.

» Lemma A.1. For any triangle abc, for any segment pq intersecting the interior of the
triangle abe, there exists a segment s € {pa, pb, pc, qa, qb, qc} that intersects the interior of
the triangle abc.

Proof. If all a, b, ¢, p, ¢ are in convex position, then p and the point among a, b, ¢ that is not
adjacent to p on the convex hull boundary define the segment s. Otherwise, since p, g are
not adjacent on the convex hull boundary, assume without loss of generality that a is not a
convex hull vertex and p, b, q, ¢ are the convex hull vertices in order. Then, either ap or aq
intersects be. |

B  Auxiliary Lemmas of Section 4.3

In this section, we prove Lemma B.2 and Lemma B.1 used in the proof of Theorem 4.3.

Recall that, in the proof of Theorem 4.3, we define a set L of lines as follows. For each
point ¢ € T'; we have two lines {1, {5 € L that are the two tangents of the convex hull of C
that pass through q. When flipping a TTO-segment g1q2 with another segment gsp with
g3 € T (p may be in T or in C'), we make the insertion choice of creating a TTO-segment
¢1gs such that there exists a line ¢ € L whose potential A(¢) decreases. We invoke Lemma B.1
and Lemma B.2 to show that such a line ¢ always exist.

Indeed, by Lemma B.1, it is enough to show that there exists a line ¢ € L containing one
of the points q1, g2, g3 that crosses one of the segments ;g2 or gzp. This is precisely what
Lemma B.2 shows.

Next, we state prove Lemma B.1 and Lemma B.2.

» Lemma B.1. Consider two crossing segments p1ps, p3ps and a line £ containing p1 and
crossing psps. Then, one of the two pairs of segments p1ps, PaPa O P1P4, P2p3 does not cross
L. In other words, there exists an insertion choice to flip p1p2,pspa such that the number of
segments crossing ¢ decreases.

Proof. Straightforward. |

» Lemma B.2. Consider a closed convex body B and two crossing segments q1qs, g2qa whose
endpoints qi1,q2,qs are not in B, and whose endpoint q4 is not in the interior of B. If the
segment q1q3 does not intersect the interior of B, then at least one of the six lines tangent to
B and containing one of the endpoints q1,qo,q3 is crossing one of the segments q1qs, q2q4-
(General position is assumed, meaning that the aforementioned siz lines are distinct, i.e.,
each line does not contain two of the points q1,q2,q3,q4-)
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Figure 10 (a) In the statement of Lemma B.2, we assert the existence of points, circled in the

figure, which are the intersection of a line tangent to B and containing one of the points ¢1, g2, g3-

(b) In the proof of Lemma B.2 by contraposition, we exhibit a point, circled in the figure, showing
that B intersects one of the segment g1¢qs.

Proof. For all i € {1,2,3}, let ¢; and £, be the two lines containing ¢; and tangent to B.

By contraposition, we assume that none of the six lines ¢1, ¢}, €2, 05, ¢3, ¢5 crosses one of the
segments ¢1qs, g2q4. In other words, we assume that the six lines are tangent to the convex
quadrilateral q1¢2q3q4. It is well known that, if m > 5, then any arrangement of m lines or
more admits at most one face with m edges (see [16] for example). Therefore, B is contained
in the same face of the arrangement of the six lines as the quadrilateral q1g2q3q4. Let pq
(respectively p}) be a contact point between the line ¢; (respectively ¢;) and the convex
body B. The segment p;p} crosses the segment ¢;¢s and is contained in B by convexity,
concluding the proof by contraposition. |
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