A Unified Approach to Approximate Proximity Searching

- Sunil Arya
 - Hong Kong University of Science and Technology
- Guilherme D. da Fonseca
 UNIRIO
- David M. Mount
 University of Maryland

ESA, Liverpool, UK 09/2010

(Approximate) Proximity Problems

 Preprocess a weighted set of n points such that given a query point q and often a radius r we can determine:

- *Spherical range queries*: the sum of the weights of the points within distance *r* from *q*.
 - Special case: the sum is idempotent (x + x = x).
- *Spherical emptiness queries*: if there is a point within radius *r* from *q*.
- *Nearest neighbor queries*: the closest point to *q*.

Motivation

- Numerous applications.
- Exact solutions are inefficient for dimension d > 2.
- The most efficient previous solutions are rather complicated.
- Solution to different problems used different tools.
- It is hard to see how the properties of each problem are exploited.
- We present a simple unifying approach that yields efficient solutions to all aforementioned proximity problems, making it clear how each property is exploited.

Quadtrees

- A quadtree is a recursive subdivision of the bounding box into 2^d equal boxes.
- Subdivisions are called quadtree boxes.
- Compression reduces storage to O(n).
- Pointers can be added to allow searching the quadtree in O(log n) time.
- Preprocessing takes
 O(n log n) time.

Key Lemma

- Consider a grid subdividing a quadtree box v of size δ into cells of size $\epsilon\delta$.
- Let c(v) denote the number of non-empty grid cells.
- c(v) can be as high as min $(n, 1/\epsilon^d)$.
- Fortunately, summing for all O(n) nodes we get the following lemma:

$$\sum c(v) = O(n\log(1/\varepsilon)).$$

Simple Data Structure for Emptiness

- For each quadtree box v, we have two cases:
 - (i) If $c(v) \le 1/\epsilon^{(d-1)/2}$, then we store the list of points that define c(v).
 - (ii) Otherwise, we store a coreset with $O(1/\epsilon^{(d-1)/2})$ points (Figure).

- The storage for (i) is upper bounded by $\Sigma c(v) = O(n \log(1/\epsilon))$.
- The storage for (ii) is upper bounded by $O(n \log(1/\epsilon))$ since only $O(n \log(1/\epsilon) / \alpha)$ nodes can have $c(v) > \alpha$.

Answering Queries

- In O(log n) time, we find a set of O(1) cells of size at most r/2 that cover the query ball of radius r.
- For each point in each cell, we check whether it is contained in the query ball, and answer the query accordingly.
- Query takes $O(1/\epsilon^{(d-1)/2})$ time per cell, and total time $O(\log n + 1/\epsilon^{(d-1)/2})$.
- Correctness follows from the fact that a box of size δ only handles balls of radius at least 2δ .
- *Module*: data structure for spherical queries of size at least 2δ inside a box of size δ .

Framework

For a given parameter α:

- Nodes with c(v) > α store an insensitive module: data structure whose storage S does not depend on c(v).
- Nodes with $c(v) \le \alpha$ store an adaptive module: data structure whose size s(c(v)) goes down.
- Leaf nodes just store the single point contained in them.

Storage

Total storage for each type of node:

• $c(v) > \alpha$: O($n \le \log(1/\epsilon) / \alpha$).

At most $O(n \log(1/\epsilon) / \alpha)$ nodes, each with O(S) storage.

• $c(v) \le \alpha$: $O(n s(\alpha) \log(1/\epsilon) / \alpha)$.

Each node with $O(s(\alpha))$ storage, where s(.) is at least linear.

• Leaf nodes: O(n).

Modules

- A module is a data structure for spherical queries where all data points are inside a box of diameter δ and the query ball radius is at least 2δ.
- Points within distance εδ of the boundary may be misclassified.
- Queries are answered by locating and using a constant number of modules that cover the query ball.

Adaptive Modules

- The storage of an adaptive module depends on the number n of points stored in the module.
- A simple module with storage and query time O(n) consists of the list of points.
- A more sophisticated module which offers small improvements is a data structure for exact spherical range searching.

Insensitive Modules

- The storage of an insensitive module does not depend on the number of points stored.
- The data structure can be build independently for each of a set of at most 1/ε different query radii.
- Let $y \in [1,1/\epsilon]$ be a tradeoff parameter.
- We divide the box into $1/(\epsilon \gamma)^{d-1}$ columns where the query is answered in constant time.
- Query time = number of columns.

Generators

- We precompute the sum for a set of generators.
- Each generator is a (cropped) ball of radius r, approximately equal to the query radius.
- When answering a query in the general version, we need disjoint generators.
- When we have idempotence, generators can overlap.

Generators

- We precompute the sum for a set of generators.
- Each generator is a (cropped) ball of radius r, approximately equal to the query radius.
- When answering a query in the general version, we need disjoint generators.
- When we have idempotence, generators can overlap.

General Version

- Each generator is cropped inside a column.
- Storage per column per radius: $O(\gamma^{d-1}/\epsilon)$.
- Number of columns (query time): $O(1/(\epsilon \gamma)^{d-1})$.
- Number of radii: $O(1+\epsilon \gamma^2) = O(1/\epsilon)$.
- Total storage: $O((1+\epsilon \gamma^2) / \epsilon^d)$.

Idempotent Version

- If we do not crop the balls, then the generators are the same for every column.
- Therefore the total storage is the same as the storage per column in the general version.
- Make $\gamma \leftarrow \sqrt{\gamma/\varepsilon}$

to get query time $O(1/(\epsilon \gamma)^{(d-1)/2})$.

• Total storage: $O((\gamma / \epsilon)^{(d+1)/2})$.

Emptiness Version

- In the emptiness version we can exploit monotonicity to compress the data structure.
- Only store the bottommost non-empty ball in each set.
- Reduces the storage by 1/ε.
- Query time $O(1/(\epsilon \gamma)^{(d-1)/2})$.
- Storage: $O(\gamma^{(d+1)/2} / \epsilon^{(d-1)/2})$.
- Approximate nearest neighbor queries reduce to O(log(1/ε)) spherical emptiness queries.

Complexities

- General spherical range query time: $\tilde{O}(1/(\epsilon \gamma)^{d-1})$. Previous storage: $\tilde{O}(n \gamma^d)$. New storage without Exact Range Searching: $\tilde{O}(n \gamma^{d-1}(1+\epsilon \gamma^2))$.
- Idempotent spherical range query time: $\tilde{O}(1/(\epsilon\gamma)^{(d-1)/2})$. Previous storage: $\tilde{O}(n \gamma^d/\epsilon)$. New storage without ERS: $\tilde{O}(n \gamma^d/\epsilon)$. New storage with ERS: $\tilde{O}(n \gamma^{d-1/2}/\sqrt{\epsilon})$.
- Spherical emptiness query time: $\tilde{O}(1/(\epsilon\gamma)^{(d-1)/2})$. Previous storage: $\tilde{O}(n \gamma^{d-1})$. New storage without ERS: $\tilde{O}(n \gamma^d)$. Using ERS, query time: $\tilde{O}(1/(\epsilon\gamma)^{(d-3)/2+1/d})$ and storage: $\tilde{O}(n \gamma^{d-2})$.

Thank you!

