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(Approximate) Proximity Problems

● Spherical range queries: the 
sum of the weights of the 
points within distance r from q.
● Special case: the sum is 

idempotent (x + x = x).

● Spherical emptiness queries: if 
there is a point within radius r 
from q.

● Nearest neighbor queries: the 
closest point to q.

● Preprocess a weighted set of n points such that given a 
query point q and often a radius r we can determine:



  

Motivation

● Numerous applications.
● Exact solutions are inefficient for dimension d > 2.
● The most efficient previous solutions are rather 

complicated.
● Solution to different problems used different tools.
● It is hard to see how the properties of each problem are 

exploited.

● We present a simple unifying approach that yields efficient 
solutions to all aforementioned proximity problems, making 
it clear how each property is exploited.



  

Quadtrees

● A quadtree is a recursive 
subdivision of the bounding 
box into 2d equal boxes.

● Subdivisions are called 
quadtree boxes.

● Compression reduces 
storage to O(n).

● Pointers can be added to 
allow searching the quadtree 
in O(log n) time.

● Preprocessing takes
O(n log n) time.



  

Key Lemma

● Consider a grid subdividing a 
quadtree box v of size δ into 
cells of size εδ.

● Let c(v) denote the number of 
non-empty grid cells.

● c(v) can be as high as
min(n, 1/εd).

● Fortunately, summing for all 
O(n) nodes we get the 
following lemma:



  

Simple Data Structure for Emptiness

● For each quadtree box v, we have 
two cases:

(i)  If c(v) ≤ 1/ε(d-1)/2, then we store the 
list of points that define c(v).

(ii) Otherwise, we store a coreset with 
O(1/ε(d-1)/2) points (Figure).

● The storage for (i) is upper bounded by
Σc(v) = O(n log(1/ε)).

● The storage for (ii) is upper bounded by O(n log(1/ε)) since 
only O(n log(1/ε) / α) nodes can have c(v) > α.



  

Answering Queries

● In O(log n) time, we find a set of O(1) 
cells of size at most r/2 that cover the 
query ball of radius r.

● For each point in each cell, we check 
whether it is contained in the query 
ball, and answer the query accordingly.

● Query takes O(1/ε(d-1)/2) time per cell, and total time
O(log n + 1/ε(d-1)/2)).

● Correctness follows from the fact that a box of size δ only 
handles balls of radius at least 2δ.

● Module: data structure for spherical queries of size at least 
2δ inside a box of size δ.



  

Framework

For a given parameter α:

● Nodes with c(v) > α store an 
insensitive module: data 
structure whose storage S 
does not depend on c(v).

● Nodes with c(v) ≤ α store an 
adaptive module: data 
structure whose size s(c(v)) 
goes down as c(v) goes down.

● Leaf nodes just store the 
single point contained in them.



  

Storage

Total storage for each type of node:

● c(v) > α: O(n S log(1/ε) / α).

At most O(n log(1/ε) / α) nodes, 
each with O(S) storage.

● c(v) ≤ α: O(n s(α) log(1/ε) / α).

Each node with O(s(α)) storage, 
where s(.) is at least linear.

● Leaf nodes: O(n).



  

Modules

● A module is a data structure 
for spherical queries where 
all data points are inside a 
box of diameter δ and the 
query ball radius is at least 
2δ.

● Points within distance εδ of 
the boundary may be 
misclassified.

● Queries are answered by 
locating and using a constant 
number of modules that 
cover the query ball.



  

Adaptive Modules

● The storage of an adaptive 
module depends on the 
number n of points stored in 
the module.

● A simple module with storage 
and query time O(n) consists 
of the list of points.

● A more sophisticated module 
which offers small 
improvements is a data 
structure for exact spherical 
range searching.



  

Insensitive Modules

● The storage of an insensitive 
module does not depend on the 
number of points stored.

● The data structure can be build 
independently for each of a set of 
at most 1/ε different query radii.

● Let γ ∈ [1,1/ε] be a tradeoff 
parameter.

● We divide the box into 1/(εγ)d-1 
columns where the query is 
answered in constant time.

● Query time = number of columns.



  

Generators

● We precompute the sum for 
a set of generators.

● Each generator is a 
(cropped) ball of radius r, 
approximately equal to the 
query radius.

● When answering a query in 
the general version, we need 
disjoint generators.

● When we have idempotence, 
generators can overlap.
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General Version

● Each generator is cropped 
inside a column.

● Storage per column per radius: 
O(γd-1/ε).

● Number of columns (query 
time):
O(1/(εγ)d-1).

● Number of radii:
O(1+εγ2) = O(1/ε).

● Total storage: O((1+εγ2) / εd).



  

Idempotent Version

● If we do not crop the balls, 
then the generators are the 
same for every column.

● Therefore the total storage is 
the same as the storage per 
column in the general version.

● Make 

to get query time O(1/(εγ)(d-1)/2).
● Total storage: O((γ / ε)(d+1)/2).



  

Emptiness Version

● In the emptiness version we 
can exploit monotonicity to 
compress the data structure.

● Only store the bottommost 
non-empty ball in each set.

● Reduces the storage by 1/ε.
● Query time O(1/(εγ)(d-1)/2).
● Storage: O(γ(d+1)/2 / ε(d-1)/2).
● Approximate nearest neighbor 

queries reduce to O(log(1/ε)) 
spherical emptiness queries.



  

Complexities

● General spherical range query time: Õ(1/(εγ)d-1).
Previous storage: Õ(n γd).
New storage without Exact Range Searching :
Õ(n γd-1(1+εγ2)).

● Idempotent spherical range query time: Õ(1/(εγ)(d-1)/2).
Previous storage: Õ(n γd/ε).
New storage without ERS: Õ(n γd/ε).
New storage with ERS: Õ(n γd-1/2/√ε).

● Spherical emptiness query time: Õ(1/(εγ)(d-1)/2).
Previous storage: Õ(n γd-1).
New storage without ERS: Õ(n γd).
Using ERS, query time: Õ(1/(εγ)(d-3)/2+1/d) and
storage: Õ(n γd-2).



  

Thank you!


