

A Unified Approach to Approximate
Proximity Searching

● Sunil Arya

Hong Kong University of
Science and Technology

● Guilherme D. da Fonseca

UNIRIO

● David M. Mount

University of Maryland

ESA, Liverpool, UK

09/2010

(Approximate) Proximity Problems

● Spherical range queries: the
sum of the weights of the
points within distance r from q.
● Special case: the sum is

idempotent (x + x = x).

● Spherical emptiness queries: if
there is a point within radius r
from q.

● Nearest neighbor queries: the
closest point to q.

● Preprocess a weighted set of n points such that given a
query point q and often a radius r we can determine:

Motivation

● Numerous applications.
● Exact solutions are inefficient for dimension d > 2.
● The most efficient previous solutions are rather

complicated.
● Solution to different problems used different tools.
● It is hard to see how the properties of each problem are

exploited.

● We present a simple unifying approach that yields efficient
solutions to all aforementioned proximity problems, making
it clear how each property is exploited.

Quadtrees

● A quadtree is a recursive
subdivision of the bounding
box into 2d equal boxes.

● Subdivisions are called
quadtree boxes.

● Compression reduces
storage to O(n).

● Pointers can be added to
allow searching the quadtree
in O(log n) time.

● Preprocessing takes
O(n log n) time.

Key Lemma

● Consider a grid subdividing a
quadtree box v of size δ into
cells of size εδ.

● Let c(v) denote the number of
non-empty grid cells.

● c(v) can be as high as
min(n, 1/εd).

● Fortunately, summing for all
O(n) nodes we get the
following lemma:

Simple Data Structure for Emptiness

● For each quadtree box v, we have
two cases:

(i) If c(v) ≤ 1/ε(d-1)/2, then we store the
list of points that define c(v).

(ii) Otherwise, we store a coreset with
O(1/ε(d-1)/2) points (Figure).

● The storage for (i) is upper bounded by
Σc(v) = O(n log(1/ε)).

● The storage for (ii) is upper bounded by O(n log(1/ε)) since
only O(n log(1/ε) / α) nodes can have c(v) > α.

Answering Queries

● In O(log n) time, we find a set of O(1)
cells of size at most r/2 that cover the
query ball of radius r.

● For each point in each cell, we check
whether it is contained in the query
ball, and answer the query accordingly.

● Query takes O(1/ε(d-1)/2) time per cell, and total time
O(log n + 1/ε(d-1)/2)).

● Correctness follows from the fact that a box of size δ only
handles balls of radius at least 2δ.

● Module: data structure for spherical queries of size at least
2δ inside a box of size δ.

Framework

For a given parameter α:

● Nodes with c(v) > α store an
insensitive module: data
structure whose storage S
does not depend on c(v).

● Nodes with c(v) ≤ α store an
adaptive module: data
structure whose size s(c(v))
goes down as c(v) goes down.

● Leaf nodes just store the
single point contained in them.

Storage

Total storage for each type of node:

● c(v) > α: O(n S log(1/ε) / α).

At most O(n log(1/ε) / α) nodes,
each with O(S) storage.

● c(v) ≤ α: O(n s(α) log(1/ε) / α).

Each node with O(s(α)) storage,
where s(.) is at least linear.

● Leaf nodes: O(n).

Modules

● A module is a data structure
for spherical queries where
all data points are inside a
box of diameter δ and the
query ball radius is at least
2δ.

● Points within distance εδ of
the boundary may be
misclassified.

● Queries are answered by
locating and using a constant
number of modules that
cover the query ball.

Adaptive Modules

● The storage of an adaptive
module depends on the
number n of points stored in
the module.

● A simple module with storage
and query time O(n) consists
of the list of points.

● A more sophisticated module
which offers small
improvements is a data
structure for exact spherical
range searching.

Insensitive Modules

● The storage of an insensitive
module does not depend on the
number of points stored.

● The data structure can be build
independently for each of a set of
at most 1/ε different query radii.

● Let γ ∈ [1,1/ε] be a tradeoff
parameter.

● We divide the box into 1/(εγ)d-1
columns where the query is
answered in constant time.

● Query time = number of columns.

Generators

● We precompute the sum for
a set of generators.

● Each generator is a
(cropped) ball of radius r,
approximately equal to the
query radius.

● When answering a query in
the general version, we need
disjoint generators.

● When we have idempotence,
generators can overlap.

Generators

● We precompute the sum for
a set of generators.

● Each generator is a
(cropped) ball of radius r,
approximately equal to the
query radius.

● When answering a query in
the general version, we need
disjoint generators.

● When we have idempotence,
generators can overlap.

General Version

● Each generator is cropped
inside a column.

● Storage per column per radius:
O(γd-1/ε).

● Number of columns (query
time):
O(1/(εγ)d-1).

● Number of radii:
O(1+εγ2) = O(1/ε).

● Total storage: O((1+εγ2) / εd).

Idempotent Version

● If we do not crop the balls,
then the generators are the
same for every column.

● Therefore the total storage is
the same as the storage per
column in the general version.

● Make

to get query time O(1/(εγ)(d-1)/2).
● Total storage: O((γ / ε)(d+1)/2).

Emptiness Version

● In the emptiness version we
can exploit monotonicity to
compress the data structure.

● Only store the bottommost
non-empty ball in each set.

● Reduces the storage by 1/ε.
● Query time O(1/(εγ)(d-1)/2).
● Storage: O(γ(d+1)/2 / ε(d-1)/2).
● Approximate nearest neighbor

queries reduce to O(log(1/ε))
spherical emptiness queries.

Complexities

● General spherical range query time: Õ(1/(εγ)d-1).
Previous storage: Õ(n γd).
New storage without Exact Range Searching :
Õ(n γd-1(1+εγ2)).

● Idempotent spherical range query time: Õ(1/(εγ)(d-1)/2).
Previous storage: Õ(n γd/ε).
New storage without ERS: Õ(n γd/ε).
New storage with ERS: Õ(n γd-1/2/√ε).

● Spherical emptiness query time: Õ(1/(εγ)(d-1)/2).
Previous storage: Õ(n γd-1).
New storage without ERS: Õ(n γd).
Using ERS, query time: Õ(1/(εγ)(d-3)/2+1/d) and
storage: Õ(n γd-2).

Thank you!

