A Unifled Approach to Approximate
Proximity Searching

e Sunil Arya

Hong Kong University of
Science and Technology

e Guilherme D. da Fonseca
UNIRIO

e David M. Mount
University of Maryland

ESA, Liverpool, UK
o 09/2010

(Approximate) Proximity Problems

* Preprocess a weighted set of n points such that given a
guery point g and often a radius r we can determine:

* Spherical range queries: the
sum of the weights of the
points within distance r from q.

e Special case: the sum is
idempotent (x + X = X).

» Spherical emptiness queries: if
there is a point within radius r
from q.

* Nearest neighbor queries: the
closest point to g.

Motivation

Numerous applications.
Exact solutions are inefficient for dimension d > 2.

The most efficient previous solutions are rather
complicated.

Solution to different problems used different tools.

It is hard to see how the properties of each problem are
exploited.

We present a simple unifying approach that yields efficient
solutions to all aforementioned proximity problems, making
It clear how each property is exploited.

Quadtrees

* A guadtree is a recursive

subdivision of the bounding

box into 29 equal boxes.

sle Subdivisions are called

guadtree boxes.
 Compression reduces

storage to O(n).

e Pointers can be added to

allow searching the quadtree
. In O(log n) time.

* Preprocessing takes

O(n log n) time.

Key Lemma

A

Y

y

Consider a grid subdividing a
guadtree box v of size 0 into
cells of size ¢€9.

Let c(v) denote the number of
non-empty grid cells.

c(v) can be as high as
min(n, 1/€°).

Fortunately, summing for all
O(n) nodes we get the
following lemma:

Z c(v) = O(nlog(1l/g)).

v

Simple Data Structure for Emptiness

* For each quadtree box v, we have
two cases:

(i) If c(v) < 1/e“V" then we store the
list of points that define c(v).

(i) Otherwise, we store a coreset with
O(1/£""?) points (Figure).

 The storage for (i) is upper bounded by
2c(v) = O(n log(1/g)).

The storage for (ii) is upper bounded by O(n log(1/g)) since
only O(n log(1/¢) / a) nodes can have c(v) > a.

Answering Queries

* In O(log n) time, we find a set of O(1)
. cells of size at most r/2 that cover the
(T qguery ball of radius r.
. e . * For each point in each cell, we check
\' ‘ whether it is contained in the query
S+ ball, and answer the query accordingly.

* Query takes O(1/£“"?) time per cell, and total time
O(log n + 1/g91?),

* Correctness follows from the fact that a box of size 6 only
handles balls of radius at least 20.

 Module: data structure for spherical queries of size at least
20 inside a box of size 0.

Framework

>

For a given parameter a:

* Nodes with c(v) > a store an
Insensitive module: data
structure whose storage S
does not depend on c(v).

 Nodes with ¢c(v) < a store an
adaptive module: data
structure whose size s(c(v))
goes down as c(v) goes down.

* |Leaf nodes just store the
single point contained in them.

Storage

Total storage for each type of node:

~ ¢ c(v)>a:.0O(n Slog(l/e) / a).

At most O(n log(1/¢) / a) nodes,
each with O(S) storage.

— ¢ c(v) <£a: O(ns(a) log(1/e) I a).

Each node with O(s(a)) storage,
where s(.) is at least linear.

o—— * Leaf nodes: O(n).

Modules

\ « A module is a data structure
> 95 for spherical queries where
e — > all data points are inside a
box of diameter o and the

guery ball radius is at least
20.

e Points within distance €0 of
the boundary may be
misclassified.

* Queries are answered by
locating and using a constant
number of modules that
cover the query ball.

Adaptive Modules

* The storage of an adaptive

module depends on the
number n of points stored in
the module.

A simple module with storage
and guery time O(n) consists
of the list of points.

A more sophisticated module
which offers small
Improvements is a data
structure for exact spherical
range searching.

Insensitive Modules

The storage of an insensitive
module does not depend on the
number of points stored.

The data structure can be build
iIndependently for each of a set of
at most 1/ different query radii.

Lety € [1,1/¢] be a tradeoff
parameter.

We divide the box into 1/(sy)**
columns where the query is
answered In constant time.

Query time = number of columns.

Generators

We precompute the sum for

a set of generators.
 Each generator is a

—— (cropped) ball of radius r,

approximately equal to the
guery radius.

 When answering a query in
the general version, we need
disjoint generators.

 When we have idempotence,

generators can overlap.

Generators

We precompute the sum for
a set of generators.

Each generator is a
(cropped) ball of radius r,
approximately equal to the
guery radius.

When answering a query in
the general version, we need
disjoint generators.

When we have idempotence,
generators can overlap.

6€I

General Version

T Each generator is cropped
Inside a column.

I

| e Storage per column per radius:
. O(y*'/¢).

| « Number of columns (query
] time):

L O(1/(gy)™™).

| * Number of radii:

/Y 5 O(1+ey?®) = O(1/g).

i+ Total storage: O((1+ey?) / £%.

(581

ldempotent Version

If we do not crop the balls,
then the generators are the
same for every column.

Therefore the total storage is
the same as the storage per
column in the general version.

Make ~ — \/~/e

to get query time O(1/(gy)
Total storage: O((y / €)“).

(d—l)/2)

Emptiness Version

(581

NI

In the emptiness version we
can exploit monotonicity to
compress the data structure.

Only store the bottommost
non-empty ball in each set.

Reduces the storage by 1/e.
Query time O(1/(gy)“).

(@+1)/2 | g(d-])/2)

Storage: O(y

Approximate nearest neighbor
gueries reduce to O(log(1/¢€))
spherical emptiness gueries.

Complexities

 General spherical range query time: O(1/(sy)*).
Previous storage: O(n y).
New storage without Exact Range Searching :
O(n y**(1+ey?).

* |dempotent spherical range query time: O(1/(sy)“?).
Previous storage: O(n y“/g).
New storage without ERS: O(n y“/e).
New storage with ERS: O(n y**?/Vg).

 Spherical emptiness query time: O(1/(sy)“).
Previous storage: O(n y*%).
New storage without ERS: O(n y*).
Using ERS, query time: O(1/(sy)“¥#*%) and
storage: O(n y*?).

Thank youl!

-

Rp—

gﬂ,u:;ar:i'm
]

