Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion

The Combinatorial Complexity of Approximating Polytopes

Sunil Arya Hong Kong University of Science and Technology

> Guilherme D. da Fonseca Université d'Auvergne and LIMOS

David M. Mount University of Maryland, College Park

SoCG 2016

Introduction	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
00000	00	000	000000	000

Polytope Approximation

Problem description:

- Input: convex body K in d-dimensional space and parameter ε
- Output: succinct polytope P which ε-approximates K
- Question: how succinct can P be?
- ε -approximate: Hausdorff distance $\varepsilon \cdot \operatorname{diam}(K)$
- Succinct: Low *combinatorial complexity* (to be defined)
- Assume w.l.o.g. that diam(K) = 1
- Dimension d is a constant $(2^d/\varepsilon = O(1/\varepsilon))$

Introduction	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
00000	00	000	000000	000

Uniform vs. Nonuniform Bounds

Nonuniform bounds:

- Hold for $\varepsilon \leq \varepsilon_0$, where ε_0 depends on the input K
- Example: Gruber [Gru93] bounds the complexity n using the Gaussian curvature κ of the input

$$n = (1/\varepsilon)^{(d-1)/2} \int_{\partial K} \sqrt{\kappa(x)} dx$$

Uniform bounds: (our case)

- Hold for $\varepsilon \leq \varepsilon_0$, where ε_0 is a constant
- Example: Dudley [Dud74] and Bronshteyn and Ivanov [BI74] bound the maximum number of facets/vertices as a function of ε , d, and the diameter of the input

Bronshteyn and Ivanov's Approximation

- Surround *K* by a sphere of radius 2
- ② Distribute points on the sphere with distance $\sim \sqrt{\varepsilon}$
- Take the nearest neighbor on K for each point
- Make P the convex hull of the points

Bronshteyn and Ivanov, 1974:

A convex body K of diameter 1 can be ε -approximated by a polytope P with $O(1/\varepsilon^{(d-1)/2})$ vertices.

Bronshteyn and Ivanov's Approximation

- Surround *K* by a sphere of radius 2
- Take the nearest neighbor on K for each point
- Make P the convex hull of the points

Bronshteyn and Ivanov, 1974:

A convex body K of diameter 1 can be ε -approximated by a polytope P with $O(1/\varepsilon^{(d-1)/2})$ vertices.

Bronshteyn and Ivanov's Approximation

- Surround *K* by a sphere of radius 2
- Take the nearest neighbor on K for each point
- Make P the convex hull of the points

Bronshteyn and Ivanov, 1974:

A convex body K of diameter 1 can be ε -approximated by a polytope P with $O(1/\varepsilon^{(d-1)/2})$ vertices.

Introduction	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	0000000	000
	A			

Dudley's Approximation

- Surround K by a sphere of radius 2
- Take the nearest neighbor on K for each point
- Make P the intersection of supporting halfspaces at each point

Dudley, 1974:

A convex body K of diameter 1 can be ε -approximated by a polytope P with $O(1/\varepsilon^{(d-1)/2})$ facets.

Introduction	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	0000000	000
	A			

Dudley's Approximation

- Surround K by a sphere of radius 2
- Take the nearest neighbor on K for each point
- Make P the intersection of supporting halfspaces at each point

Dudley, 1974:

A convex body K of diameter 1 can be ε -approximated by a polytope P with $O(1/\varepsilon^{(d-1)/2})$ facets.

Introduction	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	0000000	000
	A			

Dudley's Approximation

- Surround K by a sphere of radius 2
- Take the nearest neighbor on K for each point
- Make P the intersection of supporting halfspaces at each point

Dudley, 1974:

A convex body K of diameter 1 can be ε -approximated by a polytope P with $O(1/\varepsilon^{(d-1)/2})$ facets.

Introduction	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	000000	000

Combinatorial Complexity

• Faces have different dimensions: 0-face: *vertex* 1-face: *edge* :

(d-1)-face: facet

 Combinatorial complexity: sum of number of k-faces k = 0,..., d - 1

Upper bound theorem

A polytope with *n* vertices (or facets) has combinatorial complexity $O(n^{\lfloor d/2 \rfloor})$.

Introduction	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
00000	00	000	000000	000

Approximation of Low Combinatorial Complexity

- Bronshteyn and Ivanov: optimal number of vertices $O(1/\varepsilon^{(d-1)/2})$
- Dudley: same optimal number of facets
- Upper bound theorem: their combinatorial complexity is $O(1/\varepsilon^{d^2/4})$ (Maybe it's much better, but we don't know how to prove)

Combinatorial complexity

• Best known bound: Roughly $O(1/\varepsilon^{d-2})$ using lattice polytopes [And63]

• Our bound^a:
$$\widetilde{O}(1/arepsilon^{(d-1)/2})$$

 ${}^{a}\widetilde{O}$ hides $\log^{(d-1)/2} \frac{1}{\varepsilon}$

Introduction 000000	Witness-Collector ●O	Macbeath Regions 000	Stratified Construction	Conclusion 000
Casa				
Caps				

- Cap: intersection of K and a halfspace H
- Width: measured perpendicular to H
- A set S of points stabs all ε-width caps if for every ε-width cap C we have C ∩ S ≠ Ø

Approximation via Hitting Sets

If a point set $S \subset K$ stabs all ε -width caps, then conv(S) is an ε -approximation to K.

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	•0	000	0000000	000
~				
Cane				

- Cap: intersection of K and a halfspace H
- Width: measured perpendicular to H
- A set S of points stabs all ε-width caps if for every ε-width cap C we have C ∩ S ≠ Ø

Approximation via Hitting Sets

If a point set $S \subset K$ stabs all ε -width caps, then $\operatorname{conv}(S)$ is an ε -approximation to K.

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	000000	000

We identify two sets of regions:

- \mathcal{W} : witnesses
- C: collectors, one per witness

that satisfy:

- (1) Each witness contributes one point to S
- (2) Any halfspace *H* either:
 - Deep: contains a witness, or
 - Shallow: $H \cap K$ is contained within a collector
- (3) Each collector contains O(1) points of S

Witness-Collector Complexity Bound [Devillers et al. 2013]

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	000000	000

We identify two sets of regions:

- \mathcal{W} : witnesses
- C: collectors, one per witness

that satisfy:

- (1) Each witness contributes one point to S
- (2) Any halfspace *H* either:
 - Deep: contains a witness, or
 - Shallow: $H \cap K$ is contained within a collector

(3) Each collector contains O(1) points of S

Witness-Collector Complexity Bound [Devillers et al. 2013]

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	000000	000

We identify two sets of regions:

- \mathcal{W} : witnesses
- C: collectors, one per witness

that satisfy:

- (1) Each witness contributes one point to S
- (2) Any halfspace *H* either:
 - Deep: contains a witness, or
 - Shallow: $H \cap K$ is contained within a collector

(3) Each collector contains O(1) points of S

Witness-Collector Complexity Bound [Devillers et al. 2013]

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	000000	000

We identify two sets of regions:

- \mathcal{W} : witnesses
- C: collectors, one per witness

that satisfy:

- (1) Each witness contributes one point to S
- (2) Any halfspace *H* either:
 - Deep: contains a witness, or
 - Shallow: $H \cap K$ is contained within a collector
- (3) Each collector contains O(1) points of S

Witness-Collector Complexity Bound [Devillers et al. 2013]

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	000000	000

We identify two sets of regions:

- \mathcal{W} : witnesses
- C: collectors, one per witness

that satisfy:

- (1) Each witness contributes one point to S
- (2) Any halfspace *H* either:
 - Deep: contains a witness, or
 - Shallow: *H* ∩ *K* is contained within a collector

(3) Each collector contains O(1) points of S

Witness-Collector Complexity Bound [Devillers et al. 2013]

Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
00			

We identify two sets of regions:

- \mathcal{W} : witnesses
- C: collectors, one per witness

that satisfy:

- (1) Each witness contributes one point to S
- (2) Any halfspace *H* either:
 - Deep: contains a witness, or
 - Shallow: H ∩ K is contained within a collector
- (3) Each collector contains O(1) points of S

Witness-Collector Complexity Bound [Devillers et al. 2013]

<u> </u>		Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
	000000	00	000	000000	000

We identify two sets of regions:

- \mathcal{W} : witnesses
- C: collectors, one per witness

that satisfy:

- (1) Each witness contributes one point to S
- (2) Any halfspace *H* either:
 - Deep: contains a witness, or
 - Shallow: H ∩ K is contained within a collector
- (3) Each collector contains O(1) points of S

Witness-Collector Complexity Bound [Devillers et al. 2013]

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	000000	000

We identify two sets of regions:

- \mathcal{W} : witnesses
- C: collectors, one per witness

that satisfy:

- (1) Each witness contributes one point to S
- (2) Any halfspace *H* either:
 - Deep: contains a witness, or
 - Shallow: *H* ∩ *K* is contained within a collector
- (3) Each collector contains O(1) points of S

Witness-Collector Complexity Bound [Devillers et al. 2013]

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	000000	000

We identify two sets of regions:

- \mathcal{W} : witnesses
- C: collectors, one per witness

that satisfy:

- (1) Each witness contributes one point to S
- (2) Any halfspace *H* either:
 - Deep: contains a witness, or
 - Shallow: *H* ∩ *K* is contained within a collector
- (3) Each collector contains O(1) points of S

Witness-Collector Complexity Bound [Devillers et al. 2013]

Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
00			

We identify two sets of regions:

- \mathcal{W} : witnesses
- C: collectors, one per witness

that satisfy:

- (1) Each witness contributes one point to S
- (2) Any halfspace *H* either:
 - Deep: contains a witness, or
 - Shallow: $H \cap K$ is contained within a collector
- (3) Each collector contains O(1) points of S

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion	
000000	00	000	0000000	000	
Mashaath Dariana					

Macbeath Regions [Macbeath 52]

Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- *M*(*x*) resembles the minimum volume cap containing *x*
- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion	
000000	00	000	0000000	000	
Mashaath Dariana					

Macbeath Regions [Macbeath 52]

Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- *M*(*x*) resembles the minimum volume cap containing *x*
- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion	
000000	00	000	0000000	000	
Mashaath Dariana					

Macbeath Regions [Macbeath 52]

Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- *M*(*x*) resembles the minimum volume cap containing *x*
- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion	
000000	00	000	0000000	000	
Mashaath Dariana					

Macbeath Regions [Macbeath 52]

Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- *M*(*x*) resembles the minimum volume cap containing *x*
- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	0000000	000
N/ a also a				

Macbeath Regions [Macbeath 52]

Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- *M*(*x*) resembles the minimum volume cap containing *x*
- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	0000000	000
N/ a also a				

Macbeath Regions [Macbeath 52]

Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- *M*(*x*) resembles the minimum volume cap containing *x*
- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	0000000	000
N/ a also a				

Macbeath Regions [Macbeath 52]

Given a convex body K, $x \in K$, and $\lambda > 0$:

- $M^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M(x) = M^1(x)$: intersection of K and K reflected around x
- $M'(x) = M^{1/5}(x)$

- *M*(*x*) resembles the minimum volume cap containing *x*
- $M'(x) \cap M'(y) \neq \emptyset \Rightarrow M'(x) \subseteq M(y)$

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	000000	000

Economical Cap Covering

Economical Cap Covering

Given:

- K: convex body
- ε: small positive parameter

There exists [ELR70, Bar07]:

- Macbeath regions R_1, \ldots, R_k
- Caps C_1, \ldots, C_k of width $\Theta(\varepsilon)$
- $k = O(1/\varepsilon^{(d-1)/2})$ (new)
- For every cap *C*, there is *i*:
 - $R_i \subseteq C$ if width $\geq \varepsilon$
 - $C \subseteq C_i$ if width $\leq \varepsilon$

		Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
0000	00	00	000	0000000	000
~		 D			

Cardinality Bound

Proof strategy:

- Prune Macbeath regions that are too close to each other (by increasing volume)
- A constant fraction of the regions are pruned
- Project the centers of the regions onto the Dudley ball (perpendicularly to the corresponding cap)
- Show that the pairwise distance in the Dudley ball is at least $\sqrt{\varepsilon}$

Approximating with ECC

Economical Cap Covering

Given:

- K: convex body
- ε : small positive parameter

There exists [ELR70, Bar07]:

- Macbeath regions R_1, \ldots, R_k
- Caps C_1, \ldots, C_k of width $\Theta(\varepsilon)$
- $k = O(1/\varepsilon^{(d-1)/2})$ (new)
- For every cap *C*, there is *i*:
 - $R_i \subseteq C$ if width $\geq \varepsilon$
 - $C \subseteq C_i$ if width $\leq \varepsilon$

Procedure:

- Create an ECC
- Place a point inside each Macbeath region
- Compute the convex hull

Approximation:

• Every ε -width cap is stabbed

Complexity:

- $O(1/\varepsilon^{(d-1)/2})$ vertices
- Combinatorial complexity: $O(1/\varepsilon^{d^2/4})$ by the upper bound theorem

Better Bound on the Combinatorial Complexity

What if we use the Macbeath regions as witnesses and the caps as collectors?

- Does not work for the traditional construction (for fixed width)
- We need one additional property: For all *i*, *C_i* intersects a constant number of bodies *R_j*

- Organize the Macbeath regions in $O(\log \frac{1}{\varepsilon})$ layers by *volume*
- Larger volume Macbeath regions in outer layers
- Approximation error increases from ε to O(ε log 1/ε))
- Scale ε accordingly: $\hat{\varepsilon} = \frac{\varepsilon}{\log \frac{1}{\varepsilon}}$
- Number of regions grows to

$$O\left(\left(rac{1}{\widehat{arepsilon}}
ight)^{rac{d-1}{2}}
ight) = O\left(\left(rac{\lograc{1}{arepsilon}}{arepsilon}
ight)^{rac{d-1}{2}}
ight)$$

- Organize the Macbeath regions in O(log ¹/_ε) layers by volume
- Larger volume Macbeath regions in outer layers
- Approximation error increases from ε to O(ε log 1/ε))

• Scale
$$\varepsilon$$
 accordingly: $\hat{\varepsilon} = \frac{\varepsilon}{\log \frac{1}{\varepsilon}}$

$$O\left(\left(rac{1}{\widehat{\varepsilon}}
ight)^{rac{d-1}{2}}
ight) = O\left(\left(rac{\lograc{1}{\varepsilon}}{arepsilon}
ight)^{rac{d-1}{2}}
ight)$$

- Organize the Macbeath regions in O(log ¹/_ε) layers by volume
- Larger volume Macbeath regions in outer layers
- Approximation error increases from ε to O(ε log 1/ε))

• Scale
$$\varepsilon$$
 accordingly: $\hat{\varepsilon} = \frac{\varepsilon}{\log \frac{1}{\varepsilon}}$

$$O\left(\left(rac{1}{\widehat{\varepsilon}}
ight)^{rac{d-1}{2}}
ight) = O\left(\left(rac{\lograc{1}{\varepsilon}}{arepsilon}
ight)^{rac{d-1}{2}}
ight)$$

- Organize the Macbeath regions in O(log ¹/_ε) layers by volume
- Larger volume Macbeath regions in outer layers
- Approximation error increases from ε to O(ε log 1/ε))

• Scale
$$\varepsilon$$
 accordingly: $\hat{\varepsilon} = \frac{\varepsilon}{\log \frac{1}{\varepsilon}}$

$$O\left(\left(rac{1}{\widehat{arepsilon}}
ight)^{rac{d-1}{2}}
ight) = O\left(\left(rac{\lograc{1}{arepsilon}}{arepsilon}
ight)^{rac{d-1}{2}}
ight)$$

- Organize the Macbeath regions in O(log ¹/_ε) layers by volume
- Larger volume Macbeath regions in outer layers
- Approximation error increases from ε to O(ε log 1/ε))

• Scale
$$\varepsilon$$
 accordingly: $\hat{\varepsilon} = \frac{\varepsilon}{\log \frac{1}{\varepsilon}}$

$$O\left(\left(rac{1}{\widehat{arepsilon}}
ight)^{rac{d-1}{2}}
ight) = O\left(\left(rac{\lograc{1}{arepsilon}}{arepsilon}
ight)^{rac{d-1}{2}}
ight)$$

- Organize the Macbeath regions in O(log ¹/_ε) layers by volume
- Larger volume Macbeath regions in outer layers
- Approximation error increases from ε to O(ε log 1/ε))

• Scale
$$\varepsilon$$
 accordingly: $\hat{\varepsilon} = \frac{\varepsilon}{\log \frac{1}{\varepsilon}}$

$$O\left(\left(rac{1}{\widehat{arepsilon}}
ight)^{rac{d-1}{2}}
ight) = O\left(\left(rac{\lograc{1}{arepsilon}}{arepsilon}
ight)^{rac{d-1}{2}}
ight)$$

Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
		0000000	

Stratified Economical Cap Covering

Stratified ECC

Given:

- K: convex body
- ε: small positive parameter

There exists:

- Convex bodies R_1, \ldots, R_k
- Regions C_1, \ldots, C_k
- $k = \widetilde{O}(1/\varepsilon^{(d-1)/2})$
- Every ε-width cap C contains an R_i
- For every cap C, either $R_i \subseteq C$ or $C \subseteq C_i$ for some i
- For all *i*, *C_i* intersects a constant number of bodies *R_j*

Comparing Economical Cap Coverings

Economical Cap Covering

Given: K, ε

There exists:

- Convex bodies R_1, \ldots, R_k
- Caps C_1, \ldots, C_k of width $\Theta(\varepsilon)$
- $k = O(1/\varepsilon^{(d-1)/2})$
- For every cap *C*, there is *i*:
 - $R_i \subseteq C$ if width $\geq \varepsilon$
 - $C \subseteq C_i$ if width $\leq \varepsilon$

Stratified ECC

Given: K, ε

There exists:

- Convex bodies R_1, \ldots, R_k
- Non-convex regions C_1, \ldots, C_k
- $k = \widetilde{O}(1/\varepsilon^{(d-1)/2})$
- For every cap C, there is i:
 - $R_i \subseteq C$ if width $\geq \varepsilon$
 - $C \subseteq C_i$ if no $R_j \subseteq C$
- For all *i*, *C_i* intersects a constant number of bodies *R_j*

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	0000000	000

Succinct Approximation

Procedure:

- Create a stratified ECC
- Place a point inside each R_i
- Compute the convex hull

Approximation:

• Every ε -width cap is stabbed

Complexity:

- $\widetilde{O}(1/\varepsilon^{(d-1)/2})$ vertices
- Combinatorial complexity: $\widetilde{O}(1/\varepsilon^{(d-1)/2})$ Why?

Countin	r tha Easaa			
			000000	
	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion

- *R_i* are witnesses and *C_i* are collectors
- Charge each face *F* to a *C_i* and show each *C_i* receives *O*(1) charges
- H: supporting halfspace of F
- $C = K \cap H$ contains no R_i
- Some C_i contains C
- Charge F to C_i
- C_i intersects O(1) bodies R_i
 - \rightarrow C_i contains O(1) points
 - \rightarrow O(1) faces charge C_i

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	0000000	000

Conclusion and Open Problems

Our result:

First near-optimal bound on the combinatorial complexity of an ε -approximating polytope in \mathbb{R}^d :

$$O\left(\left(rac{\lograc{1}{arepsilon}}{arepsilon}
ight)^{rac{d-1}{2}}
ight)=\widetilde{O}\left(\left(rac{1}{arepsilon}
ight)^{rac{d-1}{2}}
ight)$$

Open problems:

- How long does it take to actually build the approximation?
- Can we analyze Dudley's construction?
- Can we get rid of the log factors?
- Can we compete against the optimal combinatorial complexity for the given *K*?

Introduction 000000	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion ○●○
Bibliogr	aphy			

- [And63] G. E. Andrews. A lower bound for the volumes of strictly convex bodies with many boundary points. *Trans. Amer. Math. Soc.*, 106:270–279, 1963.
- [Bar07] I. Bárány. Random polytopes, convex bodies, and approximation. In W. Weil, editor, *Stochastic Geometry*, volume 1892 of *Lecture Notes in Mathematics*, pages 77–118, 2007.
- [BI74] E. M. Bronshteyn and L. D. Ivanov. The approximation of convex sets by polyhedra. Siberian Math. J., 16:852–853, 1976. (original in Russian: 1974.)
- [DGG13] O. Devillers, M. Glisse, and X. Goaoc. Complexity analysis of random geometric structures made simpler. In Proc. 29th Annu. Sympos. Comput. Geom., pages 167–176, 2013.
- [Dud74] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. Approx. Theory, 10(3):227–236, 1974.
- [ELR70] G. Ewald, D. G. Larman, and C. A. Rogers. The directions of the line segments and of the *r*-dimensional balls on the boundary of a convex body in Euclidean space. *Mathematika*, 17:1–20, 1970.
- [Gru93] P. M. Gruber. Asymptotic estimates for best and stepwise approximation of convex bodies. I. Forum Math., 5:521–537, 1993.
- [Mac52] A. M. Macbeath. A theorem on non-homogeneous lattices. Annals of Mathematics, 54:431–438, 1952.

	Witness-Collector	Macbeath Regions	Stratified Construction	Conclusion
000000	00	000	0000000	000

Sculpture by Antony Gormley

Thank you!