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Polytope Approximation

Problem description:

Input: convex body K in d-dimensional space and
parameter ε

Output: polytope P which ε-approximates K with
a small number of facets (alternatively, vertices)

Focus on Hausdorff metric in Euclidean spaces of
constant dimension d

Assume (without loss of generality) that
diam(K ) = 1

Assume the width of K is at least ε. Otherwise,
the instance can be reduced (by projection) to a
lower dimensional space

K

P

ε
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Uniform vs. Nonuniform Bounds

Several algorithms find the “best” polytope for a given input [Cl93]

How good is this best polytope?

Nonuniform bounds:

Hold for ε ≤ ε0, where ε0 depends on the input

Example: Gruber [Gru93] bounds the complexity n using the
Gaussian curvature κ of the input

n = (1/ε)(d−1)/2
∫

∂K

√

κ(x) dx

Uniform bounds:

Hold for ε ≤ ε0, where ε0 is a constant

Example: Dudley [Dud74] and Bronshteyn and Ivanov [BI76] bound
the maximum number of facets/vertices as a function of ε, d , and
the diameter of the input
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Dudley’s Approximation

K

Dudley, 1974:

A convex body K of diameter 1 can be
ε-approximated by a polytope P with
O(1/ε(d−1)/2) facets.

Dudley’s approximation is the best
possible for balls

It oversamples areas of very high
and very low curvatures

Intuition: A skinny body should be
easier to approximate
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Previous Result: Area-Sensitive Polytope Approximation

Better uniform bound for skinny bodies [AFM12]:

A convex body K can be ε-approximated by a polytope P with
O(

√

area(K )log(area(K )/ε)/ε(d−1)/2) facets.

Compared to Dudley’s bound:

Uses area instead of diameter

Significant improvement for skinny bodies

Suboptimal by a log factor
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Our Result: Optimal Polytope Approximation

Optimal area-based bound:

A convex body K can be ε-approximated by a polytope P with
O(

√

area(K )/ε(d−1)/2) facets (alternatively, vertices).

Compared to Dudley’s bound:

Uses area instead of diameter

Bounds match when the body is fat

Compared to our previous bound:

No log factor: bound is optimal

Sampling uses Macbeath regions instead of ε-nets

Requires a combination of functional duality and polarity
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Caps and ε-Caps

q
base

ε

K

H

cap

Cap: intersection of the boundary of K

and a halfspace H

Width: maximum vertical distance
between a point in C and ∂H

ε-cap: Cap of width ε

Base: ∂H ∩ K
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Dual Caps and ε-Dual Caps

q

K

q − ε
base

dual cap

Dual cap: portion of the boundary of
K visible from a given point

Width: vertical distance between the
point and K

ε-dual cap: dual cap of width ε

Dual of an ε-cap

Base: see figure
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Splitting K

K

ε-caps and ε-dual caps are defined in
terms of vertical distances

When slopes are bounded, vertical
distances approximate Euclidean distances

We partition K into 2d regions with
bounded slopes

Each region is extended and then cropped
vertically to handle boundary conditions
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Approximation by Stabbing ε-Dual Caps

K

A set of points N stabs all ε-dual caps if
every ε-dual cap D has D ∩ N 6= ∅

Lemma:

If a set N of points stabs all ε-dual caps, then
the polytope defined by tangent hyperplanes
constructed at the points of N is an
ε-approximation to (the bottom portion of) K .

We divide the ε-dual caps in two
categories: large and small

We stab each category separetely
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Stabbing Large ε-Dual Caps

Large ε-dual cap D :

area(D) ≥
√

area(K ) · ε(d−1)/2

Simple solution [AFM12]:

Use ε-nets

A random point on the boundary of K

is likely to stab D

Dual caps have bounded VC-dimension

Introduces a log factor

Better sampling:

Use Macbeath regions

Avoids the log factor
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Macbeath Regions

K

Given:

K : convex body
v : parameter 0 < v < vol(K)

There exists [Mac52]:

Set M of disjoint convex bodies inside K

Each M ∈ M has vol(M) = Θ(v)
Every cap C with vol(C) = v contains a region
M ∈ M

Also, a constant factor scaling of M contains C

Macbeath regions: convex bodies M ∈ M
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From Caps to Dual Caps

q

q − ε

ε

Macbeath regions are suited to caps, not
dual caps

We can associate large ε-dual caps with
large ε-caps

We stab large ε-caps using Macbeath
regions
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Small ε-Dual Caps

Small ε-dual cap D:

area(D) <
√

area(K ) · ε(d−1)/2

Area can be as small as εd−1

Hard to stab directly by random
sampling

Key insight: In the dual body, small
ε-dual caps become large caps
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Functional Duality and Polarity

Functional duality

Maps point (a1, . . . , ad) to hyperplane xd = a1x1 + · · · + ad−1xd−1 − ad

Widely used in computational geometry

Preserves vertical distances

Polarity

Maps point (a1, . . . , ad) to hyperplane a1x1 + · · · + adxd = 1

Widely used in convex and combinatorial geometry

Allows for concepts such as the polar body and Mahler volume
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Polar Body and Mahler Volume

polar(K)

K

K : convex body

Polar body of K : convex hull of the polar
of the suporting hyperplanes of K

Mahler volume of K : product of the
volume of K and the volume of polar(K )

The Mahler volume of K is bounded below
by a constant [Kup08]
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Stabbing Small ε-Dual Caps

q q
∗

polar

dual

Lemma:

The base of an ε-dual cap in the primal is the polar of the base of the
corresponding cap in the dual, scaled by a factor of ε.

By Mahler volume considerations, small ε-dual caps in the primal
correspond to large ε-caps in the dual

We stab such caps in the dual using Macbeath regions
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Conclusion and Open Problems

Our results:

We obtain optimal area-sensitive bounds for polytope approximation

We use Macbeath regions instead of ε-nets for sampling

Open problems:

Our proofs are existential (a log factor approximation can be built
using [Cl93]). How can the construction be made efficient?

Our results only hold for the whole convex body. Can they be
extended to patches? (Related results in [AFM12].)
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Sculpture by Antony Gormley.

Thank you!
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