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Abstract

Approximating convex bodies is a fundamental question in geometry and has applications
to a wide variety of optimization problems. Given a convex body K in Rd for fixed d, the
objective is to minimize the number of vertices (alternatively, the number of facets) of an
approximating polytope for a given Hausdorff error ε. The best known uniform bound, due
to Dudley (1974), shows that O((diam(K)/ε)(d−1)/2) facets suffice. While this bound is
optimal in the case of a Euclidean ball, it is far from optimal for skinny convex bodies.

We show that, under the assumption that the width of the body in any direction is at
least ε, it is possible to approximate a convex body using O(

√
area(K)/ε(d−1)/2) facets,

where area(K) is the surface area of the body. This bound is never worse than the previous
bound and may be significantly better for skinny bodies. This bound is provably optimal in
the worst case and improves upon our earlier result (which appeared in SODA 2012).

Our improved bound arises from a novel approach to sampling points on the boundary of
a convex body in order to stab all (dual) caps of a given width. This approach involves the
application of an elegant concept from the theory of convex bodies, called Macbeath regions.
While Macbeath regions are defined in terms of volume considerations, we show that by
applying them to both the original body and its dual, and then combining this with known
bounds on the Mahler volume, it is possible to achieve the desired width-based sampling.
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1 Introduction

Approximating convex bodies by polytopes is a fundamental problem, which has been exten-
sively studied in the literature. (See Bronstein [13] for a recent survey.) At issue is the minimum
number of vertices (alternatively, the minimum number of facets) needed in an approximating
polytope for a given error ε > 0. Consider a convex body K in Euclidean d-dimensional space.
A polytope P is said to ε-approximate K if the Hausdorff distance [13] between K and P is at
most ε. Throughout, we will restrict attention to the Hausdorff metric, and we assume that the
dimension d is a constant.

Our interest is in establishing bounds on the combinatorial complexity of approximating
general convex bodies. Approximation bounds are of two common types. In both cases, it
is shown that there exists ε0 > 0 such that the bounds hold for all ε ≤ ε0. In the first
type, which we call nonuniform bounds, the value of ε0 depends on K (for example, on K’s
maximum curvature). Such bounds are often stated as holding “in the limit” as ε approaches
zero, or equivalently as the combinatorial complexity of the approximating polytope approaches
infinity. Examples include bounds by Gruber [22], Clarkson [16], and others [9, 26, 28, 29].

In the second type, which we call uniform bounds, the value of ε0 is independent of K. For
example, these include the results of Dudley [19] and Bronshteyn and Ivanov [12]. These bounds
hold without any smoothness assumptions. Dudley showed that, for ε ≤ 1, any convex body
K can be ε-approximated by a polytope P with O((diam(K)/ε)(d−1)/2) facets. Bronshteyn
and Ivanov showed the same bound holds for the number of vertices. Constants hidden in
the O-notation depend only on d. These results have many applications, for example, in the
construction of coresets [1].

The approximation bounds of both Dudley and Bronshteyn and Ivanov are tight up to
constant factors (specifically when K is a Euclidean ball). These bounds may be significantly
suboptimal if K is skinny, however. In an earlier paper [3], we presented an upper bound that
is based not on diameter, but on surface area. In particular, let area(K) denote the (d − 1)-
dimensional Hausdorff measure of ∂K. We showed that, under the assumption that the width of
the body in any direction is at least ε, there exists an ε-approximating polytope whose number
of facets is O(t log t), where t =

√
area(K)/ε(d−1)/2. For a given diameter, the surface area of

a convex body is maximized for a Euclidean ball, implying that area(K) = O(diam(K)d−1).
Thus, this bound is tight in the worst case up to the logarithmic factor. The additional log
factor is disconcerting since it implies that the bound is suboptimal even for the simple case
of a Euclidean ball. In this paper we show that the logarithmic factor can be eliminated. In
particular, we prove the following result, which is worst-case optimal, up to constant factors.

Theorem 1.1. Consider real d-space, Rd. There exists a positive ε0 and constant cd such that
for any convex body K ⊂ Rd and any ε, 0 < ε ≤ ε0, if the width of K in any direction is at
least ε, then there exists an ε-approximating polytope P whose number of facets is at most

cd

√
area(K)/ε(d−1)/2.

Note that the width assumption seems to be a technical necessity. For example, consider
a (d − 2)-dimensional unit ball B embedded within Rd, and let B′ denote its Minkowski sum
with a d-dimensional ball of radius δ � ε. By the optimality of Dudley’s bound for Euclidean
balls, Ω(1/ε(d−3)/2)) facets are needed to approximate B and hence to approximate B′. But,
the surface area of B′ can be made arbitrarily small as a function of δ.

The width assumption is not a fundamental impediment, however. If the body is of width
less than ε in some direction, then by projecting the body onto a hyperplane orthogonal to this
direction, it is possible to reduce the problem to a convex approximation problem in one lower
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dimension. This can be repeated until the body’s width is sufficiently large in all remaining
dimensions, and the stated bound can be applied in this lower dimensional subspace.

1.1 Overview of Methods

It is well known (see, e.g., [11, 12, 15]) that computing a Hausdorff approximation of a convex
body K by a polytope can be reduced to the problem of computing an economical set cover or
an economical hitting set in which the set systems involve appropriately defined surface patches
on K’s boundary. Depending on the nature of the approximation (e.g., whether minimizing
the number of vertices or facets and whether an inner or outer approximation is desired) the
surface patches of interest are either caps or dual caps. For our purposes, a cap is the portion
of K’s boundary that lies within a halfspace and a dual cap is the portion of K’s boundary
that is visible from an external point. (Formal definitions are given in Section 2.4.) For both
caps and dual caps, we define a hyperplanar surface, which we call a base, whose area is less
than or equal to the associate cap or dual cap, respectively. Of particular interest are caps and
dual caps whose defining width is ε. Depending on the formulation, the approximation problem
reduces to computing a small set of points on the boundary of K such that every cap of width
ε contains one of these points or every dual cap of width ε contains one of these points.

The source of slackness in the bound of [3] arises from a sampling method that is based
on a relatively heavy-handed tool, namely ε-nets for halfspace ranges. In light of recent lower
bounds on the size of ε-nets for halfspace ranges [27], it is clear that the elimination of the log
factor requires a sampling process that is specially tailored to caps or dual caps. The principal
contribution of this paper is such a sampling method.

Our new approach makes use of a classical structure from the theory of convexity, called
Macbeath regions. Intuitively, for any convex body K and a volume parameter v, there exists
a collection of pairwise disjoint bodies, each of volume Ω(v), such that for every halfspace H
where the cap K ∩H has volume v, one of these bodies will be completely contained within this
cap. (The formal statement is given in Section 2.4.) Macbeath regions have found numerous
uses in the theory of convex sets and the geometry of numbers (see Bárány [7]). To date, the
application of Macbeath regions in the field of computational geometry has been quite limited.
For example, they have been used as a technical device in proving lower bounds for range
searching (see, e.g., [4, 5, 10]).

Because their definition is based on volume, not width, the use of Macbeath regions in the
context of uniform bounds for convex approximation has been limited to volume-based notions
of distance, such as the Nikodym metric (which is based on the volume of the symmetric
difference) [6, 8]. The difficulty in adapting Macbeath regions to width-based sampling is that
caps of a given volume may have widely varying widths. Our approach to dealing with this is
through the application of a two-pronged strategy, which combines Macbeath-based sampling
in both the original body and its dual.

This strategy relies on a combination of two well known dual transformations, the polar dual
(which is based on distances to the origin) and the functional dual (which is the dual transform
most widely used in computational geometry and is based on vertical distances). The problem
with either form of dual is that distances are not generally preserved, and this makes it difficult
to relate approximations in the primal and dual settings. The principal feature of the functional
dual transform is that it does preserve vertical distances between points and hyperplanes.

To exploit this, we decompose the approximation problem into a constant number of sub-
problems, where each involves approximating just a portion of the body in which the surface
normals have similar directions. After a suitable rotation, within each subproblem, the dis-
tance from an external point to the boundary can be approximated by its vertical distance. In
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Lemma 4.1 in Section 4, we establish an intriguing relationship between the base of a dual cap
in the original body K and the base of the corresponding cap in the functional dual set K∗. In
particular, we show that the base of a dual cap in K is essentially the polar of the base of the
corresponding cap in K∗. This polar relationship is an essential ingredient in our construction,
because it allows us to apply the classical concept of the Mahler volume, to show that small
dual caps in K correspond to large caps in K∗. Our two-pronged sampling works because dual
caps that are too small to be sampled in K will be sampled as caps in K∗.

2 Preliminaries

Let K denote a convex body in Rd, that is, a compact convex subset with nonempty interior.
Let ∂K denote its boundary. Throughout, we assume that the dimension d is a constant. We
say that a convex body is smooth, if at each point q ∈ ∂K, there exists a ball of positive radius
that lies entirely within K and contains q on its boundary.

If K is smooth, there is a unique supporting hyperplane at every point on its boundary.
Since we do not assume smoothness, we augment our representation of boundary points. Given
any convex body K, we define an augmented point on ∂K to consist of a pair (q, u), where q is
a point on ∂K and u is an outward-directed unit vector that is orthogonal to some supporting
hyperplane passing through q. We call such a vector a surface normal. To keep our notation
simple, we will usually refer to an augmented point simply as q, but it is understood throughout
that every augmented point is associated with a unique surface normal and hence a unique
supporting hyperplane, which we will denote by h(q). Define H+(q) to be the closed halfspace
bounded by h(q) that contains K, and define H−(q) to be the other closed halfspace bounded
by h(q).

Given a convex body K in Rd, let vol(K) denote its d-dimensional Hausdorff measure.
Given a (d − 1)-dimensional manifold Ψ in Rd, for example, a surface patch on a convex body,
let area(Ψ) denote its (d− 1)-dimensional Hausdorff measure. We use area(K) as a convenient
shorthand for area(∂K).

For ε > 0, we say that a polytope P is an ε-approximation of K if the Hausdorff distance
between K and P is at most ε. Observe that simultaneously scaling K and ε by any pos-
itive factor, does not alter the ratio

√
area(K)/ε(d−1)/2. Therefore, for the sake of proving

Theorem 1.1, we may assume that K has been uniformly scaled to lie within the hypercube
[−(1 − 2ε), (1 − 2ε)]d. This means that the Minkowski sum of K with a ball of radius 2ε (a
shape that will be useful to us later) lies entirely within [−1, 1]d.

To avoid specifying many real-valued constants that arise in our analysis, we will often hide
them using asymptotic notation. For positive real x, we use the notation O(x) (resp., Ω(x)) to
mean a quantity whose value is at most (resp., at least) cx for an appropriately chosen constant
c. We use Θ(x) to denote a quantity that lies within the interval [cx, c′x] for appropriate
constants c and c′. These constants will generally be functions of d, but not of ε.

2.1 Nonuniform Area-Based Bounds

Before presenting our analysis, we note that a nonuniform bound very similar to ours can be
derived from Gruber’s result [22]. (We thank Quentin Merigót for pointing this out.) Gruber
shows that if K is a strictly convex body and ∂K is twice differentiable, then as ε approaches
zero, the number of bounding halfspaces needed to achieve an ε-approximation of K is

O

((
1
ε

)(d−1)/2 ∫
∂K

κ(x)1/2dx

)
, (1)
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where κ(x) denotes the Gaussian curvature of K at x, and dx is a differential surface element.
(Böröczky showed that the requirement that K be “strictly” convex can be eliminated [9].)
Because square root is concave and

∫
∂K dx = area(K), we may apply Jensen’s inequality to

obtain
1

area(K)

∫
∂K

κ(x)1/2dx ≤
(

1
area(K)

∫
∂K

κ(x)dx

)1/2

.

By the Gauss-Bonnet theorem [18], the total Gaussian curvature of K is bounded, from which
we conclude that the number of approximating halfspaces is

O

(√
area(K)

ε(d−1)/2

)
,

which matches the bound of Theorem 1.1.
We hasten to add that this approach cannot be used to produce a uniform bound, however.

To show this, we will present a two-dimensional counterexample (but the result can be readily
extended to any constant dimension). Consider a fixed value of ε, and let 0 < δ ≤ ε. Let
m = b1/

√
δc, and define Kδ to be the Minkowski sum of a regular m-gon inscribed in a unit

circle and a Euclidean ball of radius δ. Observe that Kδ consists of m flat edges, each of length
Θ(

√
ε), connected by m circular arcs, each of radius δ and subtending an angle of 2π/m. Since

δ ≤ ε, it is straightforward to show that any convex polygon that ε-approximates Kδ requires
Ω(1/

√
ε) sides. (This follows from the same argument that shows that Dudley’s bound is tight

for circles.) We also assert that ∫
∂Kδ

κ(x)1/2dx = Θ
(√

δ
)

.

To see this, observe that the flat sides of Kδ contribute zero to the integral. Each circular arc
has curvature 1/δ, and so altogether they contribute a total of 2πδ/

√
δ = 2π

√
δ to the integral.

Thus, Equation (1) provides a bound1 on the number of sides of an ε-approximating polygon
of O

(√
δ/ε
)
, which is clearly incorrect given our hypothesis that δ ≤ ε. Indeed, this hypoth-

esis is exactly the sort of assumption that the nonuniform analysis forbids. In contrast, since
Theorem 1.1 is a uniform bound, it can be applied to this type of example.

2.2 Support Sets

Our analysis makes use of a representation of the body K as the intersection of 2d unbounded
convex sets, based on the orientations of surface normals. Let I denote the index set {1, . . . , d},
and let I± denote the (2d)-element index set consisting of {±1, . . . ,±d}. For i ∈ I±, if i > 0,
let xi denote the unit vector associated with the ith coordinate axis, and if i < 0, let xi be
its negation. Let Xi denote the hyperplane passing through the origin and orthogonal to xi.
(For the sake of illustration, we will think of xi as being directed vertically upwards and Xi as
horizontal.) The vertical projection of a point onto Xi means setting its ith coordinate to zero.

For any vector ~u = (u1, . . . , ud) ∈ Rd, let ‖~u‖∞ = maxi |ui|. For i ∈ I± we say that i is a
signed principal axis of ~u if sign(i) ·ui = ‖~u‖∞. (For example, the vector (−2, 1, 2,−2, 0) has the
signed principal axes −1, 3, and −4.) For each i ∈ I±, let Ψi denote the subset of augmented

1Note that we cannot apply Gruber’s or Böröczky’s theorems directly to Kδ, since its boundary is not twice
differentiable. In particular, the second derivative is discontinuous at the joints where each edge meets a circular
arc. We can easily fix this by creating a sufficiently small gap at each joint and introducing a smooth polynomial
spline of constant degree to fill the gap. Although the resulting body is not strictly convex, Böröczky showed
that this assumption is not necessary for the bound to hold.
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points q ∈ ∂K such that i is a signed principal axis of the inward-directed surface normal at
q. These subsets subdivide K’s boundary into 2d (relatively closed) surface patches. For each
i ∈ I±, let Si =

∩
q∈Ψi

H+(q) (see Figure 1(a)). We call this the ith support set of K. Each Si

is an unbounded convex set that properly contains K. Clearly,
∩

i∈I± Si = K.

Si

(a)

Ψi

(c)

Xi

Ψ

Ψ′

xiK

K
(α)
i

(b)

Φ
(α)
i

α α
Xi

xi

X
(0)
i

X
(α)
i

Figure 1: Support sets and projections.

It will be useful to further restrict each support set Si so that its vertical projection covers
only a bounded region of Xi that is somewhat larger than the vertical projection of K. For a
given α ≥ 0, take the Minkowski sum of K with a ball of radius α and project this set vertically
onto Xi. Let X

(α)
i denote the resulting (d−1)-dimensional convex body on Xi. Let Φ(α)

i denote
the infinite cylinder whose central axis is aligned with xi and whose horizontal cross section is
X

(α)
i (see Figure 1(b)). Define K

(α)
i to be Si ∩ Φ(α)

i , which we call the α-restricted support set.
As we shall see below, the body K

(2ε)
i , will play an important role in our analysis. Indeed, to

simplify notation, henceforth we let Ki denote K
(2ε)
i . By our initial scaling of K, it follows that

the vertical projection of Ki lies within the hypercube [−1, 1]d−1.
A closed convex set is U-shaped (with respect to a given vertical direction) if for every point

on the set’s boundary, the vertical ray directed upwards from this point lies entirely within the
set. When dealing with U-shaped sets, such as Ki, we will be most interested in the lower hull,
not the vertical sides. For this reason, given a U-shaped set U , we define ∂U to consist of the
augmented points of the boundary of U such that the associated surface normal for each point
is not horizontal. In fact, we will impose the stronger restriction that the absolute tangent of
the angle between the surface normal and the vertical axis is at most a constant (whose exact
value is implicit in the radius of the ball B of Lemma 4.2 below). Define area(U) to be the
surface area of ∂U .

Given a parameter σ > 0, a U-shaped set U is σ-steep if for every augmented point q ∈ ∂U ,
the absolute tangent of the angle between the vertical axis and the surface normal at q does
not exceed σ. The halfspace above a horizontal hyperplane is 0-steep, and Ki is easily seen to
be O(1)-steep. The following are straightforward consequences of the above definitions.

Lemma 2.1.

(i) If the width of K in any direction is at least ε, then for any i ∈ I±, area(Ki) = O(area(K)).

(ii) Consider any surface patch Ψ of an O(1)-steep U-shaped set, and let Ψ′ denote its vertical
projection. Then area(Ψ′) = Θ(area(Ψ)) (see Figure 1(c)).

2.3 Dual Transforms

Our results are based on two commonly used dual transforms in geometry. Such transforms
map points to hyperplanes and vice versa, while preserving point-hyperplane incidences. The
first transform is a generalization of the standard polar transform, and the second is a dual
transform frequently used in computational geometry, which we call the functional dual.
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Given a vector v ∈ Rd other than the origin and r > 0, define the generalized polar transform
of v, denoted polarr(v), to be the halfspace containing the origin, whose bounding hyperplane
is orthogonal to v and is at distance r2/‖v‖ from the origin (see Figure 2(a)). More formally,
polarr(v) = {u ∈ Rd : u1v1 + · · ·+udvd ≤ r2}. Given a convex body K that contains the origin
in its interior, define polarr(K) =

∩
v∈K polarr(v) (see Figure 2(b)).

(b)(a)

r
v

r2/‖v‖

polarr(v)

polarr(K)

K

r

Figure 2: The generalized polar transform.

The standard geometric polar transform [20] arises as a special case when r = 1. In partic-
ular, polarr(K) is a scaled copy of polar1(K) by a factor of r2.

Later, we will make use of an important result from the theory of convex sets, which states
that, given a convex body K, the product vol(K) · vol(polar1(K)), which is called K’s Mahler
volume, is bounded below by a constant (see, e.g., [24]).

Next, let us define the functional dual transform [14]. Let x1, . . . , xd−1 denote the first d−1
coordinates of a point, and let y denote the d-th coordinate. Any nonvertical hyperplane y =∑d−1

j=1 ajxj−ad can be represented by a d-tuple (a1, . . . , ad). Given a point p = (p1, . . . , pd) ∈ Rd,
define its functional dual, denoted p∗, to be the non-vertical hyperplane:

p∗ : y =
d−1∑
j=1

pjxj − pd.

(The term “functional” comes from the fact that y is expressed as a function of the xj ’s.) The
dual of a nonvertical hyperplane is defined so that p∗∗ = p. When applying this transform in
the context of support sets, such as Ki, the ith coordinate axis will take on the role of the dth
(vertical) axis in the above definitions.

It is easily verified that the functional dual transform negates vertical distances, in the sense
that the signed vertical distance from a point p to a hyperplane h is equal to the negation of
the signed vertical distance from p∗ to h∗ [17]. (The fact that point-hyperplane incidences are
preserved is a direct consequence.) Given any U-shaped convex set U , define its dual U∗ to be
the intersection of the upper halfspaces of q∗ for all q ∈ ∂U . It is easily verified that the dual is
also U-shaped. Further, if U ’s vertical projection lies within a ball of constant radius centered
at the origin, then U∗ is O(1)-steep.

Let U be a U-shaped convex body and let U∗ be its dual. There exists a natural corre-
spondence between the augmented points on ∂U and augmented points on ∂U∗. Given an
augmented point (q, u) on ∂U , let h be the supporting plane at q that is orthogonal to u. Let
p = h∗. Clearly, p lies on ∂U∗, and the dual hyperplane q∗ is a supporting hyperplane at p.
Letting v denote the outward-directed unit vector orthogonal to q∗, we define the augmented
point on ∂U∗ corresponding to (q, u) to be (p, v). By the involutory nature of the dual, the
augmented point on ∂U corresponding to (p, v) is (q, u).
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2.4 Caps, Dual Caps, and Macbeath Regions

Bronshteyn and Ivanov [12] and Dudley [19] demonstrated the relevance of caps and dual-caps
(defined below) to convex approximation. Let U be a U-shaped convex set, and let ε > 0.
For any augmented point q ∈ ∂U , recall that h(q) is the supporting hyperplane at this point,
and let h(q) + ε denote its translate vertically upwards by ε. The intersection of ∂U and the
lower halfspace of h(q) + ε is called the ε-cap induced by q, which we denote by Cq(U) (see
Figure 3(a)). (In contrast to standard usage, where a cap consists of the subset of the body
lying in the halfspace, for us a cap is a subset of the nonvertical boundary.) The intersection of
h(q) + ε with U is called the base of the cap, and is denoted by Γq(U). When U is clear from
context, we simply write Cq and Γq.

ε
q

h(q)

h(q) + ε

ε

q

q − ε

Γq

(a) (b)

Cq ∆q

Dq

U U

h(q)

Figure 3: Caps and dual caps.

For any augmented point q ∈ ∂U , let q − ε be the vertical translate of q downwards by
distance ε. Define the ε-dual cap, denoted Dq(U), to be the portion of ∂U that is visible from
q − ε (see Figure 3(b)). The intersection of the bounding halfspaces of U that contain q − ε
defines an infinite cone. The intersection of this cone with h(q) is called the dual cap’s base,
and is denoted ∆q(U). Again, when U is clear, we simply write Dq and ∆q.

Given an augmented point q ∈ ∂U , consider cap Cq(U) and dual cap Dq(U). We say that
an augmented point p ∈ ∂U stabs Cq(U) if p ∈ Cq(U), and we say that p stabs Dq(U) if the
hyperplane h(p) passing through p separates U from the point q − ε. The importance of ε-dual
caps to approximation is established in the following lemma. We say that an ε-dual cap of Ki

is useful, if its inducing point q lies on ∂K
(ε)
i . Recall that Ki = K

(2ε)
i , so the inducing point is

at horizontal distance at least ε from the vertical portion of Ki.

Lemma 2.2. Let K be a convex body in Rd. For any ε > 0 and i ∈ I±, let Qi be a set of
augmented points on ∂Ki that stab all useful ε-dual caps of Ki. Let Pi =

∩
q∈Qi

H+(q), and
P =

∩
i∈I± Pi. Then P is an ε-approximation to K. The number of facets in P is at most∑

i∈I± |Qi|.

Proof. Observe that P is the intersection of supporting halfspaces for K, and hence K ⊆ P .
Thus, every point of K is within distance 0 of P . To show that every point of P is within
distance ε of K, we will prove the contrapositive. In particular, we will show that any point
p ∈ Rd whose distance from ∂K exceeds ε cannot be in P .

Let q be the closest point of ∂K to p. Let p′ be a point along the segment pq whose distance
from q is exactly ε (see Figure 4). Let i be any signed principal axis for the inward surface
normal for K at q. Clearly, the horizontal component of the distance between p′ and q is at
most ε.

The vertical projection of q lies within X
(0)
i . Therefore the vertical projection of p′ lies

within X
(ε)
i , which is subset of X

(2ε)
i , above which Ki lies. This implies that that there exists a

point q′ ∈ ∂K
(ε)
i ⊂ ∂Ki that is vertically above p′ (see Figure 4). Augment q′ by associating it
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Ki

Xi

p′
q

≤ ε

εp

q′

≥ ε

q′′

Figure 4: Proof of Lemma 2.2.

with any valid surface normal for which i is a signed principal axis. It follows that any ε-dual
cap induced by q′ is useful. By local minimality considerations, it is easy to see that q is the
closest point to p′ on ∂Ki. Therefore, the distance from p′ to q′ is at least ε. By hypothesis,
the ε-dual cap induced by q′ is stabbed by the supporting hyperplane of some augmented point
q′′ ∈ Qi. This implies that p′ lies outside this bounding hyperplane, and hence is external to Pi.
It follows directly that p is also external to Pi, and hence it is external to P . This completes
the proof.

In order to prove the results of the next two sections, we will make use of the following result.
It demonstrates the existence of a collection of convex bodies, such that all caps of sufficiently
large volume contain at least one such body. These bodies are closely related to the concept of
Macbeath regions (also called M-regions). This concept was introduced by Macbeath [25], and
its relevance to cap coverings was explored by Ewald, Larman, and Rogers [21]. Applications of
Macbeath regions have appeared in numerous works, include Bárány and Larman [8], Bárány
[7], and Brönnimann et al. [10]. The following lemma follows directly from these earlier works.

Lemma 2.3. Given a convex body K ⊂ Rd and a parameter 0 < v ≤ vol(K), there exist two
collections of convex bodies, M and M′, such that the bodies of M are contained within K and
are pairwise disjoint. Each M ∈ M is associated with a corresponding body in M′, denoted M ′,
such that M ⊆ M ′. M ′ is called M ’s expanded body. These sets satisfy the following:

(i) For all M ∈ M, vol(M) and vol(M ′) are both Θ(v).
(ii) For any halfspace H, if vol(K∩H) = v, then there exists M ∈ M such that M ⊆ K∩H ⊆

M ′, where M ′ is M ’s expanded body.

3 Stabbing Dual Caps in the Primal

The purpose of this section is to establish bounds on the size of stabbing sets for ε-dual caps.
Our approach will involve the use of the Macbeath region machinery from Lemma 2.3. We
begin with the following utility lemma, which establishes a relationship between the areas of
the bases of the cap and dual cap induced by the same point. Recall that, given an augmented
point q on the boundary of a U-shaped set, Dq denotes the ε-dual cap induced by q, and ∆q is
its base. Also, Cq denotes the ε-cap induced by q, and Γq denotes its base.

Lemma 3.1. Let U be any O(1)-steep U -shaped convex set in Rd, and let ε > 0. Consider
any augmented point q ∈ ∂U such that the vertical projection of Cq is bounded. Let h be the
supporting hyperplane at q, and let h + ε denote the hyperplane containing Γq. Let H be the
lower halfspace bounded by h + ε. Then U ∩ H contains a (generalized) cone whose base is
a vertical translate of ∆q onto h + ε, and whose apex is at vertical distance ε from the base.
Further, vol(U ∩ H) = Θ(ε · area(∆q)).

9
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∆q

Γq

Figure 5: Proof of Lemma 3.1.

Proof. Recall that q−ε denotes the point at distance ε vertically below q, which forms the apex
of Dq (see Figure 5).

Consider the cone T bounded by the supporting hyperplanes of the dual cap and h. The
apex of this cone is q − ε, and its base is ∆q. Let T ′ denote the vertical translate of T upwards
by distance ε. It is easy to see that T ′ lies entirely within U ∩ H, which establishes the first
claim.

Next, consider the cone T ′′ bounded by the same supporting hyperplanes as T , but whose
base is h + ε. Because T ′′ is bounded by the supporting hyperplanes for U , it follows that Γq

is contained within the base of this cone. Clearly, T ′′ is just a factor-2 scaling of T . Therefore,
their volumes are related to one another by a constant factor. Since U is O(1)-steep, it follows
that vol(T ′) = vol(T ) = Θ(ε · area(∆q)). It is easy to see that T ′ ⊆ U ∩ H ⊆ T ′′, and therefore
vol(U ∩ H) = Θ(ε · area(∆q)), which establishes the second claim.

Our next lemma is the main result of this section. It states that there exists a small set of
points that stab all sufficiently large ε-dual caps of Ki. The notion of “large” is based on the
area of the dual cap’s base and a threshold parameter t.

Lemma 3.2. Let K be a convex body in Rd, and consider any ε > 0 and i ∈ I±. Given any
t > 0, there exists a set of O(area(K)/t) augmented points Qi ⊂ ∂Ki such that, for any useful
ε-dual cap Dq induced by a point q ∈ ∂K

(ε)
i , if area(∆q) ≥ t, there exists a point in Qi that

stabs Dq.

Proof. Apply Lemma 2.3 to Ki with v = c · ε · t, for a suitable constant c, and let M and M′

denote the resulting collections of bodies. (Note that Ki is not bounded, but for our purposes
it suffices to bound it crudely, say by intersection with the lower halfspace of a horizontal
hyperplane that is high enough to contain every point at vertical distance ε above ∂Ki.)

For each M ∈ M, if M does not lie entirely within vertical distance ε of ∂Ki, then discard
M from further consideration. (Such a body cannot lie within any useful ε-cap, and hence will
be of no value to us.) Otherwise, let M ′ ∈ M′ denote M ’s expanded body as described in
Lemma 2.3(ii).

Let N be a net [2] chosen so that, for a suitable constant c′, any ellipsoid contained within M ′

of volume at least c′v contains at least one point of the net. By Lemma 2.3(i), vol(M ′) = Θ(v),
so any ellipsoid of volume Ω(v) covers a constant fraction of the volume of M ′. Since the
range space of ellipsoids is known to have constant VC-dimension, it follows that the size of
the resulting net is O(1). For each point of the net that lies within Ki, project it vertically
downward onto ∂Ki, and augment it by associating it with any valid surface normal whose
signed principal axis is i. Add the resulting augmented point to Qi. Repeating this process for
all M ∈ M yields the desired set Qi.

10



To establish the correctness of this construction, consider any augmented point q ∈ ∂Ki

whose ε-dual cap (Dq) has base (∆q) of area at least t. Let h denote the supporting hyperplane
at q, and let H denote the lower halfspace bounded by h + ε, which contains the base of q’s
cap, Cq. Clearly, the vertical projection of Cq is bounded, and so by Lemma 3.1, vol(Ki ∩H) =
Ω(ε · area(∆q)) = Ω(εt). By choosing c suitably, we can ensure that vol(Ki ∩ H) ≥ v. In order
to apply Lemma 2.3, observe that vol(Ki ∩ H) is a continuous monotonic function of ε, which
decreases to 0 when ε = 0. Therefore, if vol(Ki ∩ H) > v, there exists a value ε′ < ε such
that vol(Ki ∩ H) = v. The resulting ε′-dual cap and ε′-cap are subsets of the original dual cap
and cap, respectively, and therefore there is no loss of generality in using these reduced objects
throughout the rest of the analysis in place of the originals.

By Lemma 2.3(ii), there exists M ∈ M such that M ⊆ Ki ∩ H ⊆ M ′. (Note that M could
not have been discarded in the construction process.) By Lemma 3.1, Ki ∩ H contains a cone
T whose base is a translate of ∆q and whose vertical height is ε. This cone is a convex body,
and thus by John’s Theorem [23], it contains an ellipsoid E such that

vol(E) = Ω(vol(T )) = Ω(ε · area(∆q)) = Ω(v).

Therefore, by choosing the constant c′ in the net construction appropriately, there exists a point
of the net that lies within T , and hence the vertical projection of this point will be included
in Qi. It is easy to see that the horizontal extents of a dual cap’s base lie entirely within the
horizontal extents of the dual cap itself. Therefore, this point of Qi stabs the dual cap, as
desired.

Finally, we bound the number of points in Qi. To do this, consider the set of points of
Ki that lie within vertical distance ε of its boundary. The volume of this region is clearly
O(ε · area(Ki)), which by Lemma 2.1(i) is O(ε · area(K)). By Lemma 2.3(i), each body M is of
volume Ω(v) = Ω(εt). These bodies are pairwise disjoint, and (after discarding) each of them
lies within vertical distance ε of ∂Ki. Therefore, by a simple packing argument, the number of
such bodies is

O

(
ε · area(Ki)

v

)
= O

(
ε · area(K)

ε · t

)
= O

(
area(K)

t

)
,

as desired.

4 Stabbing Caps in the Dual

In this section we will consider the problem of stabbing caps of the (functional) dual of the
convex body (recall Section 2.3). Consider a U-shaped set U and let U∗ be its dual. The
following lemma establishes a polar relationship between the bases of the ε-dual caps of U and
the bases of the ε-caps in the dual U∗.

Consider any augmented point q ∈ ∂U and let p be the corresponding augmented point on
∂U∗ (recall the definition from the end of Section 2.3). The lemma shows that the base of q’s
dual cap and the base of p’s cap, if viewed as convex bodies in Rd−1, are general polar duals of
each other. Given a convex body K and a point p, let K − p denote the translate of K so that
p coincides with the origin.

Lemma 4.1. Let q be an augmented point of ∂U , and let p be the corresponding augmented
point on ∂U∗. Let q′ and p′ be the respective vertical projections of q and p. Let ∆q be the base
of q’s ε-dual cap in U , and let Γp be the base of p’s ε-cap in U∗. Let ∆′

q and Γ′
p denote the

respective vertical projections of these bases. Then, ∆′
q − q′ = polarr(Γ′

p − p′), for r =
√

ε.
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Proof. We begin by showing that ∆q consists of the set of points v ∈ h(q) such that, for all
u ∈ Γp,

d−1∑
j=1

(uj − pj)(vj − qj) ≤ ε.

By the incidence-preserving property of the dual transform, the supporting hyperplane passing
through p is q∗. From basic properties of the dual transform, the hyperplane containing Γp is
the vertical translate of q∗ upwards by a distance of ε, which is just (q − ε)∗ (see Figure 6).

ε

q

q − ε

(a) (b)

∆q

q∗

(q − ε)∗

ε

h(q) = p∗

p = h(q)∗

Γp

u∗

u
v

Figure 6: Proof of Lemma 4.1.

The base ∆q of the ε-dual cap induced by q is the intersection of the supporting hyperplane
h(q) with conv({q − ε} ∪ U). Another way to express this set is to define an infinite cone C
formed by the intersection all the upper halfspaces of the hyperplanes that pass through q − ε
such that U lies within each upper halfspace. Clearly, ∆q = C∩h(q) = C∩p∗. By the incidence-
preserving property of the dual transform, these hyperplanes are the duals of points u lying on
(q − ε)∗. By the order-reversing property of the dual, each such point u lies within U∗ (since
it lies above all the supporting hyperplanes of U∗). But, the set of points u ∈ (q − ε)∗ ∩ U∗ is
easily seen to be Γp (see the point u in Figure 6(b) and hyperplane u∗ in Figure 6(a)). Letting

(u∗)+ denote the upper halfspace of u’s dual, we have ∆q =
(∩

u∈Γp
(u∗)+

)
∩ p∗.

The equations of the hyperplanes q∗ and (q − ε)∗ are

q∗ : y =
d−1∑
j=1

qjxj − qd

(q − ε)∗ : y =
d−1∑
j=1

qjxj − qd + ε.

Since p lies on q∗, we have pd =
∑d−1

j=1 qjpj − qd. Any u ∈ Γp lies on (q − ε)∗, and so we have
ud =

∑d−1
j=1 qjuj − qd + ε.

From the remarks made earlier, a point v is in ∆q if and only if: (1) it lies on p∗, and (2) it
lies in the upper halfspace (u∗)+ for each u ∈ Γp. From condition (1) we have

vd =
d−1∑
j=1

pjvj − pd =
d−1∑
j=1

pjvj −

d−1∑
j=1

qjpj − qd


=

d−1∑
j=1

pj(vj − qj) + qd.

12



From condition (2) we have

vd ≥
d−1∑
j=1

ujvj − ud =
d−1∑
j=1

ujvj −

d−1∑
j=1

qjuj − qd + ε


=

d−1∑
j=1

uj(vj − qj) + qd − ε.

Combining these observations, we have v ∈ ∆q if and only if v ∈ p∗ and for all u ∈ Γp,

d−1∑
j=1

pj(vj − qj) + qd ≥
d−1∑
j=1

uj(vj − qj) + qd − ε,

or equivalently,
∑d−1

j=1(uj − pj)(vj − qj) ≤ ε, as desired.
Recall that ∆′

q and Γ′
p are the respective vertical projections of ∆q and Γp. Recall that p′

and q′ are the respective vertical projections of p and q. Then, we have shown that v ∈ ∆′
q if

and only if, for all u ∈ Γ′
p,
∑d−1

j=1(uj − pj)(vj − qj) ≤ ε. If we translate ∆′
q and Γ′

p so that q′

and p′ each coincide with the origin, then these bodies are generalized polars of each other, for
r =

√
ε. That is, ∆′

q − q′ = polarr(Γ′
p − p′).

We will apply the above result to Ki to convert the problem of stabbing ε-dual caps to
the problem of stabbing ε-caps in K∗

i . Although we have restricted Ki so that the nonvertical
elements of its boundary are bounded, the same cannot be said for its dual K∗

i , which (due to
the vertical sides of Ki) has a vertical projection that covers the entire horizontal coordinate
hyperplane Xi. Therefore, it would be meaningless to apply the Macbeath region approach that
was used in the previous section. What rescues us is the observation that we are only interested
in ε-caps of K∗

i that arise from the application of the previous lemma to useful ε-dual caps of
Ki.

Recall that each augmented point q ∈ ∂K
(ε)
i induces a useful ε-dual cap. We say that a cap

of K∗
i is useful if its inducing augmented point corresponds to an augmented point of ∂K

(ε)
i .

The next lemma shows that each such cap is of constant horizontal extents.

Lemma 4.2. Let Cp be any useful ε-cap induced by an augmented point p ∈ ∂K∗
i . Then, the

vertical projection of Cp lies entirely within a ball B of radius O(1) centered at the origin.

Proof. Recall that Γp denotes the base of p’s cap in K∗
i , and let Γ′

p be its vertical projection.

Let q be p’s corresponding point. Since p is useful, we have q ∈ ∂K
(ε)
i . Also, recall that

∆q denotes the base of q’s ε-dual cap, and let ∆′
q be its vertical projection. By Lemma 4.1,

∆′
q − q′ = polarr(Γ′

p − p′), for r =
√

ε, which by the involutory nature of the polar transform
implies that Γ′

p − p′ = polarr(∆′
q − q′).

We assert that there exists a positive constant c such that ∆′
q contains a Euclidean ball

centered at q′ of radius cε (see Figure 7(a)). Assuming this assertion for now, observe that,
by basic properties of the generalized polar transform, polarr(∆′

q − q′) is contained within a
ball of radius r2/cε = 1/c centered at the origin. Since Γ′

p − p′ = polarr(∆′
q − q′), it follows

that Γ′
p is contained within a ball of radius 1/c centered at the p′ (see Figure 7(b)). Since

Ki is O(1)-steep, the coordinates of p′ (which are all slopes) are of constant absolute values.
Therefore, p′ is within constant distance of the origin, and hence so are all the points of Γ′

p.
To complete the proof, it suffices to establish the above assertion. We begin by showing that

the cone with apex q− ε that defines Dq contains a cone Ψ(q) whose apex is at q− ε and whose

13
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Figure 7: Proof of Lemma 4.2.

central angle is Ω(1) (see Figure 8(a)). To see this, consider any augmented point u ∈ ∂Ki that
lies on the boundary of ∆q. This means that, the supporting hyperplane at u passes through
q − ε. It suffices to show that the acute angle between the ray from q − ε to u and the vertical
axis is Ω(1).

Ki

u′′

q − ε

x

bx

ε X
(ε)
i

X
(2ε)
i

Ψ(q)

X
(ε)
i

q
u′

(a)

Ki

q − ε

Ψ(q)

q

(b)

h(q)Ω(ε)

Figure 8: Proof of Lemma 4.2 (continued).

If u is a point in the relative interior of Ki (such as u′ in Figure 8(a)), then, by the slope
constraints of the associated support set, the angle of the ray from q − ε to u and the vertical
axis is Ω(1). On the other hand, suppose that u is a point on the relative boundary of Ki

(such as u′′ in Figure 8(a)). Since Cp is useful, it follows that Dq is useful, which implies that
q ∈ ∂K

(ε)
i .

Recall that Ki is the intersection of Si with the infinite cylinder Φ(2ε)
i whose cross section is

X
(2ε)
i . By definition, X

(2ε)
i contains a region of distance at least ε around the vertical projection

of any q ∈ ∂K
(ε)
i . If we let x denote the horizontal component of the distance from q to u, we

have x ≥ ε. By the constraint on the slopes of Ki’s support set, since both q and u lie on ∂Ki,
the vertical component of the distance between q and u is at most bx, for some positive constant
b. Since q − ε lies directly below q by a distance of ε, the horizontal component of the distance
between q−ε and u is x, and the vertical component of the distance is at most bx+ε ≤ (b+1)x.
Therefore, the tangent of angle between the ray from q − ε to u and the vertical axis is at least
x/(b + 1)x = 1/(b + 1) = Ω(1). Therefore, for a suitably chosen (constant) central angle, the
cone Ψ(q) lies within the cone defining Dq.

Next, consider the supporting hyperplane h(q) that passes through the augmented point q.
Because q ∈ ∂K

(ε)
i , this hyperplane satisfies the slope constraints of the associated support set.

Because q is located at distance ε above Ψ(q)’s apex and h(q) is of constant slope, it follows
that h(q) ∩ Ψ(q) is an ellipse whose smallest radius is Ω(ε) (see Figure 8(b)). Therefore, the
vertical projection of this ellipse contains a ball of radius Ω(ε). Because Ψ(q) lies within the
cone defining Dq, it follows that this ball lies entirely within the vertical projection ∆′

q. This
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establishes the assertion, and completes the proof.

The following lemma establishes a cap-based variant of the sampling process of Lemma 3.2.
The proof is a straightforward adaptation of the proof of Lemma 3.2 to the case of caps. Caps
are actually easier to deal with because the Macbeath-region machinery can be applied directly.

Lemma 4.3. Let K be a convex body in Rd, and consider any ε > 0 and i ∈ I±. Given any
t > 0, there exists a set of O(1/t) augmented points Pi ⊂ ∂K∗

i such that, for any useful ε-cap
Cp induced by an augmented point p ∈ ∂K∗

i , if area(Γp) ≥ t, there exists a point in Pi that stabs
Cp.

Proof. Apply Lemma 2.3 to K∗
i with v = c · ε · t, for a suitable constant c, and let M denote

the resulting collection of disjoint bodies of volume Ω(v). (Note that K∗
i is not bounded, but

it suffices to bound it crudely, say by a ball of suitably large radius.) Let B denote the (d− 1)-
dimensional ball of radius O(1) that lies on Xi, as described in Lemma 4.2.

As in the proof of Lemma 3.2, for each M ∈ M, if M does not lie entirely within vertical
distance ε of ∂K∗

i or if its vertical projection does not lie entirely within B, then discard M
from further consideration. For each remaining body M , select an arbitrary point from it,
project this point vertically downward onto ∂K∗

i . Augment the point by associating it with any
valid surface normal. Add the resulting augmented point to Pi. Repeating this process for all
M ∈ M yields the desired set Pi.

To establish the correctness of this construction, consider any useful ε-cap Cp induced by
an augmented point p ∈ ∂K∗

i whose base Γp is of area at least t. Let h denote the supporting
hyperplane at p, and let H denote the lower halfspace bounded by h + ε, which contains Γp.
Recall that K∗

i is U-shaped and O(1) steep. By Lemma 4.2 the vertical projection of Cp is
bounded, and thus, by Lemma 3.1, vol(K∗

i ∩ H) = Ω(ε · area(Γp)) = Ω(εt). By choosing
c suitably, we can ensure that vol(K∗

i ∩ H) ≥ v. As observed in Lemma 3.2, it is possible to
reduce the volume of this region by translating the halfspace downwards until the volume equals
v. By Lemma 2.3(ii), there exists M ∈ M such that M is contained within the reduced region,
and so M ⊆ K∗

i ∩ H. (Note that M could not have been discarded in the construction process
because, by Lemma 4.2, any useful ε-cap is contained within ball B.) It is easy to see that the
point of Pi associated with M stabs Cp, as desired.

In order to bound the number of points in Pi, consider the set of points of K∗
i that lie within

vertical distance ε of its boundary and whose vertical projection lies in B. The volume of this
region is clearly O(ε). By Lemma 2.3(i), each body M is of volume Ω(v) = Ω(εt). These bodies
are pairwise disjoint, and (after discarding) each of them lies within the considered region.
Therefore, by a simple packing argument, the number of such bodies is O(ε/v) = O(1/t), as
desired.

5 Putting the Pieces Together

Lemma 4.3 provides a set of augmented points Pi ⊂ ∂K∗
i that stab all useful caps of K∗

i for
which area(Γp) exceeds a given parameter t. Let’s consider how to exploit this for stabbing dual
caps in Ki. For each p′ ∈ Pi, augment it by associating it with any valid surface normal, and let
q′ be the corresponding augmented point on ∂Ki. By basic properties of the dual transform, p′

stabs a useful ε-cap Cp(K∗
i ) if and only if q′ stabs the corresponding useful ε-dual cap Dq(Ki).

We can therefore map Pi to a set Q′
i ⊂ ∂Ki in order to stab all the useful ε-dual caps of Ki

that correspond to the ε-caps of K∗
i that are stabbed by Pi.

What area properties do these dual caps satisfy? Let Dq(Ki) be any useful ε-dual cap and
Cp(K∗

i ) be the corresponding useful cap. Let ∆′
q and Γ′

p denote the respective projections of
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the bases of Dq(Ki) and Cp(K∗
i ). We claim that if area(∆′

q) < cεd−1/t, where c is a suitable
constant, then Dq will be stabbed by some point in Q′

i. We will show that area(Γ′
p) > t, which

will imply this claim since area(Γp) is clearly more than area(Γ′
p).

By Lemma 4.1, ∆′
q = polarr(Γ′

p), for r =
√

ε. Recall that polarr(K) is a scaled copy of
polar1(K) by r2 = ε. Since these are (d − 1)-dimensional sets, we have

area(∆′
q) = area(ε · polar1(Γ

′
p)) = εd−1 · area(polar1(Γ

′
p)).

Thus, in order to bound area(Γ′
p) in terms of area(∆′

q), we need to establish a relationship
between area(Γ′

p) and area(polar1(Γ′
p)). To do this, we make use of results on the Mahler volume.

Recall that the Mahler volume of a convex body K is vol(K) · vol(polar1(K)). It is known that
the Mahler volume is bounded below by a constant [24]. Applying this to the (d−1)-dimensional
set Γ′

p, we have area(Γ′
p) = Ω(1/area(polar1(Γ′

p))). Therefore, area(Γ′
p) = Ω(εd−1/area(∆′

q)).
Since area(∆′

q) < cεd−1/t, for a suitable c, it follows that area(Γ′
p) > t. Thus, adjusting for

the constant factors, we have established the following analog to Lemma 3.2, but for small dual
caps.

Lemma 5.1. Let K be a convex body in Rd, and consider any ε > 0 and i ∈ I±. Given any
t > 0, there exists a set of O(1/t) augmented points Q′

i ⊂ ∂Ki such that, for any useful ε-dual
cap Dq induced by an augmented point q ∈ ∂K

(ε)
i , if area(∆q) ≤ εd−1/t, there exists a point in

Q′
i that stabs Dq.

We are now ready to provide the proof of Theorem 1.1. Recall that Ki = K
(2ε)
i . By

Lemma 2.2, it suffices to stab all the useful ε-dual caps of each of the Ki’s, for i ∈ I±. Fix any
i ∈ I±, and let t =

√
area(K) · ε(d−1)/2. For any augmented point q ∈ ∂K

(ε)
i , we say that the

associated ε-dual cap is large if area(∆q) ≥ t, and otherwise it is small. We use two different
strategies for stabbing the two types of dual caps.

For large dual caps, we apply Lemma 3.2 with the value of t defined above. This yields a set
Qi ⊂ ∂Ki of size O(area(K)/t) = O

(√
area(K)/ε(d−1)/2

)
, such that every useful large ε-dual

cap is stabbed by one of these points.
In order to handle small dual caps, we apply Lemma 5.1 with the value of t set to t′ =

c′ε(d−1)/2/
√

area(K), for a suitably chosen constant c′. This yields a set Q′
i ⊂ ∂Ki of size

O(1/t′) = O
(√

area(K)/ε(d−1)/2
)
, such that every useful ε-dual cap whose base is of area at

most εd−1/t′ = O
(√

area(K) · ε(d−1)/2
)

is stabbed. By choosing c′ suitably, every useful small
ε-dual cap is stabbed.

In summary, Qi ∪Q′
i is a set of size O

(√
area(K)/ε(d−1)/2

)
that stabs all useful ε-dual caps.

By repeating this for all i ∈ I± and taking the union of all these sets, by Lemma 2.2, the resulting
set provides the desired ε-approximation to K. This completes the proof of Theorem 1.1.
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[9] K. Böröczky, Jr. Approximation of general smooth convex bodies. Advances in Mathemat-
ics, 153:325–341, 2000.
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