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Introduction

Convex Approximation:

Given a convex body K in Rd and parameter ε > 0, compute a
polytope P of low combinatorial complexity that
ε-approximates K

ε-approximate: Hausdorff distance ≤ ε · diam(K)

Assume w.l.o.g. that K is fat and diam(K) = 1

Dimension d is a constant

K

Pε
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Combinatorial Complexity

Combinatorial complexity:
Sum of the number of k-faces k = 0, . . . , d− 1

Can ε-approximate with:

O(1/ε(d−1)/2) facets [Dudley 1974]
O(1/ε(d−1)/2) vertices [Bronshteyn & Ivanov 1974]

Both bounds are tight
No known construction achieves both simultaneously

A polytope with n vertices (facets) can have combinatorial complexity Θ(nbd/2c)

Dudley’s and Bronshteyn-Ivanov’s constructions may suffer much higher combinatorial
complexity
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Main Result

Question: Is it possible to ε-approximate any convex body by a convex polytope of total
combinatorial complexity O(1/ε(d−1)/2)?

Earlier Results:

Yes, but the polyhedron might be nonconvex [Erickson 2003]

Yes, but the curvature must be bounded [Clarkson 2006]

Well, almost: O
((

1
ε log 1

ε

) d−1
2
)

[AFM 2017]

Main Result:

Can ε-approximate any convex body with total combinatorial complexity O
(
1
ε

) d−1
2
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Bronshteyn and Ivanov’s Approximation

K

1 Surround K by a sphere of radius 2

2 Distribute points on the sphere with
distance ∼

√
ε

3 Take the nearest neighbor on K for each
point

4 Make P the convex hull of the points

Bronshteyn and Ivanov, 1974:

A convex body K of diameter 1 can be
ε-approximated by a polytope P with
O(1/ε(d−1)/2) vertices.
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Approximating by Hitting Caps

ε

K

H

ε-width cap C

Convex approximation is a covering problem

Cap: intersection of K and a halfspace H

Width: measured perpendicular to H

Hitting Caps

If a point set S ⊂ K is a hitting set for all ε-width caps,
then conv(S) is an ε-approximation to K

Bronshteyn & Ivanov: |S| = O(1/ε(d−1)/2) possible

Total complexity may be much larger

To bound the total complexity, we need more structure
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The Witness-Collector Method

We identify two sets of regions:

W: witnesses
C: collectors, one per witness

such that:

(1) Each witness contributes one point to S

(2) Any halfspace H is either:

Deep: contains a witness, or
Shallow: H ∩K is contained within a collector

(3) Each collector contains O(1) points of S

Witness-Collector Complexity Bound [Devillers et al. 2013]

Given a set of witnesses and collectors satisfying the above properties, the combinatorial
complexity of the conv(S) is O(|C|).
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Witness-Collector Properties

Desirable properties:

Packing: Witnesses are disjoint (for packing arguments)

Covering: Collectors cover K’s boundary

Similarity: Small expansion of witness covers its collector

Locality: If two potential witnesses overlap, a constant
factor expansion of one encloses the other

How about ε-caps (and their expansions)?

Unfortunately, caps are not local

⇒ No constant expansion of W1 will contain W2



Preliminaries

Introduction

Complexity

Main Result

Vertices

Caps

Witness-Collector

Macbeath Regions

Construction

ECC

Difficulties

Stratification

New Insights

Overview

Volume Bound

Polar

Volume Bound

Layer Thickness

Construction

Closing

Conclusions

Bibliography

Witness-Collector Properties

Desirable properties:

Packing: Witnesses are disjoint (for packing arguments)

Covering: Collectors cover K’s boundary

Similarity: Small expansion of witness covers its collector

Locality: If two potential witnesses overlap, a constant
factor expansion of one encloses the other

How about ε-caps (and their expansions)?

Unfortunately, caps are not local

⇒ No constant expansion of W1 will contain W2



Preliminaries

Introduction

Complexity

Main Result

Vertices

Caps

Witness-Collector

Macbeath Regions

Construction

ECC

Difficulties

Stratification

New Insights

Overview

Volume Bound

Polar

Volume Bound

Layer Thickness

Construction

Closing

Conclusions

Bibliography

Witness-Collector Properties

Desirable properties:

Packing: Witnesses are disjoint (for packing arguments)

Covering: Collectors cover K’s boundary

Similarity: Small expansion of witness covers its collector

Locality: If two potential witnesses overlap, a constant
factor expansion of one encloses the other

How about ε-caps (and their expansions)?

Unfortunately, caps are not local

⇒ No constant expansion of W1 will contain W2



Preliminaries

Introduction

Complexity

Main Result

Vertices

Caps

Witness-Collector

Macbeath Regions

Construction

ECC

Difficulties

Stratification

New Insights

Overview

Volume Bound

Polar

Volume Bound

Layer Thickness

Construction

Closing

Conclusions

Bibliography

Witness-Collector Properties

Desirable properties:

Packing: Witnesses are disjoint (for packing arguments)

Covering: Collectors cover K’s boundary

Similarity: Small expansion of witness covers its collector

Locality: If two potential witnesses overlap, a constant
factor expansion of one encloses the other

How about ε-caps (and their expansions)?

Unfortunately, caps are not local

⇒ No constant expansion of W1 will contain W2



Preliminaries

Introduction

Complexity

Main Result

Vertices

Caps

Witness-Collector

Macbeath Regions

Construction

ECC

Difficulties

Stratification

New Insights

Overview

Volume Bound

Polar

Volume Bound

Layer Thickness

Construction

Closing

Conclusions

Bibliography

Witness-Collector Properties

Desirable properties:

Packing: Witnesses are disjoint (for packing arguments)

Covering: Collectors cover K’s boundary

Similarity: Small expansion of witness covers its collector

Locality: If two potential witnesses overlap, a constant
factor expansion of one encloses the other

How about ε-caps (and their expansions)?

Unfortunately, caps are not local

⇒ No constant expansion of W1 will contain W2



Preliminaries

Introduction

Complexity

Main Result

Vertices

Caps

Witness-Collector

Macbeath Regions

Construction

ECC

Difficulties

Stratification

New Insights

Overview

Volume Bound

Polar

Volume Bound

Layer Thickness

Construction

Closing

Conclusions

Bibliography

Witness-Collector Properties

Desirable properties:

Packing: Witnesses are disjoint (for packing arguments)

Covering: Collectors cover K’s boundary

Similarity: Small expansion of witness covers its collector

Locality: If two potential witnesses overlap, a constant
factor expansion of one encloses the other

How about ε-caps (and their expansions)?

Unfortunately, caps are not local

⇒ No constant expansion of W1 will contain W2

Witness

Collector



Preliminaries

Introduction

Complexity

Main Result

Vertices

Caps

Witness-Collector

Macbeath Regions

Construction

ECC

Difficulties

Stratification

New Insights

Overview

Volume Bound

Polar

Volume Bound

Layer Thickness

Construction

Closing

Conclusions

Bibliography

Witness-Collector Properties

Desirable properties:

Packing: Witnesses are disjoint (for packing arguments)

Covering: Collectors cover K’s boundary

Similarity: Small expansion of witness covers its collector

Locality: If two potential witnesses overlap, a constant
factor expansion of one encloses the other

How about ε-caps (and their expansions)?

Unfortunately, caps are not local

⇒ No constant expansion of W1 will contain W2

W1

W2



Preliminaries

Introduction

Complexity

Main Result

Vertices

Caps

Witness-Collector

Macbeath Regions

Construction

ECC

Difficulties

Stratification

New Insights

Overview

Volume Bound

Polar

Volume Bound

Layer Thickness

Construction

Closing

Conclusions

Bibliography

Witness-Collector Properties

Desirable properties:

Packing: Witnesses are disjoint (for packing arguments)

Covering: Collectors cover K’s boundary

Similarity: Small expansion of witness covers its collector

Locality: If two potential witnesses overlap, a constant
factor expansion of one encloses the other

How about ε-caps (and their expansions)?

Unfortunately, caps are not local

⇒ No constant expansion of W1 will contain W2

W1

W2



Preliminaries

Introduction

Complexity

Main Result

Vertices

Caps

Witness-Collector

Macbeath Regions

Construction

ECC

Difficulties

Stratification

New Insights

Overview

Volume Bound

Polar

Volume Bound

Layer Thickness

Construction

Closing

Conclusions

Bibliography

Macbeath Regions - Definition

K

x

Macbeath Regions [Macbeath 1952]

Given a convex body K and x ∈ K:

M(x) = K ∩ (2x−K)

M(x): largest centrally symmetric convex body inside K,
centered at x

Let Mλ(x) be a scaling of M(x) by a factor λ

Let M ′(x) = Mλ(x) for a small constant λ
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Given a convex body K and x ∈ K:
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M(x): largest centrally symmetric convex body inside K,
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Macbeath Regions - Properties

K

x

y
M(x)

Locality: For λ ≤ 1/5, if Mλ(x) and Mλ(y) overlap, then
Mλ(y) ⊆M4λ(x)

(Like balls of radius r:
Br(x) and Br(y) overlap,
then Br(y) ⊆ B3r(x))

x

Br(x)
y

Br(y)
B3r(x)

Similarity: M3d(x) covers x’s minimum volume cap

Approximation: If λ ≤ 1 and x is at distance ε from ∂K,
then for all y ∈Mλ(x): y is at distance O(ε) from ∂K
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Cardinality Bound

√
ε

Economical Cap Cover [AFM 2017]

Let K ⊂ Rd be a convex body of diameter 1. A set of
disjoint Macbeath regions M ′(x) placed at points x at
distance ε from the boundary of K has O(1/ε(d−1)/2)
Macbeath regions.

Proof strategy:

Prune Macbeath regions that are too close to
each other (by increasing volume)

A constant fraction of the regions are pruned

Project the centers of the regions onto the Dudley
ball (perpendicularly to the corresponding cap)

Show that the pairwise distance in the Dudley
ball is at least

√
ε
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Economical Cap Covering (ECC)

Can we use Macbeath regions as a basis for
Witness-Collector?

Economical Cap Cover [AFM 2017]

Given K and ε > 0, there exists:

Macbeath regions R1, . . . , Rk, for
k = O(1/ε(d−1)/2)

Caps C1, . . . , Ck of width Θ(ε)

For every cap C of K, there is i such
that either:

Deep: Ri ⊆ C
Shallow: C ⊆ Ci

K

εC
Ri

Ci

K
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Are we there yet?

Ri

Ci

This suggests a Witness-Collector system:

Witnesses: Ri
Collectors: Ci
Points: Centers of the Ri’s

Witness-Collector conditions (1) and (2) are
satisfied

But condition (3):
Each collector contains O(1) points of S
. . . does not hold
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Witnesses: Ri
Collectors: Ci
Points: Centers of the Ri’s

Witness-Collector conditions (1) and (2) are
satisfied

But condition (3):
Each collector contains O(1) points of S
. . . does not hold



Preliminaries

Introduction

Complexity

Main Result

Vertices

Caps

Witness-Collector

Macbeath Regions

Construction

ECC

Difficulties

Stratification

New Insights

Overview

Volume Bound

Polar

Volume Bound

Layer Thickness

Construction

Closing

Conclusions

Bibliography

Stratified Construction

K

Our earlier (suboptimal) solution [AFM 2017]:

Partition witnesses in O(log 1
ε ) layers by volume

Larger-volume regions in outer layers

Why it works?

Witness overlaps collector ⇒ high volume
Apply a packing argument to bound them

But, error increases from ε to O(ε log 1
ε )

Number of regions grows to

O

((
1

ε
log

1

ε

) d−1
2

)
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Stratified Construction
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Our earlier (suboptimal) solution [AFM 2017]:

Partition witnesses in O(log 1
ε ) layers by volume

Larger-volume regions in outer layers

Why it works?
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New Insights

Our optimal construction is based primarily on two new ideas:

Volume-sensitive bound on the number of Macbeath regions in the ECC

A volume-inverting correspondence between Macbeath regions in K and its polar K∗
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Volume-Sensitive Bound on Macbeath Regions

ε

1

ε

K

ε

√
ε

K

Number of Macbeath regions differs by volume:

Ball has Θ(1/ε(d−1)/2) regions of volume Θ(ε(d+1)/2)

Volumes of Macbeath regions vary from Θ(εd) to Θ(ε)

Since K has unit diameter, the portion of K within ε of its
boundary has volume Θ(ε)

By a packing argument, the number of disjoint Macbeath
regions of volume at least v is O(ε/v)

What about Macbeath regions of small volume?
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Macbeath Regions in the Polar

A packing argument cannot be used to bound the number of
small Macbeath regions (volume from εd up to ε(d+1)/2)

But still, there cannot be many of them!

Consider a Macbeath region of volume O(εd)

Such a tiny Macbeath region must be close to a portion of
K’s boundary with high curvature

By convexity, K’s boundary curvature is bounded

Therefore, the number of such Macbeath regions is O(1)

How to generalize this intuition to all small Macbeath regions?

K
Ri
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Polar Body

K∗

K

K: convex body

Polar K∗:
points p such that p · q ≤ 1 for q ∈ K
High curvature maps to low curvature

If origin is well-centered, then
the product of the volumes (Mahler volume) is
between two constants

In K: extreme point in direction v

In K∗: ray shooting in direction v
from origin
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Polar Body

v

v

K

K∗
K: convex body

Polar K∗:
points p such that p · q ≤ 1 for q ∈ K
High curvature maps to low curvature

If origin is well-centered, then
the product of the volumes (Mahler volume) is
between two constants

In K: extreme point in direction v

In K∗: ray shooting in direction v
from origin
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Caps in the Polar

Correspondence between caps in K and K∗:

Let C be an ε-width cap of K with base
orthogonal to v
(extremal query in direction v with error ε)

In K∗, shoot a ray in direction v from the origin
and let x be a point distance ε before the
boundary
(ray shooting query in direction v with error ε)

Let π(C) be the minimum volume cap containing
point x

Polar Relationship for Caps

The polar of the base of C scaled by ε is a constant
approximation of the base of π(C).

x
π(C)

O

C

v

v

K

K∗

O
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Volume-Sensitive Bound

Mahler volume inequalities imply that the product of the
base areas is Θ(εd−1)

Hence, for each ε-width Macbeath region R of K, there
exists a Macbeath region R∗ in K∗, such that

vol(R) · vol(R∗) = Θ(εd+1)

Transforms small-volume Macbeath regions in K to
large-volume Macbeath regions in K∗.

Packing argument in K∗ bounds their number

Volume-Sensitive Bound

Let C be a set of caps of K of width Θ(ε) and volume Θ(v),
such that the Macbeath regions M ′(x) centered at the
centroids x of the bases of these caps are disjoint. Then

|C| = O
(

min
( ε
v
,
v

εd

))
.

K

K∗

Ri

R∗
i
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Varying Layer Thickness

ε

We make layers have different thicknesses:

Intermediate layer with thickness ε:

Regions of volume: ε(d+1)/2

Number of regions: 1/ε(d−1)/2

A layer k layers away from the intermediate will have thickness ε/k2:

Regions of original volume: 2kε(d+1)/2 or ε(d+1)/2/2k

Number of regions if thickness ε: 1/(2kε(d−1)/2)
Number of regions becomes: 1/(2k(ε/k2)(d−1)/2) = (kd−1/2k)/ε(d−1)/2

Totals:

Number of regions:
∑
k(kd−1/2k)/ε(d−1)/2 = 1/ε(d−1)/2

Thickness:
∑
k ε/k

2 = ε
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Construction

K

Build Macbeath regions in layers:

Outer layers responsible for larger Macbeath regions
Inner layers responsible for smaller Macbeath regions
(volume doubles for each layer out)
Intermediate layer has thickness ε
(responsible for regions of volume Θ(ε(d+1)/2)
k layers away, thickness decreases to ε/k2

Place a point inside each Macbeath region (anywhere)

Take the convex hull
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Construction

K

P

Build Macbeath regions in layers:

Outer layers responsible for larger Macbeath regions
Inner layers responsible for smaller Macbeath regions
(volume doubles for each layer out)
Intermediate layer has thickness ε
(responsible for regions of volume Θ(ε(d+1)/2)
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Take the convex hull
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Conclusion and Open Problems

There are many details omitted. . .

Main Result:

An optimal O(1/ε(d−1)/2) bound on the combinatorial complexity of an
ε-approximating polytope in Rd.

Key contributions:

A volume-sensitive bound on the number of disjoint Macbeath regions
A volume-inverting correspondence between Macbeath regions in a convex body
and its polar body (a local version of the Mahler volume)

Open problems:

Efficient construction?

Can simple constructions (e.g., Dudley or Bronshteyn & Ivanov) provide any
guarantees on combinatorial complexity?

Instance optimality? (As opposed to worst-case optimality)
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Sculpture by Yoann Crépin

Thank you!
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