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Polytope Membership Queries

Polytope Membership Queries

Given a polytope P in d-dimensional space, preprocess
P to answer membership queries:

Given a point q, is q ∈ P?

Assume that dimension d is a constant and
P is given as intersection of n halfspaces

Dual of halfspace emptiness searching

For d ≤ 3
Query time: O(log n) Storage: O(n)

For d ≥ 4
Query time: O(log n) Storage: O(nbd/2c)

out
in
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Approximate Polytope Membership Queries

Approximate Version

An approximation parameter ε > 0 is given
(at preprocessing time)

Assume the polytope has diameter 1

If the query point’s distance from P :

0: answer must be inside
≥ ε: answer must be outside
> 0 and < ε: either answer is acceptable

Previous solutions were either:

Time-efficient
Query time: O(log 1

ε ) Storage: O(1/εd−1)

Space-efficient
Query time: Õ(1/ε(d−1)/8) Storage: O(1/ε(d−1)/2)

out
in

ε

?
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Time Efficient Solution [BFP82]

ε
P

Create a grid with cells of diameter ε

For each column, store the topmost
and bottommost cells intersecting P

Query processing:

Locate the column that contains q
Compare q with the two extreme
values

Time Efficient Solution [BFP82]

O(1/εd−1) columns

Query time: O(log 1
ε ) ← optimal

Storage: O(1/εd−1)
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Space Efficient Solution [AFM11, AFM12]

Preprocess:

Input P , ε

t = Õ(1/ε(d−1)/8)

Q← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P
If at most t facets, then
Q stores them

Otherwise, subdivide Q and recurse

Query time: Õ(1/ε(d−1)/8)

Storage: O(1/ε(d−1)/2) ← optimal

t = 2
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New Results

New solution is space-efficient and time-efficient:

Approximate Polytope Membership:

Query time: O(log 1
ε ) ← optimal

Storage: O(1/ε(d−1)/2) ← optimal
(Previous storage: O(1/εd−1) [BFP82])

Consequence:

Approximate Nearest Neighbor Searching:

Query time: O(log n)
Storage: O(n/εd/2)
(Previous storage: O(n/εd−1) [Har01])
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Techniques

Previous solutions use grids and quadtrees

Similar width in all directions

Our solution uses a
hierarchy of Macbeath regions:

Adapt to the curvature of the body
Narrow in directions of high curvature
Wide in directions of low curvature
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Macbeath Regions [Mac52]

K

x

M(x)

M ′(x)

Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

M ′(x) = M1/5(x)

Properties

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆M(y)

y ∈M ′(x) ⇒ δ(y) = Θ(δ(x)), where
δ(x): distance from x to ∂K
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Macbeath Regions [Mac52]

K

≈
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Macbeath Ellipsoids

M ′(x)

John Ellipsoid [Joh48]

For every centrally symmetric convex body K
in Rd, there exist ellipsoids E1, E2 such that
E1 ⊆ K ⊆ E2 and E2 is a

√
d-scaling of E1

Macbeath Ellipsoid

E(x): enclosed John ellipsoid of M ′(x)

Mλ(x) ⊆ E(x) ⊆M ′(x) for
λ = 1/(5

√
d)
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Covering with Macbeath Ellipsoids

Covering (see [Bar07])

Given:

K: convex body

δ: small positive parameter

There exist ellipsoids E(x1), . . . , E(xk)

δ(x1) = · · · = δ(xk) = δ

Cover: Every ray from the origin
intersects some ellipsoid

k = O(1/δ(d−1)/2) [AFM16]

δ
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Hierarchy of Macbeath Ellipsoids

Hierarchy

Given:

K: convex body

ε: small positive parameter

Hierarchy:

Each level i a δi-covering

` = Θ(log 1
ε ) levels

δ0 = Θ(1), δ` = Θ(ε)

δi+1 = δi/2

E,E′ are parent/child if

Levels are consecutive
Same ray from the origin
intersects E and E′

Each node has O(1) children
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Ray Shooting from the Origin

Ray Shooting from the Origin
(generalizes polytope membership)

Preprocess:

K: convex body

ε: small positive parameter

Query:

Oq: ray from the origin towards q

Query algorithm:

Find an ellipsoid intersecting Oq
at level 0

Repeat among children at next level

Stop at leaf node

Leaf ellipsoid ε-approximates
boundary

O

q
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Analysis

O

q

Out-degree: O(1)

Query time per level: O(1)

Number of levels: O(log 1
ε )

Query time: O(log 1
ε )

Storage for bottom level:
O(1/ε(d−1)/2)

Geometric progression of storage
per level

Total storage: O(1/ε(d−1)/2)
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Impact

q

Approximate Nearest Neighbor

Preprocess n points such that, given a query point q, we can find a point
within at most 1 + ε times the distance to q’s nearest neighbor

For log 1
ε ≤ m ≤ 1/εd/2

Query time: O(log n+ 1/(m εd/2)) Storage: O(nm)

If m = 1/εd/2

Query time: O(log n) Storage: O(n/εd/2)
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What else is in the paper?

Proofs

Witness (important to find the
approximate nearest neighbor)

Reduction from ANN to
approximate ray shooting

Full Paper

arxiv.org/abs/1612.01696

O

q

witness

http://arxiv.org/abs/1612.01696
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Conclusions and Open Problems

Our approximate polytope membership data structure is optimal

Query time: O(log 1
ε )

Storage: O(1/ε(d−1)/2)

Still, several open problems remain

Further improvements to approximate nearest neighbor searching?

Generalization to k-nearest neighbors?

Other applications of the hierarchy?

Recent applications of the hierarchy

Near-optimal ε-kernel computation

Approximate diameter

Approximate bichromatic closest pair
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Sculpture by José Mérino

Thank you!
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