Optimal Approximate Polytope Membership

Sunil Arya
Hong Kong University of Science and Technology
Guilherme da Fonseca
Université d'Auvergne and LIMOS
David Mount
University of Maryland, College Park

SODA 2017

Polytope Membership Queries

Polytope Membership Queries

Given a polytope P in d-dimensional space, preprocess P to answer membership queries:

Given a point q, is $q \in P$?

- Assume that dimension d is a constant and P is given as intersection of n halfspaces
- Dual of halfspace emptiness searching
- For $d \leq 3$

Query time: $O(\log n) \quad$ Storage: $O(n)$

- For $d \geq 4$

Query time: $O(\log n) \quad$ Storage: $O\left(n^{\lfloor d / 2\rfloor}\right)$

Approximate Polytope Membership Queries

Approximate Version

- An approximation parameter $\varepsilon>0$ is given (at preprocessing time)
- Assume the polytope has diameter 1
- If the query point's distance from P :
- 0: answer must be inside
- $\geq \varepsilon$: answer must be outside
- >0 and $<\varepsilon$: either answer is acceptable

Previous solutions were either:

- Time-efficient

Query time: $O\left(\log \frac{1}{\varepsilon}\right) \quad$ Storage: $O\left(1 / \varepsilon^{d-1}\right)$

- Space-efficient

Query time: $\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$ Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$

Time Efficient Solution [BFP82]

- Create a grid with cells of diameter ε
- For each column, store the topmost and bottommost cells intersecting P
- Query processing
- Locate the column that contains q
- Compare q with the two extreme values

Time Efficient Solution [BFP82]

- $O\left(1 / \varepsilon^{d-1}\right)$ columns
- Query time: $O\left(\log \frac{1}{\varepsilon}\right) \quad \leftarrow$ optimal
- Storage: $O\left(1 / \varepsilon^{d-1}\right)$

Time Efficient Solution [BFP82]

- Create a grid with cells of diameter ε
- For each column, store the topmost and bottommost cells intersecting P
- Query processing:
- Locate the column that contains q
- Compare q with the two extreme values

Time Efficient Solution [BFP82]

- $O\left(1 / \varepsilon^{d-1}\right)$ columns
- Query time: $O\left(\log \frac{1}{\varepsilon}\right) \quad \leftarrow$ optimal
- Storage: $O\left(1 / \varepsilon^{d-1}\right)$

Time Efficient Solution [BFP82]

- Create a grid with cells of diameter ε
- For each column, store the topmost and bottommost cells intersecting P
- Query processing:
- Locate the column that contains q
- Compare q with the two extreme values

Time Efficient Solution [BFP82]

- $O\left(1 / \varepsilon^{d-1}\right)$ columns
- Query time: $O\left(\log \frac{1}{\varepsilon}\right) \quad \leftarrow$ optimal
- Storage: $O\left(1 / \varepsilon^{d-1}\right)$

Space Efficient Solution [AFM11, AFM12]

Preprocess:

- Input P, ε
- $t=\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- $Q \leftarrow$ unit hypercube
- Split-Reduce (Q)

Split-Reduce(Q)

- Find an
- If at most t facets, then
Q stores them
- Othermise subdivide Q and recurse
- Query time:
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$
$t=2$

Space Efficient Solution [AFM11, AFM12]

Preprocess:

- Input P, ε
- $t=\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- $Q \leftarrow$ unit hypercube
- Split-Reduce (Q)

Split-Reduce(Q)

- Find an ε-approximation of $Q \cap P$
- If at most t facets, then Q stores them
- Otherwise, subdivide Q and recurse

- Query time: $\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$

Space Efficient Solution [AFM11, AFM12]

Preprocess:

- Input P, ε
- $t=\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- $Q \leftarrow$ unit hypercube
- Split-Reduce (Q)

Split-Reduce(Q)

- Find an ε-approximation of $Q \cap P$
- If at most t facets, then Q stores them
- Otherwise, subdivide Q and recurse

- Query time: $\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$

Space Efficient Solution [AFM11, AFM12]

Preprocess:

- Input P, ε
- $t=\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- $Q \leftarrow$ unit hypercube
- Split-Reduce (Q)

Split-Reduce(Q)

- Find an ε-approximation of $Q \cap P$
- If at most t facets, then Q stores them
- Otherwise, subdivide Q and recurse

- Query time: $\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$

Space Efficient Solution [AFM11, AFM12]

Preprocess:

- Input P, ε
- $t=\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- $Q \leftarrow$ unit hypercube
- Split-Reduce (Q)

Split-Reduce(Q)

- Find an ε-approximation of $Q \cap P$
- If at most t facets, then Q stores them
- Otherwise, subdivide Q and recurse
$t=2$

- Query time: $\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right) \quad \leftarrow$ optimal

New Results

New solution is space-efficient and time-efficient:

```
Approximate Polytope Membership:
Query time: \(O\left(\log \frac{1}{\varepsilon}\right) \quad \leftarrow\) optimal
Storage: \(O\left(1 / \varepsilon^{(d-1) / 2}\right) \quad \leftarrow\) optimal
(Previous storage: \(O\left(1 / \varepsilon^{d-1}\right)\) [BFP82])
```

Consequence:
Approximate Nearest Neighbor Searching
Query time: $O(\log n)$
Storage:
(Previous storage: $\left.O\left(n / \varepsilon^{d-1}\right)[H a r 01]\right)$

New Results

New solution is space-efficient and time-efficient:

Approximate Polytope Membership:

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
\leftarrow optimal
Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$
\leftarrow optimal
(Previous storage: $O\left(1 / \varepsilon^{d-1}\right)$ [BFP82])

Consequence:
Approximate Nearest Neighbor Searching:
Query time: $O(\log n)$
Storage: $O\left(n / \varepsilon^{d / 2}\right)$
(Previous storage: $O\left(n / \varepsilon^{d-1}\right)[\mathrm{Har01}]$)

Techniques

- Previous solutions use grids and quadtrees - Similar width in all directions
- Our solution uses a hierarchy of Macbeath regions:
- Adapt to the curvature of the body
- Narrow in directions of high curvature
- Wide in directions of low curvature

Macbeath Regions [Mac52]

Given a convex body $K, x \in K$, and $\lambda>0$:

- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x
- $M^{\prime}(x)=M^{1 / 5}(x)$

Properties

Macbeath Regions [Mac52]

Given a convex body $K, x \in K$, and $\lambda>0$:

- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x
- $M^{\prime}(x)=M^{1 / 5}(x)$

Properties

Macbeath Regions [Mac52]

Given a convex body $K, x \in K$, and $\lambda>0$:

- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x
- $M^{\prime}(x)=M^{1 / 5}(x)$

Properties

Macbeath Regions [Mac52]

Given a convex body $K, x \in K$, and $\lambda>0$:

- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x
- $M^{\prime}(x)=M^{1 / 5}(x)$

Properties
where $\delta(x)$: distance from x to ∂K

Macbeath Regions [Mac52]

Given a convex body $K, x \in K$, and $\lambda>0$:

- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x
- $M^{\prime}(x)=M^{1 / 5}(x)$

Properties

Macbeath Regions [Mac52]

Given a convex body $K, x \in K$, and $\lambda>0$:

- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x
- $M^{\prime}(x)=M^{1 / 5}(x)$

Properties

- $M^{\prime}(x) \cap M^{\prime}(y) \neq \emptyset \Rightarrow M^{\prime}(x) \subseteq M(y)$
$\delta(x)$: distance from x to ∂K

Macbeath Regions [Mac52]

Given a convex body $K, x \in K$, and $\lambda>0$:

- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x
- $M^{\prime}(x)=M^{1 / 5}(x)$

Properties

- $M^{\prime}(x) \cap M^{\prime}(y) \neq \emptyset \Rightarrow M^{\prime}(x) \subseteq M(y)$
distance from x to ∂K

Macbeath Regions [Mac52]

Given a convex body $K, x \in K$, and $\lambda>0$:

- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x
- $M^{\prime}(x)=M^{1 / 5}(x)$

Properties

- $M^{\prime}(x) \cap M^{\prime}(y) \neq \emptyset \Rightarrow M^{\prime}(x) \subseteq M(y)$
- $y \in M^{\prime}(x) \Rightarrow \delta(y)=\Theta(\delta(x))$, where $\delta(x)$: distance from x to ∂K

Macbeath Regions [Mac52]

Given a convex body $K, x \in K$, and $\lambda>0$:

- $M^{\lambda}(x)=x+\lambda((K-x) \cap(x-K))$
- $M(x)=M^{1}(x)$: intersection of K and K reflected around x
- $M^{\prime}(x)=M^{1 / 5}(x)$

Properties

- $M^{\prime}(x) \cap M^{\prime}(y) \neq \emptyset \Rightarrow M^{\prime}(x) \subseteq M(y)$
- $y \in M^{\prime}(x) \Rightarrow \delta(y)=\Theta(\delta(x))$, where $\delta(x)$: distance from x to ∂K

Macbeath Ellipsoids

John Ellipsoid [Joh48]

For every centrally symmetric convex body K in \mathbb{R}^{d}, there exist ellipsoids E_{1}, E_{2} such that $E_{1} \subseteq K \subseteq E_{2}$ and E_{2} is a \sqrt{d}-scaling of E_{1}

Macbeath Ellipsoid

- $E(x)$: enclosed John ellipsoid of $M^{\prime}(x)$

Macbeath Ellipsoids

John Ellipsoid [Joh48]

For every centrally symmetric convex body K in \mathbb{R}^{d}, there exist ellipsoids E_{1}, E_{2} such that $E_{1} \subseteq K \subseteq E_{2}$ and E_{2} is a \sqrt{d}-scaling of E_{1}

Macbeath Ellipsoid

- $E(x)$: enclosed John ellipsoid of $M^{\prime}(x)$

Macbeath Ellipsoids

John Ellipsoid [Joh48]

For every centrally symmetric convex body K in \mathbb{R}^{d}, there exist ellipsoids E_{1}, E_{2} such that $E_{1} \subseteq K \subseteq E_{2}$ and E_{2} is a \sqrt{d}-scaling of E_{1}

Macbeath Ellipsoid

- $E(x)$: enclosed John ellipsoid of $M^{\prime}(x)$
- $M^{\lambda}(x) \subseteq E(x) \subseteq M^{\prime}(x)$ for $\lambda=1 /(5 \sqrt{d})$

Covering with Macbeath Ellipsoids

Covering (see [Bar07])

Given:

- K : convex body
- δ : small positive parameter

There exist ellipsoids $E\left(x_{1}\right), \ldots, E\left(x_{k}\right)$

- $\delta\left(x_{1}\right)=\cdots=\delta\left(x_{k}\right)=\delta$
- Cover: Every ray from the origin intersects some ellipsoid
\square

Covering with Macbeath Ellipsoids

Covering (see [Bar07])

Given:

- K : convex body
- δ : small positive parameter

There exist ellipsoids $E\left(x_{1}\right), \ldots, E\left(x_{k}\right)$

- $\delta\left(x_{1}\right)=\cdots=\delta\left(x_{k}\right)=\delta$
- Cover: Every ray from the origin intersects some ellipsoid

Covering with Macbeath Ellipsoids

Covering (see [Bar07])

Given:

- K : convex body
- δ : small positive parameter

There exist ellipsoids $E\left(x_{1}\right), \ldots, E\left(x_{k}\right)$

- $\delta\left(x_{1}\right)=\cdots=\delta\left(x_{k}\right)=\delta$
- Cover: Every ray from the origin intersects some ellipsoid
- $k=O\left(1 / \delta^{(d-1) / 2}\right) \quad[\mathrm{AFM} 16]$

Hierarchy of Macbeath Ellipsoids

Hierarchy

Given:

- K : convex body
- ε : small positive parameter

Hierarchy:

- Each level i a δ_{i}-covering
- $\ell=\Theta\left(\log \frac{1}{\varepsilon}\right)$ levels
- $\delta_{0}=\Theta(1), \delta_{\ell}=\Theta(\varepsilon)$
- $\delta_{i+1}=\delta_{i} / 2$
- E, E^{\prime} are parent/child if
- Levels are consecutive
- Same ray from the origin intersects E and E^{\prime}

Hierarchy of Macbeath Ellipsoids

Hierarchy

Given:

- K : convex body
- ε : small positive parameter

Hierarchy:

- Each level i a δ_{i}-covering
- $\ell=\Theta\left(\log \frac{1}{\varepsilon}\right)$ levels
- $\delta_{0}=\Theta(1), \delta_{\ell}=\Theta(\varepsilon)$
- $\delta_{i+1}=\delta_{i} / 2$
- E, E^{\prime} are parent/child if
- Levels are consecutive
- Same ray from the origin intersects E and E^{\prime}
- Each node has $O(1)$ children

Hierarchy of Macbeath Ellipsoids

Hierarchy

Given:

- K : convex body
- ε : small positive parameter

Hierarchy:

- Each level i a δ_{i}-covering
- $\ell=\Theta\left(\log \frac{1}{\varepsilon}\right)$ levels
- $\delta_{0}=\Theta(1), \delta_{\ell}=\Theta(\varepsilon)$
- $\delta_{i+1}=\delta_{i} / 2$
- E, E^{\prime} are parent/child if
- Levels are consecutive
- Same ray from the origin intersects E and E^{\prime}
- Each node has $O(1)$ children

Ray Shooting from the Origin

Ray Shooting from the Origin
 (generalizes polytope membership)

Preprocess:

- K : convex body
- ε : small positive parameter

Query:

- $O q$: ray from the origin towards q

Query algorithm:

- Find an ellipsoid intersecting $O q$ at level 0
- Repeat among children at next level
- Stop at leaf node
- Leaf ellinsoid ε-annroximates
 boundary

Ray Shooting from the Origin

Ray Shooting from the Origin (generalizes polytope membership)

Preprocess:

- K : convex body
- ε : small positive parameter

Query:

- $O q$: ray from the origin towards q

Query algorithm:

- Find an ellipsoid intersecting $O q$ at level 0
- Repeat among children at next level
- Stop at leaf node
- Leaf ellipsoid ε-approximates
 boundarv

Ray Shooting from the Origin

Ray Shooting from the Origin (generalizes polytope membership)

Preprocess:

- K : convex body
- ε : small positive parameter

Query:

- $O q$: ray from the origin towards q

Query algorithm:

- Find an ellipsoid intersecting $O q$ at level 0
- Repeat among children at next level
- Stop at leaf node
- Leaf ellipsoid ε-approximates
 boundary

Analysis

- Out-degree: $O(1)$
- Query time per level: $O(1)$
- Number of levels: $O\left(\log \frac{1}{\varepsilon}\right)$
- Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
- Storage for bottom level: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$
- Geometric progression of storage per level
- Total storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$

Impact

Approximate Nearest Neighbor

Preprocess n points such that, given a query point q, we can find a point within at most $1+\varepsilon$ times the distance to q 's nearest neighbor

- For $\log \frac{1}{\varepsilon} \leq m \leq 1 / \varepsilon^{d / 2}$

Query time: $O\left(\log n+1 /\left(m \varepsilon^{d / 2}\right)\right) \quad$ Storage: $O(n m)$

- If $m=1 / \varepsilon^{d / 2}$

Query time: $O(\log n)$
Storage: $O\left(n / \varepsilon^{d / 2}\right)$

What else is in the paper?

- Proofs
- Witness (important to find the approximate nearest neighbor)
- Reduction from ANN to approximate ray shooting

Full Paper

arxiv.org/abs/1612.01696

Conclusions and Open Problems

Our approximate polytope membership data structure is optimal

- Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$

Still, several open problems remain

- Further improvements to approximate nearest neighbor searching?
- Generalization to k-nearest neighbors?
- Other applications of the hierarchy?

Recent applications of the hierarchy

- Near-optimal ε-kernel computation
- Approximate diameter
- Approximate bichromatic closest pair

Bibliography

[AFM11] S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries. In Proc. 43rd Annu. ACM Sympos. Theory Comput., pages 579-586, 2011.
[AFM12] S. Arya, G. D. da Fonseca, and D. M. Mount. Polytope approximation and the Mahler volume. In Proc. 23rd Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 29-42, 2012.
[AFM16] S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approximating polytopes. In Proc. 32nd Internat. Sympos. Comput. Geom., pages 11:1-11:15, 2016.
[Bar07] I. Bárány. Random polytopes, convex bodies, and approximation. In W. Weil, editor, Stochastic Geometry, volume 1892 of Lecture Notes in Mathematics, pages 77-118, 2007.
[Har01] S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci., pages 94-103, 2001.
[Joh48] F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, pages 187-204, 1948.
[Mac52] A. M. Macbeath. A theorem on non-homogeneous lattices. Annals of Mathematics, 54:431-438, 1952.

Thank you!

Sculpture by José Mérino

